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Abstract: Load-side peak shaving is an effective measure to alleviate power supply–demand im-
balance. As a key link between a vast array of small- and medium-sized adjustable resources and
the bulk power system, load aggregators (LAs) typically allocate peak shaving budgets using fixed
pricing methods based on peak shaving demand forecasts. However, due to the randomness of
supply and demand, fluctuations in peak shaving demand occur, making it a significant technical
challenge to meet peak shaving needs under limited budget allocations. To address this issue, this
paper first conducts a clustering analysis of various adjustable load characteristics to derive typical
electricity consumption curves, and then proposes a differentiated calculation method for the value
of multi-time-segment peak shaving. Subsequently, an optimization model for LA scheduling and
compensation pricing is established based on the limited peak shaving budget and time-segment
peak shaving value. While ensuring the economic benefits of LAs, the model also analyzes the impact
of different peak shaving budget allocations on the scale of peak shaving that can be achieved. Finally,
case studies demonstrate that, compared to traditional fixed compensation pricing, the proposed
pricing method reduces scheduling costs by an average of 16.5%, while significantly improving the
overall satisfaction of adjustable users.

Keywords: adjustable load; load aggregators; optimal scheduling; peaking value; budget; compensation
pricing

1. Introduction

In recent years, the rapid growth in the installed capacity of renewable energy has
significantly exacerbated the challenges of peak shaving for power grids [1]. Load-side
peak shaving is an effective supplementary measure to alleviate power supply–demand
imbalance and facilitate the integration of green electricity. However, load-side adjustable
resources consist of a large number of distributed adjustable loads. If the grid were to
directly dispatch all individual loads, not only would the dispatch costs be extremely high,
but the control process would also become overly complex. As a specialized demand
response provider, the LA can integrate idle small- and medium-sized load-side resources
and participate in distribution network control through multi-stakeholder consensus-based
regulation. This approach enhances the resilience of the distribution network, allowing ad-
justable load-side resources to play a significant role in the peak shaving market. Currently,
the main source of profit for LAs in peak shaving comes from the price difference between
the economic incentives offered to users and the subsidies provided through contracts
signed with the superior power grid [2]. Typically, LAs use fixed pricing methods to allocate
peak shaving budgets based on forecasts of peak shaving demand [3]. Therefore, one of
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the critical technical challenges LAs face is how to reasonably design a user compensation
mechanism under a limited peak shaving budget.

In recent years, numerous scholars both domestically and internationally have con-
ducted extensive research on LAs, load-side optimal scheduling, and subsidy pricing.

In terms of LAs, the study in [4] proposed a robust optimization strategy for LA
bidding in the main energy market based on controllable loads. The study in [5] established
a multi-LA market bidding and grid economic dispatch model for grid frequency regulation
services. The authors of [6] proposed a control framework and control methods for LAs
targeting temperature-controlled loads such as air conditioners and water heaters. The
research in [7] introduced a stochastic decision-making model for LAs in the day-ahead
and real-time markets and evaluated the impact of implementing load reduction contracts
on the aggregator’s decision-making process.

In terms of load-side optimal scheduling, the study in [8] addresses the multi-time-
scale characteristics of demand response (DR) resources, proposing a resource response
evaluation system and utilizing membership functions to characterize the uncertainty of
user response behavior. This leads to the construction of an optimal scheduling model
for LAs that considers diverse user response behaviors. In [9], a master–slave game
model is established between the profit of integrated energy parks and the energy usage
of residential users, which is then transformed into a single-layer optimization model
for finding a solution using the Karush–Kuhn–Tucker (KKT) conditions. The authors
of [10] consider the adjustment characteristics of shiftable loads and interruptible loads,
introducing an electric vehicle charging and discharging model to improve the utilization
rate of wind and solar power and achieve the coordinated optimization of supply and
demand. The study described in [11] takes into account the transaction model between the
distribution system operator (DSO), LAs, and users, constructing a bi-level optimization
model for the distribution system. The upper and lower models aim to maximize the profits
of the DSO and LA, respectively, fully exploring the potential for user load adjustment.
These studies primarily focus on the optimization of LA scheduling strategies. However,
they do not fully account for the daily fluctuations in green electricity generation on the
supply side, which directly impacts the allocation of the LA’s budget when participating in
the day-ahead peak shaving market.

In terms of subsidy pricing, ref. [12] modifies the peak, flat, and valley periods based
on the peak shaving demand curve, and establishes a leader–follower game model, aiming
to maximize the profits of the LA and the utility of users at the upper and lower levels,
respectively. This approach ultimately leads to the optimization of the user subsidy price.
The study in [13] analyzes various types of load models that consider user comfort and
satisfaction, and establishes an optimized compensation pricing and energy consumption
model for different users, taking into account the varying contributions of different types
of users to demand response. Meanwhile, ref. [14] clusters adjustable load groups based on
their characteristics and assigns subsidy prices according to priority levels. It is clear that,
when balancing the interests of multiple stakeholders, most studies adopt a leader–follower
game model. However, in practical applications, the complexity of these models poses a
significant challenge to the broader implementation of the proposed pricing mechanisms.
This is not only because the model structures may fail to satisfy the Karush–Kuhn–Tucker
conditions [15,16], but also due to the excessive computational resources and time required
to solve these models, further limiting their widespread adoption. Moreover, adopting a
fixed pricing mechanism directly makes it difficult to effectively differentiate user value,
thereby failing to fully incentivize users’ potential for load adjustment. In conclusion, there
is still room for improvement in the existing research on LA scheduling optimization. First,
while some studies have examined the impact of the LA’s user compensation mechanisms
and budget on optimal scheduling, there remains a lack of in-depth exploration into how
to accurately measure the peak shaving value of users across different time periods and
how to allocate funds appropriately. In particular, given that the LA’s available budget is
limited and cannot be expanded indefinitely, it is essential to accurately evaluate the peak
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shaving value in different periods. Second, due to the inherent volatility of supply and
demand, users’ contributions to peak shaving vary across time segments, necessitating a
more flexible compensation mechanism to balance the interests of both the load aggregator
and the users.

In view of the above problems, this paper takes the minimum cost of LA peak shaving
as the objective function, comprehensively considers the interaction between power dis-
patching center, LA, and load-side users, forms a typical user electricity consumption curve
based on the cluster analysis of adjustable load regulation characteristics, and proposes a
differentiated calculation method of multi-period peak load value to ensure the comfort of
each user. An optimal scheduling and compensation pricing model of load aggregators
based on the allocation of limited budget and the value of time segment peak adjustment is
established. The practicability of the proposed method is verified by practical examples.

2. Flowchart of Optimization Scheduling and Compensation Pricing Method for Load
Aggregators Based on Limited Peak Shaving Fund Allocation and Time-Based Peak
Shaving Value

A flowchart of the proposed optimization scheduling and compensation pricing
method for load aggregators, based on limited peak shaving fund allocation and the time-
based peak shaving value, is shown in Figure 1. Electric vehicles currently account for
more than 10% of the distribution area’s load and can serve as distributed energy storage
devices within industrial parks.
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3. Adjustable Load Characteristics and Clustering Method

Load-side users have diversity and variability, reflecting the differing response charac-
teristics of various electricity consumers. Therefore, it is necessary to cluster users based
on their load characteristics, allowing the LA to coordinate the scheduling of loads with
similar attributes, thereby reducing the complexity of regulation. This paper primarily
considers distributed energy storage devices in the form of electric vehicles (EVs) within
the industrial park. Since most of these EVs belong to employees as private vehicles, they
are excluded from the clustering process. However, shiftable and reducible loads, mainly
consisting of mechanical equipment in the industrial park, are included in the clustering
based on their adjustable characteristics.

In this paper, adjustable loads are broadly classified into three categories based on
their response characteristics:

1. Type I Loads (Distributed Energy Storage): This refers to electricity loads located in
different places that can flexibly adjust according to electricity demand or market
price signals. These loads can be distributed across various areas, such as residential
neighborhoods, commercial facilities, and industrial parks, typically including electric
vehicle charging stations, smart household appliances, and industrial production
equipment;

2. Type II Loads (Reducible Loads): This refers to equipment that responds to demand
by reducing electricity consumption, primarily represented by industrial machinery,
commercial air conditioning systems, and other high-power loads;

3. Type III Loads (Shiftable Loads): This refers to devices where the total load remains
constant over a scheduling period, but the load can be flexibly adjusted across different
time periods. Examples include certain industrial production equipment, washing
machines, and water heaters.

3.1. Adjustable Loads Clustering
3.1.1. Adjustable Loads Clustering Index

The adjustable loads exhibit diversity and variability in their regulation characteristics.
Therefore, it is necessary to cluster users based on these features. Compared to other
clustering algorithms, the k-means clustering algorithm is more suitable for the practical
needs of our study due to its adaptability in handling large volumes of load data in
industrial parks and its relatively low computational complexity. Therefore, in this study,
the k-means algorithm is applied to cluster reducible loads and shiftable loads, using the
following features selected as the basis for clustering.

• Reducible loads:

The peak shaving method for this type of load involves directly restricting the current
electricity consumption behavior of the equipment. Therefore, the clustering characteristic
indicators for this type of load are as follows:

1. Primary and secondary reducible loads γ1 [17]

The difference in load between the peak load and the loads of the two adjacent time
periods in the daily load curve indicates the load reduction potential of user i. A larger
value signifies a greater potential for user iii to reduce their load. The calculation method is
as follows:

γ1 = PI I
peak(i)− min(PI I

peak−1(i), PI I
peak+1(i)) (1)

In the formula, PI I
peak(i) represents the typical peak value of the i-th dispatchable load

during the day, and PI I
peak−1(i), PI I

peak+1(i) represents the load values in the time periods
adjacent to the peak.
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2. Peak flexible load γ2

The standard deviation of the load on a typical day indicates the flexibility of the load.
A larger value signifies greater flexibility and a higher potential for the load to participate
in real-time peak shaving. The calculation method is as follows:

γ2 =

√
(PI I

peak(i)− PI I(i))
2

(2)

In the formula, PI I(i) represents the mean value of the i-th dispatchable load within a
typical day.

• Shiftable Load:

Due to the occurrence of load shifting in and out within a single day, the clustering
characteristic indicators for this type of load are as follows:

1. Daily Peak–Valley Difference Rate γ3

The ratio of the difference between the peak and valley load on a typical day to the
peak load indicates the shiftable potential. A larger value signifies a greater potential for
shifting. The calculation method is as follows:

γ3 =
(

PI I I
peak(i)− PI I I

valley(i)
)

/PI I I
peak(i) (3)

In the formula, PI I I
peak(i) and PI I I

valley(i) represent the peak and valley values of the i-th
dispatchable load, respectively.

2. Load Volatility Rate γ4

This refers to the variance of the load curve of user ii on a typical day divided by the
mean. The greater the load volatility rate, the greater the potential for dispatchable load of
user ii. The calculation method is as follows:

γ4 = σI I I(i)/µI I I(i) (4)

In the formula, σI I I(i) and µI I I(i) represent the variance and mean of the dispatchable
load i on a typical day, respectively.

3.1.2. Adjustable Load Clustering

Based on the above clustering characteristics, the Euclidean distance is used to calcu-
late the distance between each data point in the dataset and the centroid, clustering the two
types of adjustable loads. The specific steps are as follows:

1. Determine the number of clusters (k) for the two types of adjustable loads and ran-
domly select initial centroids;

2. Calculate the distance between each data point in the dataset and the centroids,
assigning each point to the cluster associated with the nearest centroid;

3. Once all adjustable load data points have been classified, recalculate the centroids of
each cluster;

4. If the distance between the newly calculated centroids and the original centroids is
less than a predetermined threshold, the clustering is considered successful; otherwise,
repeat steps 2 to 4.

After processing through the above clustering steps, the typical users participating in
peak shaving will be clustered into m and l categories, thereby reducing the difficulty of LA
regulation and maximizing the satisfaction of user energy demands.
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4. Multi-Period Peak Shaving Value Differentiation Method

To fully assess the peak shaving value across different time periods and reduce LA’s
peak shaving costs, this paper proposes a multi-period peak shaving value differentiation
method. This approach takes into account constraints such as peak shaving range, demand,
budget, three types of load models, and user satisfaction. It enables the LA to more
accurately evaluate the peak shaving value of users at various time periods and align
it with user compensation pricing, thereby optimizing LA’s operational efficiency while
ensuring the users’ basic electricity needs are met [18].

Constraints (5)–(7) represent the peak shaving capacity range for the three types
of loads at a given time. Constraints (8)–(10) define the peak shaving capacity as the
difference between the active power before and after peak shaving for the adjustable loads.
Constraints (11)–(20) ensure the matching between the user response time and the indicated
response participation amount.

−PI.max
t ≤ ∆PI

t ≤ PI.max
t (5)

0 ≤ ∆PI I
t,m ≤ PI I.max

t,m (6)

−PI I I.max
t,m ≤ ∆PI I I

t,m ≤ PI I I.max
t,m (7)

∆PI
t = PI,base

t − PI
t (8)

∆PI I
t,m = PI I,base

t,m − PI I
t,m (9)

∆PI I I
t,m = PI I I,base

t,m − PI I I
t,m (10)

In the equations, PI,base
t , PI I,base

t,m , and PI I I,base
t,m represent the baseline daily electricity

consumption power for the three types of adjustable loads. PI
t , PI I

t,m, and PI I I
t,m denote the

daily electricity consumption power curves after peak shaving for these three types of
adjustable loads. ∆PI

t , ∆PI I
t,m, and ∆PI I I

t,m represent the active power differences for Type
I, Type II, and Type III adjustable loads before and after peak shaving during each time
period, indicating the capacity for participating in the peak shaving market response.

∆PI
t < MxI

t (11)

∆PI
t > −M(1 − xI

t ) + λ (12)

∆PI I
t,m < MxI I

t,m (13)

∆PI I
t,m > −M(1 − xI I

t,m) + λ (14)

∆PI I I
t,m < MxI I I.1

t,m (15)

∆PI I I
t,m > −M(1 − xI I I.1

t,m ) + λ (16)

∆PI I I
t,m > −MxI I I.2

t,m (17)

∆PI I I
t,m < M(1 − xI I I.2

t,m )− λ (18)

xI I I
t,m = xI I I.1

t,m + xI I I.2
t,m (19)

∆PI,a
t = ∆PI

t xI
t (20)

In the equations, xI
t , xI I

t,m, and xI I I
t,m are the state variables for the participation of the

three types of adjustable loads in the peak shaving ancillary market. xI I I
t,m is composed

of two state variables, xI I I.1
t,m and xI I I.2

t,m , for movable loads that can be shifted in and out.
∆PI,a

t represents the amount of energy storage load scheduled positively by the LA (i.e.,
the energy level before peak shaving is greater than after peak shaving); M and λ represent
the maximum and minimum values, respectively.
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The sum of the peak shaving response capacities of different adjustable loads should
meet the peak shaving demand issued by the power grid to achieve supply and demand
balance. As shown below, Pbase

t represents the daily peak shaving demand issued by the
grid center, and P f

t represents the amount of load that remains unresponsive.

Pbase
t = ∆PI

t + ∑
m

∆PI I
t,m + ∑

m
∆PI I I

t,m + P f
t (21)

Considering the multiple peaks that occur within a single day in the current power
peak shaving market, the importance and urgency of peak shaving during different time
periods vary. To more accurately reflect the peak shaving value at different times, this
paper introduces a weighting coefficient for the peak shaving value in each time period.
The calculation formula is as follows:

U I
t =

(
PI,base

t − PI,base,min
t

)
/
(

PI,base,max
t − PI,base,min

t

)
(22)

U I I
t,m =

(
PI I,base

t,m − PI I,base,min
t,m

)
/
(

PI I,base,max
t,m − PI I,base,min

t,m

)
(23)

U I I I
t,m =

(
PI I I,base

t,m − PI I I,base,min
t,m

)
/
(

PI I I,base,max
t,m − PI I I,base,min

t,m

)
(24)

In the equation, PI,base,max
t , PI I,base,max

t,m , PI I I,basse,max
t,m , PI,base,min

t , PI I,base,min
t,m , and

PI I I,base,min
t,m represent the peak and valley values of the daily load baseline for the m-

th type of adjustable load among the three types of loads. U I
t , U I I

t,m, and U I I I
t,m repre-

sent the peak shaving value executed by each user in each time period for each type of
adjustable load.

To fully assess the peak shaving priority of different adjustable loads at various times
and to assist the LA in more rationally allocating the peak shaving budget, this paper
introduces the priority variation coefficients ρI

t , ρI I
t,m, and ρI I I

t,m for peak shaving. A larger
coefficient indicates a higher peak shaving value for that time period, resulting in a larger
share of funds from the peak shaving budget. The calculation formula is as follows:

ρI
t = U I

t /

(
U I

t +
m

∑
m=1

U I I
t,m +

m

∑
m=1

U I I I
t,m

)
(25)

ρI I
t,m = U I I

t,m/

(
U I

t +
m

∑
m=1

U I I
t,m +

m

∑
m=1

U I I I
t,m

)
(26)

ρI I I
t,m = U I I I

t,m/

(
U I

t +
m

∑
m=1

U I I
t,m +

m

∑
m=1

U I I I
t,m

)
(27)

For each type of adjustable load, the profit obtained from participating in peak shaving
directly impacts its willingness to participate, as well as the LA’s peak shaving budget.
Traditional grid peak shaving pricing methods are relatively fixed, but as peak shaving
demand fluctuates daily, this can lead to significant fluctuations in peak shaving costs. In
this paper, the proposed peak shaving value-based pricing method can reduce the LA’s
forecasting bias when setting peak shaving prices and accurately fit the compensation
pricing for each time period and typical user within a limited peak shaving budget [19].

cI
t =

(
ρI

t Call PI
t

)
/

(
PI,base

t

24

∑
t=1

Pbase
t

)
+ αIcTOU

t (28)

cI I
t,m ==

(
ρI I

t,mCall PI I
t,m

)
/

(
PI I,base

t,m

24

∑
t=1

Pbase
t

)
+ αI IcTOU

t (29)
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cI I I
t,m =

(
ρI I I

t,mCall PI I I
t,m

)
/

(
PI I I,base

t,m

24

∑
t=1

Pbase
t

)
+ αI I IcTOU

t (30)

In the equation, cI
t , cI I

t,m, and cI I I
t,m represent the compensation pricing for each typical user;

Call denotes the peak shaving budget; αI , αI I , and αI I I are the adjustment coefficients for
the compensation pricing of the three types of adjustable loads; and cTOU

t represents the
time-of-use electricity price.

5. Load Aggregator Optimization Scheduling and Compensation Pricing Model Based
on Limited Peak Shaving Fund Allocation and Time-Specific Peak Shaving Value
5.1. Objective Function

The model aims to minimize the LA’s peak shaving costs as the optimization objective.
Under a limited peak shaving budget, it optimizes the peak shaving costs for three types of
adjustable loads in order to meet the grid’s peak shaving demand [20,21].

minF = ∑
t

cI
t ∆PI,a

t + ∑
t,m

cI I
t,m∆PI I

t,m + ∑
t,m

cI I I
t,m

∣∣∣∆PI I I
t,m

∣∣∣+ ∑
t

εP f
t (31)

In the formula, F represents the peak shaving cost of the LA, and ε is the penalty
coefficient for the unmet peak shaving amount.

In constraint (31), the LA’s scheduling cost is composed of the compensation costs of
three types of adjustable loads and the penalty for unmet peak shaving demand. Among
these, the compensation cost for shiftable loads exhibits nonlinear characteristics, primarily
because shiftable loads involve both the shifting out and shifting in of electricity. To address
this, an intermediate variable ZI I I

t,m is introduced, and through constraints (32) and (33), the
nonlinear part is transformed into a linear form.

∆PI I I
t,m ≤ ZI I I

t,m (32)

−∆PI I I
t,m ≤ ZI I I

t,m (33)

At this point, the objective function (34) is as follows:

minF = ∑
t

cI
t ∆PI,a

t + ∑
t,m

cI I
t,m∆PI I

t,m + ∑
t,m

cI I I
t,mZI I I

t,m + ∑
t

εP f
t (34)

5.2. Constraint Conditions

The LA needs to comprehensively consider the regulation characteristics of different
types of adjustable loads and, within the regulation constraints, determine the regulation
scheme for load clusters based on the regulation potential of each load unit. To this end,
this section develops the following constraints for the three types of adjustable loads:

1. Type I load (Distributed Energy Storage)

Currently, the charging behavior of electric vehicles when connecting to and discon-
necting from the grid exhibits a high degree of randomness. Constraint (35) represents
the time periods for electric vehicles connecting to or disconnecting from the grid. Specifi-
cally, the grid connection time period for electric vehicles should fall between T I

1 and T I
2 ;

therefore, the disconnection time period should be outside of this range. When the electric
vehicle is in a disconnected state, its active power should be 0. The formula is as follows:

T I
1 ≤ T I

in ≤ T I
2 (35)

The state of charge of electric vehicles should satisfy constraints (36)–(38). The state
of charge varies with the charging power, remaining below the maximum capacity of the
battery, while also limiting the magnitude of the charging power and the battery’s charging
and discharging states.

SOCI
t+∆t = SOCI

t + PI
t,chη∆t (36)
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SOCmin
t ≤ SOCI

t ≤ SOCmax
t (37)

0 ≤ PI
t,ch ≤ ytPI,max

t,ch (38)

In the formula, SOCI
t represents the state of charge of the electric vehicle at time t, η is

the charging efficiency of the electric vehicle, SOCmin
t and SOCmax

t are the minimum and
maximum states of charge of the electric vehicle, respectively, and PI

t,ch is the charging power
of the electric vehicle load at a certain moment. yt is the grid connection/disconnection
state variable for electric vehicles; when yt is 0, it indicates that the electric vehicle is
disconnected from the grid, and when yt is 1, it indicates that it is connected to the grid.
The regulation characteristics of electric vehicle loads impose certain requirements on the
state of charge (SOC) when the vehicle is disconnected from the grid. Therefore, this model
introduces constraint (39) to ensure that the total SOC of the electric vehicle is not less than
75% at the time of disconnection. The specific formula is as follows:

SOCt=T I
2
≥ 0.75SOCmax

t (39)

2. Type II load (reducible load)

Type II load is reducible load, which is an important component of the electricity
ancillary services market. The LA can adjust this type of load during appropriate time
periods based on the adequacy of the regional power supply, thereby achieving the goal
of peak shaving. This type of load mainly includes large power loads such as industrial
equipment and commercial air conditioning. The maximum number of reductions should
satisfy constraint (40), and the maximum reduction duration should satisfy constraint (41).

∑
t

xI I
t,m ≤ Nmax (40)

t+T I I
max

∑
t=1

(1 − xI I
t,m) ≥ 1 (41)

In the equations, Nmax represents the maximum number of reductions for t for the
reducible load, and T I I

max represents the maximum duration of sustained reduction for the
reducible load.

3. Type III load (shiftable load)

Type III load has a high degree of controllability, allowing for a certain proportion of
load shifting based on the adequacy of regional power supply. This means that within a
scheduling period, the total amount of electricity supplied to users remains constant, while
the timing of supply can be adjusted. This type of load mainly includes certain industrial
production equipment, washing machines, water heaters, and similar devices. There are
two main constraints associated with this type of load: first, the total amount of shifted load
across different time periods within a single day must equal zero; second, the minimum
continuous operating time constraint for shiftable loads must be satisfied.

∑
t,m

∆PI I I
t,m = 0 (42)

T I I I
in +T I I I

min−1

∑
t=T I I I

in

xI I I
t,m ≥ T I I I

min(xI I I
t,m − xI I I

t−1,m) (43)

In the equations, T I I I
min represents the minimum continuous operating time for the

shiftable load.
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4. Constraints on the willingness of adjustable load users to participate

The willingness of users to participate in load aggregation for peak shaving is mainly
determined by two factors: first, the degree to which their electricity demand is met, and
second, whether the benefits obtained from participating in power peak shaving align with
their expectations.

CI
t = cTOU

t PI,base
t (44)

CI I
t,m = cTOU

t PI I,base
t,m (45)

CI I I
t,m = cTOU

t PI I I,base
t,m (46)

RI
t = 1 −

(
∆PI

t cTOU
t

)
/CI

t (47)

RI I
t,m = 1 −

(
∆PI I

t,mcTOU
t

)
/CI I

t,m (48)

RI I I
t,m = 1 −

(
∆PI I I

t,m cTOU
t

)
/CI I I

t,m (49)

In the equations, CI
t , CI I

t,m, and CI I I
t,m represent the electricity costs for load-side users before

participating in the peak shaving market, while RI
t , RI I

t,m, and RI I I
t,m represent the satisfaction

levels of the three types of load users.

6. Case Study Analysis

In the practical case study model of this paper, a hybrid park is selected as the research
subject for case analysis. The park includes electric vehicle loads, reducible loads, and
shiftable loads.

6.1. Basic Scenario Settings for the Case Study

Using the adjustable load data from a typical workday in an industrial park as an
example, the system operates on a 24 h dispatch cycle, with a dispatch time interval of
1 h. The peak shaving budget for the load aggregator is set between CNY 6000 and 12,000,
and the penalty coefficient for non-response is 1.5 yuan/kWh. It is assumed that there
are 100 electric vehicles in the industrial park, each with a battery capacity of 50 kWh.
The initial total energy of the electric vehicle fleet is 2500 kWh, the charging power is
5 kW, and the charging efficiency is 0.9. The electric vehicles connect to the grid at 9:00
and disconnect at 19:00. The typical daily electricity consumption curve for electric vehicle
users in the industrial park is shown in Figure 2a [22]. The park’s reducible loads consist of
4000 air conditioning units, and the typical reducible user curve after clustering is shown in
Figure 2b. The maximum number of reduction events per day for reducible loads is eight,
and the maximum continuous reduction time is 5 h per day. The park’s shiftable loads
consist of 6000 fans and other related indoor electrical equipment. The typical shiftable
user curve after clustering is shown in Figure 2c. The minimum continuous operation time
for shiftable loads is 2 h. The satisfaction levels for electric vehicle users, reducible load
users, and shiftable load users must reach 0.75, 0.6, and 0.6, respectively, to qualify for
participation in market transactions.

The peak shaving demand curve is shown in Figure 3 [23], and the time-of-use elec-
tricity prices are listed in Table 1.

Table 1. Time-of-use price.

Types Time Periods Electricity Selling Prices
/[CNY∗(kW∗h)−1]

Peak hours 9:00–12:00, 15:00–18:00 1.17

Off-peak hours 6:00–8:00, 13:00–14:00
19:00–20:00 0.7

Valley hours 0:00–5:00, 21:00–24:00 0.328
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Figure 2. Three kinds of adjustable load typical daily electricity curves: (a) daily electricity consump-
tion curve of typical electric vehicle users; (b) typical daily electricity usage curve of reducible users
after clustering; (c) typical daily electricity usage curve of shiftable users after clustering.
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In this paper, the following five scenarios are set up to compare the load dispatch
optimization results, fund utilization, and other aspects, in order to verify the superiority
of the proposed model. The scenarios are as follows:

Scenario S1: Fixed compensation pricing is assumed, where the compensation prices
for adjustable resources are based on the peak shaving compensation rates in Zhejiang
Province from July to September 2023. The compensation prices for electric vehicles,
reducible loads, and shiftable loads are 0.85 CNY/kWh, 1 CNY/kWh, and 0.95 CNY/kWh,
respectively.

Scenario S2: Compensation prices for typical users are set based on the peak shaving
value of each time period, with a peak shaving budget of CNY 6000.

Scenario S3: Compensation prices for typical users are set based on the peak shaving
value of each time period, with a peak shaving budget of CNY 8000.

Scenario S4: Setting compensation prices for various typical users based on their peak
shaving value during different time periods, with a peak shaving budget of CNY 10,000.

Scenario S5: Setting compensation prices for various typical users based on their peak
shaving value during different time periods, with a peak shaving budget of CNY 12,000.

This study employed a system configured with an Intel Core i5-12400F processor,
8x2GB DDR4 RAM, 1024GB SSD storage, and an NVIDIA GeForce GTX 4060ti graphics
card, running on a Windows 11 Professional 64-bit operating system. The simulation and
optimization work were conducted using GAMS version 45.

6.2. Scenario Optimization Results

1. Optimization results for Scenario S1

Based on the aforementioned optimization model and the baseline scenario, the
optimization results of the electricity consumption curves for three types of adjustable
loads before and after peak shaving are as follows:

In Scenario S1, the total dispatching cost for LA is approximately CNY 2463.5, with the
compensation cost for electric vehicles being around CNY 578.48, the compensation cost
for reducible loads being CNY 1766.4, and the compensation cost for shiftable loads being
CNY 0. Shiftable loads do not participate in the market. This is due to the greater complex-
ity involved in their market engagement compared to the other two types of adjustable
loads, as shiftable loads require both an “out” and “in” time period to ensure user elec-
tricity needs are met. Additionally, the LA must compensate shiftable users for both “in”
and “out” time periods, which reduces the relative convenience and cost-effectiveness of
shiftable loads compared to other adjustable loads. Furthermore, Scenario S1 utilizes a fixed
compensation price, which limits the adaptability of the adjustable load groups to changes
in the peak shaving market, further reducing the priority for scheduling shiftable loads to
participate in peak shaving. Ultimately, this results in shiftable users opting out of the peak
shaving market.
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Figure 4a,b illustrate the market participation of various types of typical adjustable
users in Scenario S1. As shown in Figure 2, electric vehicle users exhibit high levels of market
participation, reaching peak engagement during the two peak shaving demand periods of
8:00–12:00 and 17:00–21:00. However, due to the relatively low electricity consumption of
electric vehicles, the primary participants in the peak shaving market remain the reducible
load users, especially between 17:00 and 21:00, during which users 1, 3, and 6 alternate
in-depth participation to meet peak shaving needs. Among the three types of adjustable
resources, reducible loads have the largest scheduling scale and the fewest scheduling con-
straints compared to electric vehicle loads and shiftable loads, allowing them to participate
in the market at nearly any time. However, since only electric vehicle and reducible load
users participate in the market under this scenario, user satisfaction for both types of users
appears relatively imbalanced post-peak shaving compared to pre-peak shaving.
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Figure 4. Typical adjustable user participation in market in Scenario S1: (a) power curve of typical
electric vehicle users participating in peak shaving market; (b) power curve of typical reducible users
participating in peak shaving market.

2. Optimization results for the differentiated value of multi-period peak shaving scenarios

The following are the optimization results of scenarios S2, S3, S4, and S5:

• Optimization results for Scenario S2:

The participation of three adjustable loads in the peak shaving market and the pricing
results for each time period in Scenario S2 are as follows.

• Optimization results for Scenario S3:
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The participation of three adjustable loads in the peak shaving market and the pricing
results for each time period in Scenario S3 are as follows.

• Optimization results for Scenario S4:

The participation of three adjustable loads in the peak shaving market and the pricing
results for each time period in Scenario S4 are as follows.

• Optimization results for Scenario S5:

With a peak budget of CNY 12,000, the three adjustable loads participate in the peak
market and the pricing results for each time period are shown below.

By comparing Figures 4–8, it can be observed that the compensation pricing curves
for the same user exhibit similar fluctuation trends. This is because, in Scenarios S2 to S5,
compensation pricing is primarily influenced by factors such as users’ market participation
levels, pre-peak shaving power consumption, the peak shaving value at each time period,
peak shaving budget, and time-of-use electricity pricing. Among these, the primary variable
across Scenarios S2 to S5 is the peak shaving budget, which has a relatively limited impact
on compensation pricing. However, this does not imply that the peak shaving budget
is unimportant. On the one hand, the final compensation price for users results from an
optimization that considers multiple factors, including market participation level, pre-peak
shaving power consumption, time-period-specific peak shaving value, and the budget
for peak shaving. On the other hand, when the peak shaving budget is too low, the
user compensation pricing derived from the pricing formula is also comparatively low.
Since the model sets a minimum threshold for typical users, those falling below this
threshold will be unable to participate in the peak shaving market, ultimately preventing
the LA from meeting peak shaving requirements. However, even among users of the
same type, differences in compensation pricing exist. For instance, during the 3:00–4:00
time period, the compensation price for user 5, a typical reducible user, is approximately
1.41 CNY/kWh, significantly higher than other reducible users. As shown in Figure 2b,
during this period, user 5’s electricity demand peaks, while other reducible users are mostly
at low consumption levels. By referencing the peak shaving value Formulas (22)–(27), it can
be seen that a user’s peak shaving value is not only related to their own electricity demand
but also to the demand of other users during the same period. Therefore, user 5’s peak
shaving value is the highest during this period, indicating that, compared to other users,
user 5 has the greatest potential to participate in the peak shaving market during this time.

As shown in Table 2, which presents the daily costs and costs for each typical user
under different budgets, the daily cost increases progressively with the rise in the peak
shaving budget. This is because the user’s compensation pricing is positively correlated
with the budget.

Table 2. Costs for a single day and for each typical user under various peak shaving budgets in
Scenarios S2–S5.

Scenarios

Cost/CNY Single
Day

Electric
Vehicle
Users

Adjustable
Users

Flexible
Users

S2 1968.5 21.36 1907.75 39.44
S3 2028.7 83.62 1895.98 49.17
S4 2094.5 0 2045.5 48.99
S5 2138.0 25.48 2047.56 64.96
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Figure 5. Scenario S2 can adjust the user’s participation in the market and pricing: (a) power and
pricing curves of typical electric vehicle users participating in the peak shaving market; (b) power
and pricing curves of typical reducible users participating in the peak shaving market; (c) power and
pricing curves of typical shiftable users participating in the peak shaving market.
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Figure 6. Scenario S3 can adjust the user’s participation in the market and pricing: (a) power and
pricing curves of typical electric vehicle users participating in the peak shaving market; (b) power
and pricing curves of typical reducible users participating in the peak shaving market; (c) power and
pricing curves of typical shiftable users participating in the peak shaving market.
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Figure 7. Scenario S4 can adjust the user’s participation in the market and pricing: (a) power and
pricing curves of typical electric vehicle users participating in the peak shaving market; (b) power
and pricing curves of typical reducible users participating in the peak shaving market; (c) power and
pricing curves of typical shiftable users participating in the peak shaving market.
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Figure 8. Scenario S5 can adjust the user’s participation in the market and pricing: (a) power and
pricing curves of typical electric vehicle users participating in the peak shaving market; (b) power
and pricing curves of typical reducible users participating in the peak shaving market; (c) power and
pricing curves of typical shiftable users participating in the peak shaving market.

For the LA, to meet the peak shaving demand shown in Figure 3, a peak shaving
budget of at least CNY 2000 is required.
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As shown in Table 2, with an increase in the peak shaving budget, the scheduling
costs for reducible and shiftable users also gradually rise. In conjunction with the peak
shaving value Formulas (22)–(27), it can be observed that user compensation pricing is
positively correlated with the peak shaving budget. Therefore, as the peak shaving budget
increases and users’ market participation levels remain relatively stable, the compensation
costs for users incrementally increase. At budget levels of CNY 10,000 and CNY 12,000, the
participation of electric vehicle users is relatively low. In the previous two budget scenarios,
electric vehicle users mainly participated in the market during the 18:00–19:00 period. This
is because, as the peak shaving budget increases, the compensation price for electric vehicle
users also rises. However, based on the peak shaving value Formulas (22)–(27), it can be
seen that the user’s compensation price is negatively correlated with their level of market
participation. At this time, reducible users, with a wider range of adjustment, offer more
economically favorable compensation prices compared to electric vehicle users. Therefore,
the LA would allocate a large portion of reducible resources during this time period. In
contrast, users with shiftable loads primarily participate in the market during the late-night
to early-morning hours to meet the demands of the electricity market.

6.3. Comparative Analysis of Pricing Methods

In order to better compare the effects of different user compensation pricing methods
on the LA, we introduce three evaluation criteria: scheduling costs, unmet peak shaving
demand, and average user satisfaction. The results are presented in Tables 3 and 4 below:

Table 3. Scheduling costs and unresponsiveness of Scenarios S1–S5.

Scenarios Scheduling Cost/Yuan Unmet Peak Shaving Demand/kW

S1 2463.5 64.76
S2 1968.57 0
S3 2028.79 0
S4 2094.51 0
S5 2138.02 0

Table 4. Comparison of average user satisfaction.

User Type

Scenarios
S1 S2 S3 S4 S5

Electric vehicle 0.71 0.98 0.95 1 0.98
Reducible load 1 0.91 0.88 0.88 0.86 0.85
Reducible load 2 0.95 0.91 0.86 0.91 0.89
Reducible load 3 0.92 0.89 0.88 0.88 0.89
Reducible load 4 0.89 0.80 0.80 0.79 0.79
Reducible load 5 0.93 0.82 0.83 0.83 0.80
Reducible load 6 0.93 0.88 0.92 0.90 0.92
Shiftable load 1 1 1.02 1.02 1.02 1.02
Shiftable load 2 1 1 0.99 0.99 1
Shiftable load 3 1 1 1 1 1
Shiftable load 4 1 0.98 0.98 0.99 0.99
Shiftable load 5 1 1 1 1 1.01

As shown in Tables 3 and 4, the scheduling costs under different budgets in
Scenarios S2–S5 are, on average, 16.5% lower than those in the fixed pricing Scenario S1.
This indicates that the pricing method based on peak shaving value orientation is more
economically advantageous. Moreover, in the fixed pricing Scenario S1, there was a lack of
user response at 8:00, while in Scenarios S2–S5, users actively responded to market peak
shaving demands. This further demonstrates that the pricing methods in Scenarios S2–S5
are more effective in tapping into user potential and in balancing the interests between the
higher-level grid, LA, and electricity users.
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In terms of user satisfaction, compared to Scenario S1, electric vehicle users’ satisfaction
increased by an average of 38% in Scenarios S2–S5, while the satisfaction of reducible load
users and shiftable load users decreased by 7% and 0.3%, respectively. This indicates
that the pricing methods in Scenarios S2–S5 significantly improve electric vehicle user
satisfaction, albeit with a slight decrease in the satisfaction of reducible and shiftable load
users, leading to a more balanced overall user satisfaction.

In conclusion, the differentiated multi-period peak shaving value calculation method
proposed in this paper is more reasonable than the fixed pricing in Scenario S1, as it
takes into account both the LA’s scheduling costs and user comfort, providing practical
reference value.

7. Conclusions

This paper addresses the issue of an LA’s inability to accurately and reasonably
measure user peak shaving value under limited peak shaving funding to meet peak shaving
demands. It comprehensively considers the adjustment characteristics of dispatchable loads
and proposes a differentiated calculation method for the peak shaving value of adjustable
users. This method provides LAs with a user compensation pricing mechanism that is both
economical and practical. Case studies further validate the effectiveness of the constructed
pricing mechanism.

1. This paper introduces indicators for the adjustment characteristics of primary and
secondary dispatchable loads and conducts cluster analysis on adjustable resources,
effectively reducing the technical difficulties faced by LAs in subsequent scheduling
processes.

2. This paper takes minimizing peak shaving scheduling costs as the optimization
objective and employs an optimized scheduling and compensation pricing model
for load aggregators based on limited peak shaving funding and time-period peak
shaving values. Compared to traditional fixed compensation pricing, the scheduling
costs are, on average, reduced by 16.5%, while the satisfaction of electric vehicle
users increases by an average of 38%. In contrast, the satisfaction of dispatchable
and shiftable load users decreases by only 7% and 0.3%, respectively. This approach
significantly reduces scheduling costs while enhancing overall user satisfaction.

However, this paper does not yet consider the discharge behavior of electric vehicles
or the potential impacts of their random charging and discharging patterns on the model.
Future research will further explore these factors to enhance the current pricing model.
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