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Abstract: This paper addresses the critical challenge of scheduling optimization in regional in-
tegrated energy systems, characterized by the coupling of multiple physical energy streams
(electricity, heat, and cooling) and the participation of various stakeholders. To tackle this, a novel
multi-load and multi-type integrated demand response model is proposed, which fully accounts
for the heterogeneous characteristics of energy demands in different campus environments. A
leader–follower two-layer game equilibrium model is introduced, where the system operator
acts as the leader, and campus load aggregators, energy storage plants, and wind farm operators
serve as followers. The layer employs an enhanced particle swarm optimization (PSO) algorithm
to iteratively adjust energy sales prices and response compensation unit prices, influencing the
user response plan through the demand response model. In the lower layer, the charging and
discharging schedules of energy storage plants, wind farm energy supply, and outputs of energy
conversion devices are optimized to guide system operation. The novelty of this approach lies in
the integration of a game-theoretic framework with advanced optimization techniques to balance
the interests of all participants and enhance system coordination. A case study is conducted to
evaluate the effectiveness of the proposed strategy, demonstrating significant economic benefits.
The results show that the model encourages stakeholders to invest in energy infrastructure and
actively participate in coordinated dispatch, leading to improved overall system efficiency and
comprehensive revenue enhancement for the multi-agent energy system.

Keywords: multi-entity integrated energy system; two-tier optimization; improved particle swarm;
integrated demand response; master-slave game

1. Introduction

Amidst the escalating global greenhouse effect and energy crisis, the conflict between
human society’s energy demands and the natural environment’s carrying capacity has
become increasingly acute [1]. The integrated energy system (IES), which facilitates the
coupling of multiple heterogeneous energy subsystems—such as electricity, natural gas,
heating, and transportation—has emerged as a significant research focus [2,3]. As the
foundational coupling terminal of the multi-energy system, the park IES holds substantial
practical significance in locally consuming renewable energy, enhancing the flexibility
of demand-side dispatching, and achieving the synergistic utilization of multi-energy
complements [4].

The future park IES will integrate distributed clean power generation; combined
heat and power (CHP) units; combined heat, power, and cooling (CCHP) units; electric
vehicles (EVs); energy storage stations (EESs); flexible loads; and other units with varied
attributes. Market behavior will become more flexible and complex, leading to intensified
market competition [5,6]. “With the continued development of integrated energy systems,
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it is anticipated that multiple systems will coexist within a single regional distribution
network, thereby forming an integrated energy system cluster [7]. Zhou Xiaoxin, an
academician of the Chinese Academy of Sciences, projected during the “2018 National
Energy Internet Conference” that China’s installed wind power capacity is expected to
increase to 26.7% by the year 2050 [8]. As China’s installed wind power proportion
increases and the costs of distributed wind power generation remain high, large-scale wind
farms, as independent entities participating in scheduling, will become a focal point of
future research. In the context of future large-scale grid integration of new energy, the
power system must address the challenge of mismatching new energy output with load
demand [9]. Research [10] examined the impact of cluster effects on power across different
wind farm cluster layouts, revealing that staggered distribution of wind farms within a
cluster can enhance overall power output. However, the inconsistency and intermittency
of renewable energy sources pose operational risks to the power system, such as frequency
and voltage stability issues [11].

An energy storage system (ESS) utilized in a power grid is typically independently
controlled and operates in three states: charging, storing, and discharging. It retains the en-
ergy generated within the power grid and releases the stored energy back to the grid when
required [12]. The deployment of energy storage systems (ESSs) is widely acknowledged
as a feasible solution to mitigate the operational risks associated with renewable energy
sources. Energy storage is also crucial for energy management, frequency regulation, peak
shaving, load balancing, seasonal storage, and backup power generation during faults,
thereby facilitating the integration of renewable energy sources with the grid [13]. Existing
research on energy storage power plants predominantly focuses on their service mod-
els [14,15] or considers them as independent entities to analyze their economics [16], often
neglecting the interactions of inter-subjective interests. Consequently, constructing energy
storage power stations and centralized wind farms within the system, and integrating them
as active participants in scheduling, will establish a multi-agent integrated energy system
(MIES) [17]. When power interactions occur between entities, coupled with the autonomous
response behavior of users, complex benefit interactions emerge, posing significant chal-
lenges to centralized optimal scheduling. Therefore, achieving optimal scheduling within
MIES, which accounts for the game-like interactions between entities, is of paramount
importance [18]. Significant research progress has been made in MIESs (multiple integrated
energy systems) and multi-microgrid systems [19–28]. In [19], a precise model for intercon-
nected energy hubs is established, and an integrated strategy combining a linear weighted
sum and the grasshopper optimization algorithm is proposed to address energy manage-
ment, improve overall energy efficiency, and achieve regional coordinated optimization.
However, this model does not account for the interaction of interests between microgrids.
In [20], a comparative study on power trading among multiple microgrids, composed of
heterogeneous building communities with electric vehicles (EVs), is conducted. The study
employs a peer-to-peer (P2P) power trading paradigm based on hybrid game theory and
compares it with the traditional time-of-use (TOU) strategy under a peer-to-grid (P2G)
model. In [21], effective multi-microgrid operation strategies are developed to balance
stakeholder interests, exploring collaborative operation mechanisms and strategies under
different trading modes, while offering insights into future research directions. In [22], a
cooperative game model for multiple microgrids is constructed to determine the interaction
power with the distribution network and the charging/discharging arrangements for en-
ergy storage modules. The study employs Nash bargaining to coordinate the distribution
of interests among microgrids, analyzes optimal trading power and electricity prices, and
demonstrates that cooperative games can enable flexible consumption of regional renew-
able energy. In [23], an active control strategy for multi-microgrids under fault scenarios is
proposed. In [24], a hierarchical optimization scheme for multi-microgrids is introduced,
integrating energy management, optimized operation, and coordinated control. In [25], the
black start process and load recovery sequence are studied based on hierarchical control
in multi-microgrid systems. In [26], an optimal scheduling model for uncertain multi-
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microgrid operation is developed, considering reliability and economic factors. In [27], an
optimization strategy for cooperative multi-microgrid operation is proposed, addressing
electricity price uncertainty and gaming fraud. Additionally, Ref. [28] presents a two-level
optimal scheduling strategy that incorporates demand response and shared energy storage
for multi-microgrids.

Ref. [20] proposes a multi-microgrid operation method based on energy storage station
(ESS) services for a combined cooling, heating, and power (CCHP) multi-microgrid system,
where the ESS manages the coordinated operation of the energy storage and CCHP systems
by charging electricity. In Ref. [21], an overall framework is presented to achieve optimal
operation of a microgrid (MG) based on combined cooling, heating, and power generation
(CCHP). All the aforementioned studies focus on supply-side optimization while neglecting
the autonomous response behaviors of the energy-using side and the impact of interest
interactions among the subjects on the MIES.

Integrated demand response (IDR) is incorporated into MIESs, playing a dual
economic role: (1) IDR autonomously regulates the energy system, facilitating the oper-
ation and transfer of energy between different systems; (2) IDR optimizes user energy
consumption by monitoring market energy prices and responding accordingly, thus re-
ducing energy costs [29]. Most existing studies focus on a single type of demand response
behavior [30] or multiple types of demand response behavior within a single integrated
energy system [24]. In multi-subject systems, Ref. [31] establishes a demand response
model based on real-time prices but does not fully account for the diverse characteristics
of each subject through comprehensive refinement. In the study of incentive-based
demand response, unit power transfer or response subsidy reductions use fixed time-
of-use prices, significantly constraining the demand side’s enthusiasm to participate
in flexible grid interactions [32]. Building on the aforementioned studies, multi-type,
multi-load IDR is examined within MIESs, considering the unique characteristics of each
park. Real-time price comparisons are conducted via iterative optimization of response
subsidy unit prices, thereby enhancing the demand side’s enthusiasm for participating
in flexible grid interactions.

The optimal scheduling of MIESs necessitates balancing multiple interests, and the
application of game theory to address these challenges has proven highly effective, finding
widespread use in the optimal scheduling of integrated energy systems. For energy inter-
connection systems encompassing multiple communities, Ref. [33] proposes a coordinated
operation method based on a master–slave game for a distributed integrated energy system
with hierarchical zoning. This method considers the interests of both the master and slave
entities, thereby achieving economic, flexible, and efficient operation of MIESs. Ref. [34] pro-
posed a master–slave game optimized scheduling strategy for MAIESs based on integrated
demand response, but it did not consider the existence of alliances between parks, the
complementary support role of energy storage power plants for each park, or the impact on
the game interaction mechanism. Ref. [35] developed a multi-objective master–slave game
optimization model, employing the alternating direction multiplier algorithm to iteratively
determine the non-cooperative revenues. This model aims to maximize the revenues of
shared energy storage operators and minimize the operating costs of multiple microgrids
within the same solution layer, reducing precision and simultaneously weakening the
influence of each entity within the system. Ref. [36] proposes a multi-integrated energy
microgrid low-carbon economic operation strategy based on a two-layer Stackelberg game
model, but the equilibrium solution method lacks innovation.

Building on the aforementioned research and analysis, this paper proposes a master–
slave game-based two-layer optimal scheduling strategy for MAIESs incorporating inte-
grated demand response and a wind-storage combination for MIESs with storage and wind
farms. The main contributions of this paper are as follows, addressing gaps and issues
identified in existing studies:
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(1) While many studies have considered various types of energy trading problems, they
are typically limited to a single MEMG. This paper investigates the multilevel, multi-
energy trading problem within a complex MIES cluster, incorporating the participation
of renewable energy sources.

(2) Addressing the insufficient consideration of multi-load and multi-type demand re-
sponse behaviors in MIESs, this paper establishes a multi-level and multi-type IDR
model encompassing price-based, incentive-based, and fuzzy comfort-based methods.
Additionally, to address the insufficient consideration of load characteristics, differ-
ent IDR methods are adopted for various types of user parks, aiming to maximize
demand-side participation in flexible interactions with the power grid. To tackle the
issue of fixed incentive response subsidy unit prices, this paper iteratively optimizes
these prices through dynamic two-way interactions between supply and demand
using improved particle swarm algorithms, thereby achieving timely adjustments in
energy trading prices.

(3) Addressing the gap in existing research regarding the involvement of energy storage
power stations and wind farms as active subjects in scheduling, and the lack of consid-
eration for alliance relationships and gaming behaviors between subjects, this paper
proposes a master–multiple-slave two-layer game model. This model aims to maxi-
mize the comprehensive profit of the system, with the system operator as the leader
and the operators of load aggregators, storage power stations, and wind farms of
various parks as followers. This approach aims to enhance the enthusiasm of intercon-
nected entities to invest in construction and participate in unified dispatch, ultimately
achieving optimal economic performance of the system through the interaction of
multiple entities, including energy storage power stations and wind farms.

2. Structure of a Multi-Major Integrated Energy System

Park 1 considered in this paper is a PV park representing residential users in suburban
towns. The electrical loads in Park 1 primarily serve residential users and electric vehicle
charging stations, with power demands lower than the PV and wind power outputs,
classifying it as a residual zero-carbon park [37]. The electrical energy demand in this
park is mostly met by clean energy sources, and the willingness of users to participate in
demand response is relatively low. Park 1 primarily supplies power to the power-deficient
Parks 2 and 3; hence, demand response is not considered in Park 1. Park 2 is a combined
heating and power (CHP) park representing industrial users, while Park 3 is a combined
cooling, heating, and power (CCHP) park representing urban residents. Both parks have
load demands exceeding the outputs of their photovoltaic and wind power, classifying
them as power-deficient parks [38]. Due to the inclusion of energy storage in the park’s
power supply, and considering limitations imposed by power quality and grid connection
policies, this paper does not consider reverse power transmission from the energy storage
power station to the grid.

There are two-way power interactions between the distribution grid and each park,
wind farms and the distribution grid, storage power plants and each park, and between
the parks themselves. The power flow interactions of heterogeneous energy systems
established in this paper are depicted in Figure 1. The meanings of each abbreviation are
listed in Table A1 in Appendix A.
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Figure 1. Operation structure of the MIES.

3. Master–Slave Game Optimization Scheduling Model for an Integrated Energy
System Considering Integrated Demand Response and Multi-Entity Interaction
3.1. Integrated Demand Response Model
3.1.1. Price-Based Electric Load Demand Response Model

The electricity load response modeling in this paper adopts a price-based demand
response approach. The user’s electricity consumption response to price modeling involves
approximately four methods, with the electricity price elasticity matrix method being the
most widely used and relatively effective. Considering urban residential users are more
sensitive to changes in electricity prices, this paper focuses on the price-based demand
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response of electric loads [39]. According to economic principles, the elasticity coefficient
of electric load is expressed as follows:

εE =
∆pE
pE

qE
∆qE

(1)

where ∆pE and ∆qE are denoted as the relative increments in electricity quantity pE and
electricity price qE, respectively.

The demand-side electricity price elasticity matrix E is:

Ee =


ε11 ε12 · · · ε14
ε21 ε22 · · · ε24
...

...
. . .

...
εt1 εt2 · · · εtt

 (2)

Find the power PLoad,DR
t,p after the response as

PLoad,DR
t,p = Pt × ∆Pt

t =


P1
P2
...

Pt

+


Pt

1
Pt

2
. . .

Pt
t

E


∆σ1
σ1

∆σ2
σ2
...

∆σt
σt

 (3)

where Pt is the amount of electricity in the t-time period before optimization; ∆Pt
t is the

amount of change in the amount of electricity in the t-time period obtained by adjusting the
electricity consumption status of controllable loads after the price-based demand response
of the user; εtt is the elasticity coefficient, which is taken as −0.21; and σt, ∆σt are electricity
price and electricity price change, respectively.

3.1.2. Incentivized Load Demand Response Model

In Park 2, industrial users are more responsive to direct economic incentives; thus, an
incentive-based load demand response is considered. The loads are classified into basic
loads, transferable loads, and curtailable loads, with users being compensated based on the
transfer and curtailment of their loads.

PLoad,DR
t,q = PBase

t + PShift
t − PCut

t (4)

T

∑
t=1

PShift
t = PShift

sum (5)

{
0 ≤ PShift

t ≤ PMax,Shift

0 ≤ PCut
t ≤ PMax,Cut (6)

Cprice,DR
q =

T

∑
t=1

(PShift
t cprice,Shift

t + PCut
t cprice,Cut

t ) (7)

where PBase
t , PCut

t , and PShift
t indicate the basic load, the load that can be cut, and the load

that can be shifted at time t, respectively; PShift
sum indicates the sum of the load that can be

shifted in the total dispatch time t, which is a fixed value; PMax,Shift and PMax,Cut indicate
the upper limit value of the load that can be cut and the load that can be cut, respectively;
and cprice,Shift

t and cprice,Cut
t are the unit price of the unit electric power shifted and cut for

compensation at time t, respectively.
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3.1.3. Incentive-Type Heat Load Demand Response Model

In this paper, the heat source for heat loads 2 and 3 in the park originates from the
centralized heat production of gas turbines and gas boilers, making it challenging for the
load side to independently regulate the temperature. However, it is feasible to transfer and
curtail the heat loads in real time; therefore, an incentive-based heat load demand response
is adopted. The heat load is classified into basic heat load, transferable heat load, and
curtailable heat load, with users receiving economic compensation based on the amount of
load transfer and curtailment. The transferable heat load is modeled as follows:

Ht,start+n = UH
t,start+n HShift

t
T
∑

t=1
UH

t =
t,end
∑

t=t,start
UH

t = tlast

UH
t − UH

t−1 ≤ BH
t

(8)

where HShift
t is the load quantity of the transferable load at time t; t, start, t, end is the

translational range of the transferable thermal load; tlast is the load duration; and UH
t and

BH
t are the operating state and start/stop state of the load at time t.

t=t,o f f
∑

t=t,on
HCut

t = HCut
Sum

HCut
Min ≤ HCut

t ≤ HCut
Max

(9)

HLoad,DR
t = HBase

t + HShift
t − HCut

t (10)

CH,DR =
T

∑
t=1

(HShift
t cH,Shift

t + HCut
t cH,Cut

t ) (11)

where HBase
t and HLoad,DR

t denote the basic thermal load at time t and the power of the
thermal load after response; cH,Shift

t and cH,Cut
t are the unit price of compensation for

thermal load shifting and reduction, respectively; and cH,Cut
t is the compensation gain for

thermal response.

3.1.4. Cold Load Demand Response Model

In this paper, the cold load in Park 3 primarily consists of air-conditioning refrigeration.
Given that the load side can easily adjust the temperature, the cold load is considered
a flexible, adjustable load, participating in fuzzy comfort-based cold demand response.
The predicted mean vote (PMV) index is used to characterize the user’s perception of the
ambient temperature [40], and its expression is as follows:

fPMV = (0.303e−0.036M + 0.0275)[M(1 − η)−
3.054(5.765 − 0.007H − Pa)− 0.42(H − 58.15)
−0.0173M(5.867 − Pa)− 0.0014M(34 − Ta)−
3.9 × 10−8 fcl(T4

cl − T4
mrt)− fclhcl(tcl − Ta)]

(12)

where M is the metabolic rate, e represents a constant; η is the rate of heat dissipation from
the body; tcl is the average surface temperature of the body; Tmrt is the average ambient
radiant temperature; H represents the absolute humidity of air, usually expressed in g/kg;
Pa indicates the water vapor pressure of air; Ta indicates air temperature; fcl indicates the
coefficient related to the thermal resistance of clothing; and hcl A represents the coefficient
related to convective heat transfer.{

CLoad,DR
t,cold = Sµ(Tout,t − Tin,t) + (CS/∆t)(Tin,t − Tin,t−1)

Tmin ≤ Tin,t ≤ Tmax
(13)
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where CLoad,DR
t,cold is the power of cold load; S is the cooling area; µ is the heat loss under the

unit temperature difference of the unit cooling area, and is taken as 1.037 × 104 J/(m2 · ◦C);
C is the heat capacity of the unit cooling area, which is taken as 1.63 × 105 J/(m2 · ◦C); and
Tin,t and Tout,t are the indoor/outdoor temperature at time t.

3.2. Charging and Discharging Strategy and Revenue Model of Energy Storage Plant

The existing issues of high investment costs, prolonged cost recovery cycles, and low
safety and reliability of user-side distributed energy storage systems limit their widespread
adoption [41]. To address these challenges, this paper proposes the establishment of a
systematic centralized energy storage power station that:

CEES =
T
∑

t=1
{

N
∑

j=1
[(cEES

t + φ)PCh
j,t ]−

N
∑

j=1
[(cp,sell

t + ψ)PDis
j,t ] + (cEES

t + φ)PCh,Grid
t + (cEES

t + φ)PCh,Wind
t }

(14)

cEES
t = cEES,sell

t + τ (15)

where PCh
j,t , PDis

j,t , PCh,Grid
t , and PCh,Wind

t denote the power of the storage plant to discharge
to the park, charge, charge from the superior grid, and charge from the centralized wind
farm, respectively; τ denotes the unit revenue of the storage plant participating in the
auxiliary services; cEES,sell

t and cEES
t are the basic selling price and comprehensive selling

price of the storage plant, respectively; and φ and CEES are the operation and maintenance
cost and profit of the storage plant per unit of power, respectively.

3.3. Energy Supply Strategy and Revenue Model for Centralized Wind Farms

In this paper, we propose to establish a systematic centralized wind farm, which is
coordinated and controlled by a MAIES and participates in centralized dispatching.

CWind =
T

∑
t=1

[(PCh,Wind
t + PWind,Grid

t +
N

∑
j=1

PWind
j,t ) · (cWind,sell

t − cWind,P)] (16)

In the formula, PWind,Grid
t and PWind

j,t represent the power sold by the wind farm to the

distribution grid and the park at time t, respectively. cWind,sell
t , cWind,P, and CWind represent

the wind farm’s electricity sale price, the operational E, and the profit per unit of power,
respectively.

3.4. Objective Function

Fmax =
N

∑
j=1

Cj + CEES + CWind − CGrid (17)

Cj =
T
∑

t=1
(ELoad,DR

j,t cE,sell
t − PGrid,buy

j,t cGrid,sell
t − GGas

j,t cGas
t − PDis

j,t cESS,Dis
t

+PCh
j,t cESS,ch

t − PWind
j,t cWind,sell

t − PB
j,tc

B,p
t )

(18)

CGrid =
T
∑

t=1
[

N
∑

j=1
(PGrid,buy

j,t cGrid,sell
t − PGrid,sell

j,t cEx,sell
t − CE,DR

j )

+PCh,grid
t cEss,Grid

t − PWind,Grid
t cWind,sell

t ]

(19)

where F is the total profit of the MIES; N denotes the number of parks, which is 3 in this
paper; T denotes the total dispatch time, which is 24 h in this paper; Cj is the economic
compensation paid by the distribution network to the demand response behavior of the
users in the park j; ELoad,DR

j,t is the user’s demand response to energy source E; E is the set of
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electricity, heat, and cooling load types; cE,sell
t is the unit price of energy sold to the users in

the park at time t; cB,p
t is the operation and maintenance cost per unit power of equipment

B in the park j, including the operation and start/stop costs; cGrid,sell
t and cEx,sell

t are the unit
price of electricity sold by the distribution network and the park, respectively; cGas

t is the
price of natural gas; the prices of which can be found in Table A2 in Appendix A; GGas

j,t is the

purchased gas power of the park at time t; and CGrid is the profit of the distribution network.

3.5. Constraints
Electrical Power Balance Constraints

PGrid,buy
j,t + Pbuy

j,i,t − Psell
j,i,t + PDis

j,t − PCh
j,t + PWind

j,t + PPV
j,t + PCHP

j,t − PAir
j,t = PLoad,DR

j,t (20)

where PGrid,buy
j,t , PPV

j,t , and PAir
j,t denote the power purchased from the distribution grid,

distributed photovoltaic power generation, and air-conditioning power consumption of the
park at time t, respectively. Since the CCHP unit in the system is converted from the CHP
unit by adding a lithium bromide refrigerator, PCHP

j,t is expressed as a unified expression,
which represents the power generated by the CHP unit at the moment of t in Park 2 and the
power generated by the CCHP unit at the moment of t in Park 3. Pbuy

j,i,t and Psell
j,i,t represent

the power purchased and sold from Park j to Park i.

(1) Thermal power balance constraint.

QChp
j,t + QBo

j,t = QLoad,DR
j,t (21)

where QChp
j,t and QBo

j,t denote the heat production power of the CHP unit and the gas boiler
in the park j at time t, respectively.

(2) Cold power balance constraints.

CCCHP
j,t + CAir

j,t = CLoad,DR
j,t (22)

where CCCHP
j,t and CAir

j,t denote the cooling power of the CCHP unit and the air conditioner
in the park j at time t, respectively.

(3) Inter-park power transfer constraints.

N

∑
j=1

T

∑
t=1

Pbuy
j,t =

N

∑
j=1

T

∑
t=1

Psell
j,t (23)


0 ≤ Pbuy

j,i,t ≤ Pbuy,Max
j,i Bbuy

j,i,t

0 ≤ Psell
j,i,t ≤ Psell,max

j,i Bsell
j,i,t

Bbuy
j,i,t + Bsell

j,i,t ≤ 1

(24)

where Pbuy
j,t , Psell

j,t , Pbuy,Max
j,i , Psell,max

j,i , Bbuy
j,i,t , and Bsell

j,i,t denote the purchased and sold power,
the upper limit of purchased and sold power, and the 0–1 variable of purchased and sold
power behavior from the park j to the park at moment i.

(4) Park and distribution grid power transfer constraints.
0 ≤ Pbuy

j,i,t ≤ Pbuy,Max
j,i Bbuy

j,i,t

0 ≤ Psell
j,i,t ≤ Psell,Max

j,i Bsell
j,i,t

Bbuy
j,i,t + Bsell

j,i,t ≤ 1

(25)
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where Pbuy,Max
j,i , Psell,Max

j,i , Bbuy
j,i,t , and Bsell

j,i,t denote the upper limit of power purchased and
sold to the distribution grid by the park j at time t and the 0–1 variable of power purchasing
and selling behavior, respectively.

(5) Centralized energy storage plant operational constraints.

PSOC
t = PSOC

t−1 + ηCh · (
N

∑
j=1

PCh
j,t + PCh,Grid

t + PCh,Wind
t )− ηDis

N

∑
j=1

PDis
j,t (26)



PSOC
Min ≤ PSOC

t ≤ PSOC
Max

PSOC
t=1 = PSOC

t=T = PSOC
on

0 ≤ PCh
j,t ≤ PMax

ch BCh
j,t

0 ≤ PDis
j,t ≤ PMax

dis BDis
j,t

0 ≤ PCh,Grid
t ≤ PMax

ch BCh,Grid
t

0 ≤ PCh,Wind
t ≤ PMax

ch BCh,Wind
t

BCh
j,t + BDis

j,t ≤ 1

(27)

where PSOC
t , PSOC

Min , and PSOC
Max denote the charging state and upper- and lower-limit values

of the energy storage power station; ηCh and ηDis denote the charging and discharging
efficiency; BCh

j,t and BDis
j,t denote the charging and discharging behavior of the energy storage

power station to the park j at time t; BCh,Grid
t and BCh,Wind

t are the purchasing behavior of
the energy storage power station to the distribution grid and the wind farm at time t. The
maximum charging and discharging power are PMax

ch and PMax
dis , respectively.

(6) Centralized wind farm output constraints.

N

∑
j=1

PWind
j,t + PCh,Wind

t + PWind,Grid
t = PWind

t (28)


0 ≤ PWind

t ≤ PWind,Max
t BWind

t

0 ≤ PWind,Grid
t ≤ PWind,Grid,MaxBWind,Grid

t

0 ≤ PCh,Wind
t ≤ PCh,Wind,MaxBCh,Wind

t

(29)

where BWind
t and BWind,Grid

t are the 0–1 variables for power sales from the wind farm to the
park and the distribution grid, respectively, at time t.

3.6. Master–Slave Game Interaction Mechanism

This paper presents a master–multiple-slave MIES two-layer game model, with the
interaction mechanism illustrated in Figure 2. The game interaction in the MAIES is
structured into two layers: an upper layer and a lower layer, with a sequential relationship
and interactive iteration. The model solution process is outlined in the upper part of
Figure 3. This flowchart presents a two-layer optimization framework for a multi-agent
integrated energy system (MAIES), which combines particle swarm optimization (PSO) and
CPLEX for energy trading and operation management. The system handles energy trading
and real-time energy management within energy parks, incorporating multi-objective
optimization, such as minimizing costs and maximizing profits. The upper layer employs
the particle swarm optimization algorithm to determine the optimal trading strategy for
the integrated energy system. Specific steps include (1) initialization: The algorithm inputs
the number of particles, maximum iterations, and accuracy; (2) speed and position update:
The speed and position of each particle are dynamically updated via PSO, influenced
by their historical best position and the global best position; (3) energy consumption
strategy update: The energy consumption and trading strategy for each energy park is
updated based on the latest particle positions, which reflect the updated energy market
decisions; (4) fitness calculation: The fitness function is computed for each particle, typically
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combining objectives such as profit maximization, cost minimization, and system stability;
(5) local and global optimal update: If the current particle’s fitness exceeds its previous
value, the local and global optimal solutions are updated accordingly; and (6) iteration
check: If the number of iterations does not exceed the maximum or the required accuracy
is not met, the iteration count increases by 1, and the process repeats until convergence.

After the upper-layer PSO algorithm converges, the lower layer uses CPLEX to opti-
mize energy coupling and operation strategy in the MAIES. Specific steps include (1) price
generation: Based on the upper layer results, the MAIES determines the energy sales price
for users and the compensation price for demand response; (2) park energy user opera-
tion: Integrated energy users adjust their operation based on real-time energy prices and
incentives, and the demand response system adjusts the park’s actual load and calculates
the energy purchase cost; (3) CPLEX optimization: The system uses CPLEX to optimize
energy coupling conversion equipment, focusing on energy flow, conversion efficiency,
and minimizing operational costs; (4) profit calculation: The MAIES’ current profit is calcu-
lated and compared with the previous iteration to check for improvement; and (5) profit
optimization check: If the current iteration’s profit exceeds the previous one, the MAIES’
optimal profit is updated. This process continues until the profit stabilizes. Termination
condition: The optimization framework terminates once the MAIES’ optimal profit stabi-
lizes, indicating that the system has reached a steady-state solution for energy trading and
operation strategy. The specific details of the algorithm are shown in Appendix B.

Figure 2. Master–slave game.
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Figure 3. Model solution process.
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Each park’s load aggregators act as followers, aiming to minimize electricity pur-
chasing costs. Their strategy set includes responding to power restrictions, transfers, and
substitution scenarios. Energy storage power stations and centralized wind farms also
act as followers, aiming to maximize their profits. Their strategies involve managing
charging/discharging activities and power supply. The leader sets the electricity price and
subsidy for demand response and communicates this to the follower park users. Users
respond to the electricity price and subsidy, and determine their electricity purchase costs,
and this forms the revenue for the MIES. The MIES revenue is determined at the upper layer,
while the output of energy conversion devices, the charging/discharging of energy storage,
and wind farm power supply are adjusted based on the external grid price and energy
constraints. This process optimizes the MIES’ costs. The total daily profit is calculated
by combining both layers, and the process repeats until the optimal solution is reached,
achieving balance. This suggests that the park achieves total profit in the multi-agent sys-
tem by optimally allocating each entity’s interests, assuming a complete information game,
where the system operator (leader) can enforce constraints on entities through executable
contracts. In summary, this study addresses the distribution of benefits after cooperation
is achieved, formed the context of campus alliance cooperation. The proof of the Nash
equilibrium solution for the game is provided in Appendix C.

4. Example Analysis

In this section, the effectiveness and rationality of the proposed master–slave game
optimal scheduling for integrated energy systems, considering integrated demand response
and multi-agent interaction, will be verified through algorithmic analysis.

4.1. Arithmetic Example Setup

In this paper, the IES with multiple entities, as depicted in Figure 1, is selected for sim-
ulation calculations. The MAIES consists of energy operators, customer clusters containing
PV, CHP parks, CCHP parks, energy storage plants, and centralized wind power generation
entities, all interconnected by transmission lines. Each park comprises integrated energy
users and is managed by a load aggregator. The price at which each park purchases/sells
electricity from/to other parks is a flat rate, which is lower than the price at which electricity
is purchased/sold from the external distribution network. The distribution network sales
price, the natural gasprice, and the price of electricity interactions within and outside the
parks are shown in Table A1 in Appendix A. The system’s energy conversion coupling
equipment parameters are shown in Appendix A Table A2. The predicted electrical load
and photovoltaic output values are provided in Appendix D.

4.2. Scenario Setting

To illustrate the reasonableness and feasibility of the proposed optimization strategy,
various operation scenarios are compared:

(1) Scenario 1: To verify the validity and economy of non-interconnection among multiple
entities, this setup does not consider the interaction of electricity between parks,
meaning operations are independent, with no cooperative alliance.

(2) Scenario 2: To validate the effectiveness and economics of centralized wind farms,
this scenario sets up a multi-campus interconnection based on Scenario 1, considering
the operation of centralized wind farms.

(3) Scenario 3: To verify the effectiveness and cost-effectiveness of an energy storage plant,
this scenario sets up a multi-campus interconnection based on Scenario 1, considering
the operation of a centralized energy storage plant.

(4) Scenario 4: To verify the effectiveness and economics of integrated demand response
and iterative optimization of subsidy unit prices, this scenario sets up an operation
mode based on Scenario 3, considering integrated demand response and iterative
optimization of subsidy unit prices after interaction among multiple actors.
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(5) Scenario 5: This scenario implements the strategy proposed in this paper, considering
the master–slave game optimization scheduling of a multi-entity integrated energy
system with integrated demand response and wind storage.

After optimization calculations, the cost of purchased energy, revenue from energy
sales, profit of each entity, and comprehensive profit of the MAIES for each operation mode
under each scenario are determined, as shown in Table 1.

Table 1. Results of optimization calculation.

Scenario
Purchased
Electricity
Cost/RMB

Gas
Purchase

Cost/RMB

Park 1
Profit/RMB

Park 2
Profit/RMB

Park 3
Profit/RMB

Profit of
Energy
Storage

Plant/RMB

Wind Farm
Profit/RMB

Demand
Response

Compensa-
tion/RMB

MIES Total
Profit/RMB

1 13,061 22,285.5 2567 9421 11,931 3091 — — 38,331
2 12,170 22,285.5 1351 14,821 13,731 — 13,932 7434 39,400
3 18,853 16,527 3562 15,992 16,138 585 — 7534 34,389
4 11,863 22,285.5 1317 14,431 13,536 2331 13,920 7091 40,716
5 12,352 22,285.5 1343 14,621 13,088 2361 13,920 7429 41,441

4.3. Comparative Analysis

Scenario 1 does not incorporate any optimization methods; each park operates
independently without the addition of the wind storage joint system, serving as the
baseline scenario.

Scenario 2 incorporates centralized wind power, enabling the effective use of new
energy and participation in the park’s energy supply. This reduces the power purchased
from the distribution grid, saving CNY 891 in power purchase costs. In the suburbs, Park 1
benefits from substantial PV resource endowment, producing much more new energy than
the other parks while having low self-consumption. Consequently, it sells a large amount
of electricity to the other parks. However, with the addition of centralized wind farms,
many users opt to purchase the lower-priced electricity from the wind farms, significantly
reducing Park 1′s profit while increasing the profit of the wind farm. As a result, the
profit of the MIES increases by CNY 1069. This demonstrates that increasing new energy
consumption can effectively improve system profits, and constructing centralized wind
farms in wind-rich areas and incorporating them into MAIES scheduling can maximize the
system’s comprehensive profit.

Scenario 3 incorporates an energy storage power station. During periods of high
new energy output and low electricity prices, energy is stored, and during peak load
periods, this energy is discharged. The centralized energy storage power station has
lower operation and maintenance costs. Although its standalone participation in MIES
optimization scheduling is not very impactful, it significantly benefits parks with large
load regulation ranges. Compared to Scenario 1, the parks’ profits increase by CNY 995,
CNY 5571, and CNY 4207, respectively. This demonstrates that electric energy storage
enhances the economics of each park.

In Scenario 4, the total profit for the MAIES is reported as 40,716 MB, derived from the
combined profits of all energy participants, including the parks, energy storage plant, wind
farm, and demand response. This total profit reflects the system’s optimal performance
under Scenario 4, showcasing a balanced integration of diverse energy sources, optimized
transaction strategies, and cost-efficient operation. The results indicate that Scenario 4 is
highly profitable for the MAIES, primarily due to strong contributions from the wind farm
and Park 3, along with the beneficial role of the energy storage plant. Scenario 4 in Table 1
represents an optimized configuration of the multi-agent integrated energy system (MAIES),
balancing electricity and gas purchase costs with profits from energy parks, energy storage,
and renewable energy sources. This scenario highlights the importance of coordinated
energy management, where distributed generation, storage, and demand response play key
roles in ensuring system profitability and operational efficiency. The detailed breakdown
of costs and profits offers valuable insights into the economic and technical viability of
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the MAIES, especially in scenarios with high renewable energy penetration and effective
demand-side management.

In Scenario 5, through iterative optimization of subsidy unit prices and double-layer
optimization of the multi-party game, the transfer and curtailment of peak period loads
are increased, reducing power purchase costs and improving response compensation.
The profit of the MIES increases by 6327 RMB, an 18.39% increase. Therefore, iterative
optimization of subsidy unit prices enhances users’ motivation to participate in demand
response, effectively improving system profits.

In summary, the master–slave game optimization scheduling of a multi-intelligent
integrated energy system, considering integrated demand response and wind storage,
improves system economy. This illustrates the effectiveness and rationality of the pro-
posed strategy.

4.4. Optimization Results of the Strategy in This Paper

For the strategy and model proposed in this paper, the global optimal solution is
obtained through iterative optimization in the upper and lower layers, and the problem
is solved multiple times. Figure 4 shows the finalized electricity and heat prices and
response compensation unit prices issued by the MAIES to users in the upper layer. It can
be observed from the figure that the electricity price, after compensation through electric
load reduction and transfer, is reduced by up to CNY 0.8324 and CNY 0.7 compared with
the park’s selling price. Similarly, the electricity price after heat load reduction and transfer
compensation is reduced by up to CNY 0.451 and CNY 0.459 compared with the park’s
selling price.

Figure 4. Optimized pricing costs for electricity and heat price incentive compensation.

From Figure 5, it can be seen that the interaction between the distribution grid and the
main parks is not high, primarily concentrated at night when distribution grid tariffs are
lower. Parks 1 and 2 discharge power due to a lack of supply, correlating with the load and
exhibiting typical peak and valley leveling characteristics. At night, Park 1’s PV clusters
do not generate power, leading to a supply shortage, while Park 3’s electrical load is the
highest. During other periods, due to incentive compensation, the main subjects prefer
trading within the MAIES, resulting in zero interaction with the distribution grid.

Figure 6 shows the comparison of electric load before and after demand response in
each park. Electric load reduction and transfer are mainly concentrated in the 10:00–24:00
time period. Compared with Figure 4, during this period, the cost of optimized pricing
for tariff incentives and compensation is larger than the price difference in the distribution
grid. In the 00:00–10:00 time period, the tariff difference is smaller, and combined with
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the cost of demand response, electric load reduction and transfer are essentially zero. The
electric loads that can be cut and transferred in the three parks are 313.50 kW, 1296.39 kW,
and 924.94 kW, respectively.

Figure 5. Interactive power values between the distribution network and the parks.

Figure 6. Before-and-after comparison of electrical load demand in each park.
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Figure 7 shows the comparison of cooling and heating loads before and after demand
response. There is greater demand for heating loads at night and more demand for cooling
loads at midday. Due to the significant fluctuation in cooling and heating loads with
temperature changes, the cooling and heating power in the “electricity to heat” mode is
more noticeable and uniform compared with the electric load response.

Figure 7. Before-and-after comparison of heat and cooling load demand in each park.

The power balance of the wind farm is shown in Figure 8. The state subsidizes new
energy generation, so in this simulation, the unit price of the wind farm is lower than that
of the distribution grid. Considering the distance from the wind farm to the park and the
associated transmission losses, the time-sharing price of the wind farm falls between that
of the distribution grid and the park’s power interaction (see Table A2 in Appendix A for
more details). As a result, the wind farm primarily operates in cooperation with the storage
plant. Only when there is no photovoltaic generation in Park 1 during the morning hours
and when Parks 2 and 3 experience the highest power shortages at midday does the wind
farm transmit a small amount of power to them. More frequently, the centralized wind
farm sells power to the distribution grid, which has a higher unit price, and to the energy
storage plant, which can readily absorb uncertain wind power.

The charge/discharge power interaction value of the energy storage power station is
depicted in Figure 9. Figure 9 shows that due to sufficient PV power generation from 9:00 to
17:00, the main load in Park 1 is EV charging piles, which are less loaded compared to Parks
2 and 3. Park 1, classified as a residual power park with larger power outputs, becomes the
main source for power storage because the unit price of energy storage power purchased
from the parks is lower than that from the distribution grid and wind farms. From 0:00 to
8:00 and from 18:00 to 24:00, when Park 1 has no power supply, the energy storage power
station provides electricity to complete new energy peak shaving and valley filling.

The loads in Park 2 and Park 3 are large, and their supply is much smaller than their
demand. As shown in Figure 9, the energy storage supplies power to Park 3 for 23 h a day,
making Park 3 the primary outlet for energy storage discharge. The charging hours of the
energy storage plant are mainly concentrated between 00:00 and 06:00 and between 17:00
and 00:00, coinciding with the electricity price trough period. The maximum capacity of
the energy storage plant is reached in the early morning and evening hours, allowing the
energy storage to play an effective role in supporting the energy supply during peak hours.

Figure 10 shows the optimized power balance diagram of Park 1. Since the main load
in Park 1 consists of electric vehicles, classifying it as an overcapacity electric load park, a
small portion of PV power is supplied to this park, while the rest is directed to the energy
storage power station for effective storage of new energy generation and peak shaving and
valley filling.
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Figure 8. Wind farm power balance diagram.

Figure 9. Power balance diagram of energy storage plant.
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Figure 10. Power balance diagram after optimization of Park 1.

As shown in the figure, the electric load balance of Park 1 primarily consists of inter-
park power interactions, power interactions with the storage power station, and new energy
outputs from wind and solar sources, coupled with a low level of its own electric load.
During the time periods of 00:00–08:00 and 19:00–23:00, Park 1 lacks supply-side output
and primarily purchases electricity from the storage power station. Conversely, during
the 08:00–18:00 period, when PV output is high and consumption is very low, PV power is
mainly sold to the energy storage station.

Figure 11 shows the optimized electric power balance for Park 2. Compared with Park 1,
CHP units are added to generate electricity. The flexible operation of CHP can increase
the utilization rate of primary energy, so the CHP units operate at full or nearly full load
during the dispatch cycle. The remaining loads mainly involve energy interactions with the
energy storage plant and other parks. During peak load hours, some power is purchased
from the distribution grid to achieve electric power balance in the dispatch cycle. Due to
the time-sharing tariff, Park 2 has different power purchase arrangements for different time
periods. The energy storage power from 09:00 to 18:00 comes from the centralized storage of
PV in Park 1, and the tariff is lower relative to the unit price of park interaction.

The optimization results of the thermal power balance of Park 2 are shown in Figure 12.
Since the CHP unit in the model operates in the “setting the heat by electricity” mode, it
can be seen from the analysis in Figure 11 that, during the scheduling cycle, the CHP unit
operates at or near full load. Therefore, the unit produces heat power close to its maximum
capacity, and the remaining heat load is regulated and supplemented by the gas boiler.

Figure 13 shows the optimized power balance of Park 3. As depicted in the figure, Park
3 has a cold load, resulting in increased air conditioning power consumption compared to
Park 2. Additionally, Park 3 is already a power-deficient park, and the presence of many
users with cold loads and higher air conditioning power consumption exacerbates this
shortage. Therefore, besides generating power from its own CHP unit, a significant amount
of power needs to be purchased from the storage power plant to ensure power balance.
During the 09:00–18:00 period, Park 3 completes multiple electric energy interactions.
During the scheduling cycle, Park 3 prioritizes purchasing power from wind farms and
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energy storage power stations, and only purchases power from the distribution grid during
the two hours of 17:00 and 00:00. CCHP units continue to operate in the “heat by electricity”
mode, so the heat load is prioritized to consume the heat produced by CCHP, as in Park 2,
with the remaining load supplemented by the gas boiler, as shown in Figure 14.

Figure 11. Power balance diagram after optimization of Park 2.

Figure 12. Thermal power balance diagram for Park 2.
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Figure 13. Power balance diagram after optimization of Park 3.

Figure 14. Park 3 thermal power balance diagram.

The results of the optimization of the cooling power balance of Park 3 are shown
in Figure 14. From Figure 14, it can be seen that since the CCHP unit uses a lithium
bromide refrigerator for cooling, and there are inherent limitations in the absorption and
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refrigeration rates, resulting in the output ratio meeting only a small portion of the cooling
load demand. As shown in Figure 15, the stationary cooling load is primarily provided by
CCHP refrigeration, with the remaining demand met by air-conditioned refrigeration. The
controllable cooling load is highly variable throughout the dispatch cycle, characterized
by a midday peak and a large percentage of the load, thus requiring air conditioning to
manage this load.

Figure 15. Campus 3 cold power balance diagram.

5. Conclusions

This paper proposes a master–slave game-based optimization scheduling strategy for
a multi-energy integrated system (MIES), incorporating integrated demand response and
wind-storage coupling. The strategy utilizes a hybrid two-layer optimization framework,
combining particle swarm optimization (PSO) with CPLEX, and demonstrates notable
advantages in energy trading and internal operation optimization.

First, the proposed method integrates power stations within the MIES to engage in
game interactions, solving the Nash equilibrium to find the optimal solution for all parties’
interests. This approach significantly enhances the overall system, considering the interests
of all participants.

Secondly, by establishing a power interaction channel, multiple stakeholders, the strat-
egy successfully achieves optimal economic performance within the alliance. It efficiently
coordinates energy utilization among participants, leading to more effective overall operation.

Additionally, the proposed strategy leverages differentiated multi-loads and multi-
type integrated demand response (IDR) for heterogeneous energy flows, effectively shaving
peaks and filling valleys for electricity, heat, and cooling loads within reasonable limits. It
iteratively optimizes subsidy pricing to enhance user participation and responsiveness.

Overall, the master–slave game-based optimization scheduling strategy proposed
in this paper significantly improves the economy and response flexibility of the MIES
system through multi-level, multi-agent collaborative optimization, demonstrating its
strong potential for future energy system applications.

However, this paper does not address energy transmission losses, and future research
will focus on improvements in this area.
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Appendix A

Table A1. Energy conversion equipment parameters.

Device Name English
Abbreviation

Conversion
Efficiency/COP

Aging Loss
Coefficient

Gas boiler GB 0.9 0.026
Gas turbine GT 0.35 0.021

Waste heat boiler WHB 0.68 0.016
Energy storage power station ESS 0.98 0.013

Air conditioner AC 3 0.015
Photovoltaic PV / 0.039
Wind power WT / 0.039

Lithium bromide refrigerator LBAC 0.72 0.013

Table A2. Time-of-use energy price.

Time

Distribution
Network

Electricity Sales
Price/CNY

Purchase Between
Parks

Electricity Sales
Price/CNY

Wind Farm for
Sale

Electricity
Price/CNY

Energy Storage
Power Station

Electricity Sales
Price/CNY

Natural Gas Price/
CNY/m3

00:00–8:00 0.35 0.23 0.29 0.29 1.84
8:00–12:00 0.68 0.46 0.57 0.57 2.94
12:00–00:00 1.04 0.71 0.88 0.88 3.84

Appendix B

ai represents a potential set of possible game strategies; similarly, the speed of the ith
particle is the 3T-dimensional vector E, the local optimal strategy of individual particles is
the 3T-dimensional vector pbesti, and the global optimal strategy of the particle swarm is
the 3T-dimensional vector gbest.

The updated set of particle trading strategies is:

φ = [a, s] (A1)

The equations for particle position and velocity update are:νk+1
ij = ω · νk

ij + c1r1(pbestk
ij − xk

ij) + c2r2(gbestk
ij − xk

ij)

xk+1
ij = xk

ij + νk+1
ij

(A2)

where ω is the inertia weight; i represents the number of the particle, taking the value of
1, 2, . . ., n; j represents the j dimension component of the particle, taking the value of 1,
2, . . ., 3T; k represents the number of iterations; c1 and c2 represent the learning factors of
the particle, and r1 and r2 are the random numbers of [0,1]. The particle speed threshold
is set because the particle speed is too large to cause the particle to jump out of the
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optimal solution, and the particle speed is too small to cause insufficient search in the
optimization space:

Vmin ≤ Vk
ij ≤ Vmax (A3)

where Vmin and Vmax denote the upper and lower limits of particle velocity during the
iteration process. The specific values are shown in Table A3 in Appendix B.

For the traditional particle swarm algorithm there are problems such as premature
convergence. This paper adopts a linear decreasing strategy for the inertia weights, with
larger inertia weights at the early iteration and smaller inertia weights at the end of the
iteration. Larger inertia weight is conducive to jumping out of the local optimum, where
global search ability is stronger, and smaller inertia weight can be in the vicinity of the global
optimum to search accurately, which is conducive to the convergence of the algorithm. The
learning factor adopts a nonlinear inverse cosine acceleration strategy. The particles focus
on the reference of their own history information when flying in the early iteration, and
focus on the reference of the group information when flying in the late iteration to avoid
falling into the local convergence. The values of inertia weight ω and learning factors c1
and c2 are taken as: 

ω = ωs − k
kmax

· (ωs − ωe)

c1 = c1e + (c1s − c1e)[1 − arccos(−2k/kmax+1)
π ]

c2 = c2e + (c2s − c2e)[1 − arccos(−2k/kmax+1)
π ]

(A4)

where kmax is the maximum number of iterations, ωs and ωe denote the iterative initial and
final values of the inertia weights, and cs and ce denote the iterative initial and final values
of the learning factors, respectively. The specific values are shown in Table A3.

Table A3. Parameters of the PSO algorithm.

Parameter Value Parameter Value

ωs 0.9 c2e 0.5
ωe 0.4 kmax 20
c1s 2.5 n 10
c1e 0.5 νmin 0.5
c2s 2.5 νmax −0.5

Appendix C

Existence of the proof of equilibrium solution for the master–slave game:
There are two decision levels with a leader and n followers: Pi (i = 1, 2, ···, n), where

N = {1, 2, ···, n} is the set of composition of the followers; X is the set of strategies of the
leader; ∀i ∈ N, which denotes i = N/i and ∀i ∈ N; Yi is the set of strategies of the first

follower Y =
n
∏
i=1

Yi; and fi : X · Y → R is the cost function of the i follower. In the param-

eterized cooperative n-player Nash equilibrium Γ(x) = {Y, fi(x, ·, ·), i = {1, 2, · · ·, n}
denotes the set of Nash equilibrium points of the game. N(x) denotes the set of Nash
equilibrium points of the game, and the problem is formulated as follows:

N(x) = {y∗ = (y∗1 , y∗2 , · · · , y∗n) ∈ Y : fi(x, y∗i , ) = inf
yi∈Xi

fi(x, yi, )} (A5)

The above problem can also be expressed as a set-valued mapping:

N : X → P0(
n

∏
i=1

Yi) (A6)

Any strategy y∗ = (y∗1 , y∗2 , · · · , y∗n) ∈ Y that satisfies Equation (A5) is said to be an
equilibrium of a parametric Nash game Γ(x) with y. In a leader–follower game, the leader
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and followers occupy the upper and lower levels of decision-making, respectively, forming
a typical bilevel optimization problem.

The leader selects a strategy xxx from its strategy set X, and the followers, given
x, determine their optimal solutions through Nash equilibrium within their respective
strategy sets. This paper seeks to prove the existence of equilibrium solutions for such
games under specific assumptions. We assume that the strategy sets X of the leader and
Yi of the followers are non-empty, compact, and convex. Furthermore, the cost function
fi = (y1, y2, · · · , yn; x) for each follower is continuous with respect to the leader’s strategy
x and quasiconcave with respect to its own strategy yi. This ensures that each follower can
find its optimal strategy given the fixed strategies of the other followers. The followers’
optimal responses are denoted as y∗i (x), forming a Nash equilibrium at the follower level.
We define N(x) as the set mapping of the followers’ Nash equilibrium after the leader
selects a strategy x. We prove that this mapping is upper semicontinuous, implying that
small changes in the leader’s strategy result in minimal fluctuations in the followers’
Nash equilibrium. By combining the conditions of compactness, convexity, and upper
semicontinuity, we apply the Kakutani fixed-point theorem to prove the existence of a
fixed point in this mapping, representing the equilibrium solution of the leader–follower
game. In summary, under the assumptions of compactness, continuity, quasiconcavity, and
upper semicontinuity, this paper proves the existence of a Nash equilibrium in a leader–
follower game. This conclusion lays the theoretical foundation for addressing multi-level
decision-making problems and can be applied to optimization in complex systems such as
energy markets.

Let G = {X, Y, f , fi(x, ·, ·)}, i = 1, 2, · · · , n denote the two-stage master–slave game
equilibrium problem, which is formulated as ∃(x∗, y∗) ∈ X · Y, such that:

f (x∗, y∗) = supy∈N(x∗) f (x∗, y) = infx∈Xsupy∈N(x) f (x, y), y∗ ∈ N(x∗) (A7)

Any strategy group (x∗, y∗) ∈ X ·Y satisfies Equation (A6), and then (x∗, y∗) is said to
be an equilibrium point of a master–slave game. The equilibrium conditions of the two-
stage master–slave game, as defined by Equation (A7), involve a sequential decision-making
process between the leader (master) and the followers (slaves). In this bilevel structure,
the leader first selects a strategy x∗, anticipating optimal responses y∗ from the followers.
The followers then choose strategies that minimize their objective functions, based on
the leader’s decision. The interaction is governed by a parametric Nash equilibrium,
where neither player benefits from unilateral deviations from the equilibrium strategy
set (x∗, y∗). The equilibrium is reached under the following assumptions: (1) rationality:
Both the leader and the followers are rational players, seeking to optimize their respective
objectives, (2) complete information: All players have complete knowledge of the game’s
structure and the objectives of the other players, and (3) sequential optimality: The leader’s
decision-making process accounts for the followers’ best-response behavior, resulting in
a minimax strategy where the leader minimizes the worst-case outcome based on the
followers’ optimal responses. The condition supy∈N(x∗) f (x∗, y) = infx∈Xsupy∈N(x) f (x, y)
represents the equilibrium, where the leader and followers’ strategies satisfy both the
supremum and the infimum conditions. This ensures that no player can improve their
payoff by deviating from the equilibrium, guaranteeing the stability of the solution in the
master–slave game.
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Appendix D

Figure A1. Load forecasting and photovoltaic output forecasting.
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