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Abstract: The study presents the results of an experimental investigation aimed at evaluating the
performance of a water-to-water heat pump utilising R1234ze(E) and R515B in a drop-in application.
Several operating conditions are tested, varying the mass flow rates and temperatures of the secondary
fluids that pass through the heat exchangers while maintaining the compressor shaft rotational
frequency and the vapour superheating at the evaporator outlet constant. Overall, when compared to
R1234ze(E), the utilisation of R515B results in capacity and COP variations within −6.81% to +2.46%
and −2.41% to +6.29%, respectively. Regarding the performance of the compressor, R515B exhibits
comparable volumetric and overall efficiency, while a slightly lower refrigerant temperature at the
compressor discharge is found, with differences ranging from −3.1 ◦C to −0.5 ◦C. Overall, R515B
appears to be more suitable than R1234ze(E) for applications in the high-temperature range.

Keywords: compressor; COP; heat pump; heating capacity; R1234ze(E); R515B

1. Introduction

Over the past decade, the air conditioning and refrigeration industry has initiated a
transition away from traditional refrigerants to comply with regulations aimed at reducing
greenhouse gas emissions. Specifically, the EU Regulation 517/2014 [1] and the Kigali
Amendment to the Montreal Protocol [2] have introduced a gradual phase-out of high
Global Warming Potential (GWP) refrigerants in favour of low-GWP alternatives. Con-
sequently, environmentally friendly refrigerants are continuously being developed and
proposed as substitutes for traditional Hydrofluorocarbons (HFCs) [3–5]. Among these,
HydroFluoroOlefins (HFOs) have emerged as the most promising category of low-GWP re-
frigerants for vapour compression systems. HFOs are typically classified as A2L substances,
indicating mild flammability. To shift their classification to A1, meaning non-flammable,
HFOs are often blended with non-flammable HFCs [6].

One such blend, R515B, has been introduced as an alternative to pure HFOs like
R1234ze(E). R515B is a mixture of R1234ze(E) (91.1% by weight) and R227ea (8.9% by
weight), though it has received limited attention from the scientific community so far. At
the system level, Mota-Babiloni et al. [7] experimentally compared the performance of
R134a, R1234ze(E) and R515B in a water-to-water heat pump under identical evaporating
and condensing conditions. Their findings suggest that compared to R1234ze(E), R515B
offers slightly lower heating capacity while maintaining a comparable COP.

Similar results were found through a numerical study of the same refrigerants in
a water-to-water heat pump designed for moderately high-temperature applications, in
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which it is found that R515B provides slightly lower heating capacity and COP than
R1234ze(E) [8].

At the component level, the refrigerant temperature at the compressor discharge and
the compressor volumetric efficiency are analysed in [7], while the heat transfer perfor-
mance was studied in [9–11]. From a compressor standpoint, the discharge temperature
with R515B was found to be lower than with R1234ze(E), though both refrigerants exhibited
similar volumetric efficiency [7]. In terms of heat transfer, R1234ze(E) and R515B displayed
comparable convective heat transfer coefficients, with R1234ze(E) performing slightly better
during condensation and R515B showing a slight advantage during evaporation [9–11].

The goal of this paper is to expand our previous study [12] about the analysis of
the use of R515B in vapour compression systems discussing the results of experimental
tests of a small-capacity, water-to-water heat pump. In the analysis, the inlet or outlet
temperatures of the secondary fluids are set rather than the evaporating or condensing
ones since according to [13], “a comparative analysis based on the same evaporation and
condensation temperatures may not apply in some circumstances, since the refrigerant
replacement will give rise to different temperatures for fixed conditions of the cooling
medium in the condenser and the medium to be cooled”. The final goal of the present
paper is to contribute to the assessment of R515B as a viable, alternative refrigerant to
R1234ze(E). This is achieved through a comprehensive experimental campaign carried out
in a broad range of operating conditions, allowing us to understand which refrigerant
among the two considered performs better and in what operating conditions. The present
study aims at integrating the scientific literature about these refrigerants, allowing vapour
compression system designers and manufacturers to make a rational choice among them.

2. Experimental Setup and Experimental Procedure
2.1. Experimental Setup

The experimental setup used in the present work was the same used in our previous
studies, and therefore, only a short description is provided in the present paper, whereas
more details are available in [14,15].

The layout of the experimental facility is shown in Figure 1.
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Figure 1. The layout of the experimental setup.

As per [15], the setup “consists of a refrigerant loop (heat pump, black line), a water
loop (hot heat sink, red line) and a water + ethylene glycol loop (cold heat source loop, blue
line) in which a mixture of water and ethylene glycol at concentration equal to 25.4%v with
a freezing temperature equal to −12.6 ◦C is used.

The main components of the refrigerant loop are a variable speed, semi-hermetic
reciprocating compressor, a brazed plate condenser, a brazed plate evaporator and two
electronic expansion valves. The two expansion valves are different in size and are installed
to enlarge the range of the capacities that can be tested. Only the most appropriate valve is
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used during each test. In the refrigerant loop the controlled parameters are the rotational
frequency of the compressor shaft and the vapour superheating at evaporator outlet.

The main components of the hot and cold secondary fluid loops are a variable speed
pump, a buffer tank, a two-way and a three-way valve. In these loops the controlled
parameters are the pump speed and the secondary fluid temperatures.

All the pipes and the components are insulated with an elastomeric material whose
thermal conductivity is 0.037 W/(m·K).

The characteristics of the main components of the experimental facility are collected in
Table 1, whereas the position of the measuring instrumentation and its main characteristic
are reported in Figure 1 and Table 2 respectively.

Table 1. The main characteristics of the components of the experimental setup.

Component Parameter Value

Compressor

Swept volume @ 50 Hz 13.15 m3/h
Shaft rotational frequency 30 Hz–87 Hz

Oil type POE ISO 32
Oil charge 1.1 dm3

Condenser
Dimensions 289 mm × 119 mm × 93.6 mm

Number of plates 40

Evaporator Dimensions 376 mm × 119 mm × 71.2 mm
Number of plates 30

Expansion valves Capacity range 175 W–1750 W
1690 W–16900 W

Pumps
(both cold heat source and hot

heat sink loops)

Nominal flow rate 28.7 m3/h
Nominal head 160 kPa

Shaft rotational frequency 16 Hz–58 Hz

Table 2. Main characteristics of the measuring instrumentation (RTD = resistance Temperature
Detector).

Parameter Instrument Range

Refrigerant mass flow rate Coriolis mass flow meter
(Endress Hauser, Cernusco sul Naviglio, Italy) 0 kg/h–300 kg/h

Refrigerant pressure
(low side)

Pressure transducer
(Huba Control, Würenlos, Switzerland) 0 kPa–700 kPa

Refrigerant pressure
(high side)

Pressure transducer
(Huba Control, Würenlos, Switzerland) 0 kPa–4000 kPa

Refrigerant temperature RTD Pt 100
(Tersid, Sesto San Giovanni, Italy) 243.15 K–373.15 K

Compressor power Power meter
(Cewe, Nyköping, Sweden) 0 W–4000 W

Water mass flow rate Vortex flow meter
(Huba Control, Würenlos, Switzerland) 0.21 m3/h–3 m3/h

Water temperature RTD Pt 100
(Tersid, Sesto San Giovanni, Italy) 263.15 K–353.15 K

2.2. Refrigerant Tested and Testing Conditions

The refrigerant tested in the present study was R515B, a mixture of R1234ze(E)
(91.1%w) and R227ea (8.9%w), which is considered a drop-in substitute for R1234ze(E).
The main properties of these refrigerants were retrieved from Refprop 10.0 [16] and are
reported in Table 3.

The performance of the heat pump working with R515B was assessed considering
25 experimental points that spanned a broad range of working conditions. These test-
ing conditions were the same used to characterise the operation of the heat pump with
R1234ze(E) in our previous work [14]. Each test was carried out setting the compressor
shaft rotational frequency to 50 Hz, setting the superheating at evaporator outlet to 5 K and
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changing the temperatures of the secondary fluids at the evaporator and the condenser
outlets as reported in Table 4. The mass flow rates of the secondary fluids were identified
in 5 reference conditions (Tests 03, 08, 13, 18 and 23 in Table 4), setting a temperature
drop (evaporator) or increase (condenser) change equal to 5 K. Once these flow rates were
identified, 20 additional tests were carried out varying the temperatures of the secondary
fluids at the heat exchanger outlets as per the combination reported in Table 4. It is worth
mentioning that in these conditions, the inlet temperatures of the secondary fluids were
not set but were identified depending on the operating conditions and the flow rates.

Table 3. Main properties of R1234ze(E) and R515B.

Parameter R1234ze(E) R515B

Composition Pure R1234ze(E) 91.1%w
R227ea 8.9%w

Critical pressure 3634.9 kPa 3583.9 kPa

Critical temperature 382.51 K 382.03 K

Molar mass 114.04 g/mol 117.48 g/mol

cP,0 95.13 J/(mol·K) 97.18 J/(mol·K)

Normal Boiling Point
(Dew) 254.18 K 254.37 K

Glide
(p = 101,325 kPa) 0 K 0.021 K

ODP
(Ozone Depletion Potential) 0 0

GWP
(Global Warming Potential)

(IPCC 6th revision)
1.37 321

ASHRAE classification A1 A1

Table 4. Testing conditions.

Test
Compressor

fSHAFT

Evaporator Condenser
.

mG TG,IN TG,OUT
.

mW TW,IN TW,OUT

1 50 Hz As Test 03 * 268.15 K As Test 03 * 308.15 K
2 50 Hz As Test 03 * 273.15 K As Test 03 * 308.15 K
3 50 Hz Identified 283.15 K 278.15 K Identified 303.15 K 308.15 K
4 50 Hz As Test 03 * 283.15 K As Test 03 * 308.15 K
5 50 Hz As Test 03 * 288.15 K As Test 03 * 308.15 K
6 50 Hz As Test 08 * 268.15 K As Test 08 * 318.15 K
7 50 Hz As Test 08 * 273.15 K As Test 08 * 318.15 K
8 50 Hz Identified 283.15 K 278.15 K Identified 313.15 K 318.15 K
9 50 Hz As Test 08 * 283.15 K As Test 08 * 318.15 K

10 50 Hz As Test 08 * 288.15 K As Test 08 * 318.15 K
11 50 Hz As Test 13 * 268.15 K As Test 13 * 328.15 K
12 50 Hz As Test 13 * 273.15 K As Test 13 * 328.15 K
13 50 Hz Identified 283.15 K 278.15 K Identified 323.15 K 328.15 K
14 50 Hz As Test 13 * 283.15 K As Test 13 * 328.15 K
15 50 Hz As Test 13 * 288.15 K As Test 13 * 328.15 K
16 50 Hz As Test 18 * 268.15 K As Test 18 * 338.15 K
17 50 Hz As Test 18 * 273.15 K As Test 18 * 338.15 K
18 50 Hz Identified 283.15 K 278.15 K Identified 333.15 K 338.15 K
19 50 Hz As Test 18 * 283.15 K As Test 18 * 338.15 K
20 50 Hz As Test 18 * 288.15 K As Test 18 * 338.15 K
21 50 Hz As Test 23 * 268.15 K As Test 23 * 348.15 K
22 50 Hz As Test 23 * 273.15 K As Test 23 * 348.15 K
23 50 Hz Identified 283.15 K 278.15 K Identified 343.15 K 348.15 K
24 50 Hz As Test 23 * 283.15 K As Test 23 * 348.15 K
25 50 Hz As Test 23 * 288.15 K As Test 23 * 348.15 K

* Temperature not set a priori but found depending on the operating conditions and on the identified flow rate.
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2.3. Experimental Procedure

The experimental procedure used to carry out the experimental campaign was the
following (adapted from our previous works [14,15]):

1. At the beginning of each test, the pumps of the cold water + ethylene glycol loop and
of the hot water loop are switched on. The rotational frequency of each pump shaft
is set to the value required to guarantee the mass flow rates needed by the test (see
experimental conditions in Table 4). This value is continuously monitored during the
test and is adjusted to keep the mass flow rate constant.

2. The compressor is switched on and its shaft rotational frequency is set to the value
required by the test. At the same time, the electronic expansion valve begins to
modulate its cross-section area in order to guarantee a superheating at evaporator
outlet equal to 5 K.

3. The temperatures of the cold water + ethylene glycol and of the hot water that
respectively flow through the evaporator and the condenser begin changing. In both
the secondary fluid loops, a PID (Proportional Integral Derivative) controller acts
on the 3-way valve with the aim of setting the secondary fluid temperature at heat
exchanger outlet to the value required by the test. During the test, the PID controllers
continuously adjust the 3-way valve position to keep the outlet temperatures to
the set-point.

4. Once the set-point temperatures are reached, the data acquisition starts with a sam-
pling frequency equal to 1 Hz. For each measured pressure and temperature, the
moving average over the last 900 samples is computed. For each of them, the entire
900 samples batch is checked to lay within ±2.5 kPa (for the pressures) and ±0.2 K
(for the temperatures) with respect to the just calculated moving average. When this
constraint is simultaneously satisfied by all the measured pressures and temperatures
simultaneously, the test is considered in steady-state condition.

5. Once steady-state operation is achieved, the data acquisition starts and further
900 samples are recorded for data analysis. An additional check of the accuracy
of the test is performed at its end calculating the refrigerant-side and the secondary
fluid-side heat transfer rates at the evaporator and at the condenser. The test is con-
sidered valid if the two values agree within ±4% with respect to their average value,
otherwise it is repeated.

2.4. Data Reduction and Uncertainty Calculation

The analysis of the performance of the heat pump was carried out considering the
following parameters: condenser heat transfer rate, heat pump coefficient of performance,
refrigerant temperature at the compressor discharge, compressor volumetric efficiency and
pinch points at the evaporator and at the condenser. These parameters were computed
using the following equations:

.
QCOND =

1
2
[ .
mREF(hREF,COND,IN − hREF,COND,OUT) +

.
mWcP,W(TW,COND,OUT − TW,COND,IN)

]
(1)

COP =

.
QCOND
.

WCOMP
(2)

ηVOL =

.
mREF

ρREF,COMP,IN
.

VCOMP
(3)

∆TPP,EVAP = TW,EVAP,OUT − TREF,EVAP,IN (4)

∆TPP,COND = TREF,SAT(pREF,COND,IN)− TW,COND,OUT (5)

Refprop 10.0 [16] was used to calculate all the refrigerant data and the water isobaric
heat capacity.
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The estimation of the uncertainty of each parameter was carried out following the
procedure proposed in [17]. According to it, for the directly measured variables, the
experimental uncertainty is calculated with Equation (6) considering the 900 samples
recorded during each test, whereas for the calculated quantities, the uncertainty is estimated
under the assumption of uncorrelated independent variables and using the combined
standard uncertainty as per Equation (7). In this study, the confidence level of each
parameter was 95%, resulting in a maximum uncertainty of ±137 W for the heating capacity,
of ±0.1 for the COP, of ±3% for the volumetric efficiency, of ±0.1 ◦C for the temperatures
and of ±0.15 ◦C for the temperature differences.

ux = ±
√

u2
x,INST + (t95σx)

2 (6)

uy = ±

√√√√ N

∑
i=1

(
∂y
∂xi

)2
u2

x,i (7)

3. Results

First, the performances at the heat pump level are discussed. As stated in Section 2.3,
the parameters that are considered are the heat pump heating capacity and the COP. The
condenser heat transfer rate and the COP for R1234ze(E) and R515B as a function of the
temperature of water–ethylene glycol at the evaporator outlet and of the temperature of
water at the condenser outlet are shown in Figures 2 and 3, respectively.
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Figure 2. The condenser heat transfer rate for R1234ze(E) and R515B as a function of the tem-
perature of water–ethylene glycol at the evaporator outlet and of the temperature of water at the
condenser outlet.

The trend of these two quantities follows the well-established theoretical trend accord-
ing to which both the capacity and the COP of any vapour compression system reduce with
the reduction in the evaporating temperature and the increase in the condensing tempera-
ture. The former reduces when the temperature of the secondary fluid at the evaporator
outlet reduces, whereas the latter increases when the temperature of the secondary fluid at
the condenser outlet increases. A closer comparison between the two refrigerants reveals
that the use of R515B leads to a slight reduction in both the heat pump heating capacity and
the COP. Indeed, the condenser heat transfer rate of the heat pump operated with R515B is
within the range of −6.81% to +2.46% with respect to that found with R1234ze(E), whereas
the COP lays in the range of −2.41% to +6.29%. This may be explained considering that
the measured mass flow rate of R515B is essentially equal to that of R1234ze(E), where
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the differences are in the range ±1%, whereas, depending on the testing condition, the
enthalpy difference across the condenser with R515B may be up to 8% lower. Consequently,
the reduction in the enthalpy difference may prevail on the (possible) increase in the mass
flow rate, leading to an overall lower heating capacity. On the other side, the trend about
the COP may be justified considering that as shown further in the text, with R515B, the
heat pump operates with lower evaporating and condensing temperatures. Since a lower
evaporating temperature is detrimental for the COP but a lower condensing temperature is
beneficial, the two effects tend to compensate each other, leading to a negligible variation
in the COP. This is also consistent with the findings of Domanski et al. [18], according to
which the COP of any vapour compression system is influenced by the critical temperature
and reference isobaric specific heat of the refrigerant. For the refrigerants considered in this
study, these two parameters are very similar, with a difference in critical temperature of
−0.48 K and a reference isobaric heating capacity of +2.1%, respectively. Consequently, the
COPs are also quite similar.
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glycol at the evaporator outlet and of the temperature of water at the condenser outlet.

Considering the component level, first, the performance of the compressor is discussed.
Figure 4 shows the discharge temperature for R1234ze(E) and R515B as a function of the
temperature of water–ethylene glycol at the evaporator outlet and of the temperature of
water at the condenser outlet. The collected data reveal that for R515B, this parameter
tends to be slightly lower than that measured with R1234ze(E), with a reduction that is
in the range of −3.1 ◦C to −0.5 ◦C. This is the result of two simultaneous effects: first, as
shown in Table 3, the molar mass and the reference isobaric heat capacity of R515B are
slightly higher than those of R1234ze(E), which tend to reduce the temperature during
the compression. Second, the pressure ratio of R515B registered during the experimental
tests is slightly lower than that of R1234ze(E), which, again, tends to reduce the refrigerant
temperature at the compressor discharge.

In Figure 5, the compressor volumetric efficiency as a function of the pressure ratio is
reported. From the measured data, it is not possible to conclude that there is a clear differ-
ence between R1234ze(E) and R515B since the experimental results are largely overlapped,
especially if the uncertainty band is considered.
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Finally, considering the two heat exchangers, the pinch points at the evaporator and
at the condenser for R1234ze(E) and R515B as a function of the test number are shown in
Figures 6 and 7, respectively. The collected data reveal that both the evaporating and the
condensing temperatures of the heat pump working with R515B are lower than those of the
heat pump working with R1234ze(E). A possible explanation of these results considers that
in any heat exchanger, the pinch point is proportional to the ratio between the heat transfer
rate and the overall heat transfer coefficient times the heat transfer area. The heat pump
that operates with R515B transfers less heat both in the evaporator and in the condenser, as
shown in Figure 2, and this is beneficial for the pinch point. However, at the same time,
being a mixture, R515B exhibits an additional mass transfer resistance during phase change
processes that results in a lower heat transfer coefficients, which, in turn, is detrimental
for the pinch point. All-in-all, at the evaporator side, the most predominant effect is the
lower overall heat transfer coefficient that leads to a higher pinch point for R515B, whereas
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at the condenser side, the effect of a lower heat transfer rate prevails, resulting in lower
pinch points for R515B. This is consistent with the general statement that the refrigerant
heat transfer coefficient is lower during flow boiling than during flow condensation, and
therefore, the mass transfer resistance has a greater impact in the former situation than in
the latter.
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4. Conclusions

In this paper, an experimental analysis of the use of R515B in a water-to-water heat
pump for drop-in application is presented. During the tests, the vapour superheating at the
evaporator outlet is set to 5 K, the compressor shaft rotational frequency is fixed at 50 Hz
and the temperatures of the secondary fluids at the evaporator and the condenser outlets
are varied over a wide range of operating conditions. The overall performance of R515B is
compared to that of R1234ze(E), the primary component of the R515B mixture.

At the system level, it is observed that using R515B results in a slight variation in
heating capacity, ranging from −6.81% to +2.46%, and a variation in COP between −2.41%
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and 6.29%. At the component level, from the compressor’s perspective, R515B leads to
slightly lower refrigerant discharge temperatures, with differences ranging from −3.09 ◦C
to −0.49 ◦C, while maintaining essentially the same volumetric efficiency. Regarding the
heat exchangers, R515B shows a lower pinch point in the condenser and higher pinch
points in the evaporator. All-in-all, R515B seems a good alternative to R1234ze(E) at the
heat pump level; an analysis at the system level (heat pump + building) is foreseen to assess
the long-term performance.
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Nomenclature

cP isobaric heat capacity (J·kg−1·K−1)
COP Coefficient of performance (-)
h enthalpy (J·kg−1)
.

m mass flow rate (kg·s−1)
.

Q heat transfer rate (W)
t95 Student’s distribution multiplier at 95% confidence level (-)
T temperature (K)
u uncertainty (various)
.

VCOMP compressor swept volume (m3·s−1)
x directly measured quantity (various)
y calculated quantity (various)
.

W power (W)
Greek symbols
∆TPP pinch point (K)
ηVOL volumetric efficiency (-)
ρ density (kg·m−3)
σx standard deviation (various)
Subscripts
COMP compressor
COND condenser
DIS discharge of the compressor
EVAP evaporator
IN inlet
OUT outlet
REF refrigerant
SAT saturation
W water
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