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Abstract: Nuclear microreactors are a potential technology to provide heat and electricity for remote
microgrids. There is potential for the microgrid on the island of El Hierro to use a microreactor,
within an integrated energy system (IES), to generate electricity and provide desalinated water.
This work proposes a workflow for optimizing and analyzing IESs for microgrids. In this study,
an IES incorporating a microreactor, thermal energy storage (TES) system, combined heat and
power plant, and a thermal desalination plant was designed, optimized, and analyzed using Idaho
National Laboratory’s Framework for Optimization of Resources and Economics (FORCE) toolset.
The optimization tool, Holistic Energy Resource Optimization Network (HERON), was used to
determine the optimal capacity sizes and dispatch for the reactor and thermal energy storage systems
to meet demand. The optimized reactor and TES sizes were found to be 11.61 MWth and 58.47 MWhth,
respectively, when optimizing the IES to replace 95% of the island’s existing diesel generation needs.
A dynamic model of the system was created in the Modelica language, using models from the
HYBRID repository, to analyze and verify the dispatch from the optimizer. The dynamic model was
able to meet the ramp rates while maintaining reactor power with minimal control adjustments.

Keywords: microgrid; microreactor; Modelica; integrated energy systems; thermal energy storage;
desalination

1. Introduction

Microgrids are a network of distributed energy resources (DER) and loads within
clearly defined electrical boundaries that act as a single controllable entity [1]. There
are two main types of microgrids: connected and remote. Connected microgrids are
typically connected to a major electrical grid but can also operate in island mode where
the generation and storage in the system provide all the microgrid’s power requirements.
Remote microgrids are physically disconnected from any large grid and always operate
in island mode. Remote microgrids can provide heat and power for communities, mining
operations, industrial facilities, and military bases in remote locations. These remote
communities exist where it is difficult or not economically viable to connect to a larger
grid, such as on small islands or in rural areas such as Alaska, which alone has more than
110 remote microgrids [2]. Microgrids can also provide power to regions of the world
that do not have a large-scale energy grid, such as sub-Saharan Africa. Currently, diesel is
the main source of power for these microgrids, with increasing use of renewables where
possible. In the case of remote microgrids, fuel costs are significantly higher, making
electrical costs higher [2]. One proposed solution for reducing costs, as well as increasing
grid resilience, is the use of microreactors. These small nuclear reactors could be capable of
providing cheaper clean energy to these communities [3,4].

Due to the nature of microgrids, a nuclear reactor will likely operate differently than it
typically does on a large grid. The small number of users and limited availability of DERs
causes larger relative fluctuations in demand, which can be further compounded by the
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variation in supply from intermittent energy sources, such as wind and solar. Integrated
energy systems (IES) are cooperatively controlled energy systems that are able to better
utilize heat and power from one or multiple energy systems [5]. An IES can both help
utilize the power from a microreactor more efficiently in these environments as well as
make additional use of the heat source provided by the reactor itself for other applications,
such as desalination, home heating, or chemical production. Due to the large capital cost of
these systems, it will be important to size them correctly to minimize the overall cost of
energy while still having a system that can reliably meet demand.

Many tools exist to aid in the design and optimization of microgrids [6], including
HOMER (Hybrid Optimization Model for Electric Renewables) [3], PLEXIOS Microgrid [7],
Xendee [8], SER-CAM (Distributed Energy Resources Customer Adoption Model) [9], and
OSeMOSYS (Open-Source Energy Modeling System) [10]. Most work with these tools, or
similar methods, do not consider nuclear as an option, though a few studies have extended
them to look at microreactors for microgrids [11–14]. Even fewer studies have looked at
optimizing nuclear remote microgrid IESs [3].

As part of United State Department of Energy’s IES program, the Framework for
Optimization of Resources and Economics (FORCE) has been developed to help design,
optimize, and analyze IESs [15,16]. This work expands the use of these tools for remote
microgrids with a workflow for optimizing and analyzing IESs for microgrids with FORCE
tools. A more detailed description of FORCE is provided in Section 2.1. The novel contribu-
tions from this work are listed below:

• Presents a real microgrid scenario.

# A microreactor-powered IES microgrid was designed to provide electricity and
process heat for desalination to help meet the power and water demands of
the island.

• Novel use of FORCE tools for remote microgrid applications.

# This method uses stochastic time series data to help account for uncertainty for
future demand and generation.

# The optimization results are analyzed, quantifying the uncertainty in this opti-
mization method.

• A dynamic physical model of the microgrid was created.

# A dynamic model of the nuclear IES microgrid was created.
# The simplistic surrogate models used by the optimizer are compared to dynamic

physics-based models.
# Reactor stability is analyzed with a dynamic multiphysics model.

1.1. Microreactors

Microreactors are normally considered to be below 20 MWe [4]. Their small size
expands the application range of nuclear energy to regions where gigawatt-scale plants
are inappropriate. One attractive quality of microreactors over other low-carbon energy
sources is that they offer access to a large heat source. IESs can take advantage of this heat
source by using it for auxiliary applications along with electric power generation.

High-temperature gas-cooled reactors (HTGRs) use gas as the primary coolant and
operate at higher temperatures (750–950 ◦C) than light-water reactors. Designs for both
thermal and fast gas-cooled reactors are actively being developed [17]. The thermal spec-
trum designs are further along with several have already been built globally. HTGRs can
also be further categorized by fuel geometry, either prismatic block or pebble bed. The
prismatic HTGR is a common design type for microreactors due to its high technology-
readiness level, making it an attractive choice for a near-term deployment scenario. For
this work, a prismatic HTGR was chosen as the reactor.
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1.2. El Hierro, Canary Islands, Spain

The Canary Islands are an autonomous community of Spain, 100 km off the west
coast of Morocco. There are seven main islands with a combined population of more than
2.1 million people. Access to freshwater resources varies from island to island, with some
islands being water scarce [18]. Several of these islands currently use desalination to help
meet freshwater demand. It is likely that this capacity will need to be expanded in the
future as the demand for fresh water increases in the islands [18].

El Hierro (Figure 1) is the smallest of the seven main Canary Islands, both in area
(258.5 km2) and population (11,338). Currently, its residents’ freshwater needs are met with
groundwater and three desalination plants. The need for desalinated water is expected
to continue to grow [18]. The electrical grid on El Hierro is an isolated microgrid that
is not connected to the grids of any of the other islands or the mainland. Currently the
island relies on a mix of wind and diesel power, with an average electrical demand of
5.6 MWe [19]. The electricity demand and wind generation profile for a year is shown in
Figure 2. There is also a pumped hydro storage (PHS) system on the island.
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This deployment scenario examines replacing diesel generation on the island with a
microreactor. The reactor is connected to a thermal energy storage (TES) system, which
dispatches heat to a combined heat and power (CHP) plant to produce electricity and heat,
as illustrated in Figure 3. The heat will be used to power a thermal desalination plant using
a multi-effect evaporator (MEE) system. While reverse osmosis (RO) desalination systems
are typically more efficient than thermal systems such as MEEs, they require comprehensive
pretreatments for use with high-saline water, such as seawater, and produce less pure water
with a higher output salinity [21]. MEEs also require less maintenance, are simpler to
operate, and can directly use low-grade heat. For these reasons, MEE systems may be a
better option for remote microgrids where the limited infrastructure and resources may
make the operation of RO systems much more complex. Due to these considerations,
an MEE system was chosen as the desalination technology in this deployment scenario.
The MEE system will operate at a constant water production rate and will nominally use
low-temperature steam (120 ◦C).
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The island’s installed wind capacity is sufficient to cover its entire electricity demand
on windy days, but the wind capacity is not enough on calm days, leading to heavy
reliance on dispatchable diesel power. The pumped hydro on the island can store excess
power on windy days and supplement generation on days with no wind. This scenario
presents an interesting optimization case for replacing diesel with nuclear, while increasing
freshwater access.

The “nuclear island” consists of an HTGR microreactor, a two-tank TES system, an
intermediate heat exchanger (IHX), and a steam generator. Heat from the microreactor
is transported through the primary helium coolant to the IHX. Heat is transferred across
the IHX to molten salt, which is stored in the hot tank. The molten salt is dispatched
from the hot tank through a steam generator, producing steam and returning to the cold
tank based on system demand. A once-through steam generator was chosen to create
superheated high-pressure steam for the CHP plant. The system is designed to operate
the reactor at a constant power, constantly charging the TES system, while the TES system
discharges to follow the combined electric and thermal load. Figure 4 is a block diagram of
the nuclear island.
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2. Materials and Methods

This section introduces the tools used in this work, as well as the workflow developed.

2.1. Framework for Optimization of Resources and Economics

Idaho National Laboratory (INL) has conducted research into nuclear power IES as
part of the U.S. Department of Energy’s Integrated Energy Systems Program. This work has
included both computational and experimental research into many of the technical aspects
of IES, such as TES, high-temperature steam electrolysis, and thermal integration [22–25].
A significant amount of research has looked at the economics of these systems [24,26,27].
To support this effort, the Framework for Optimization of Resources and Economics
(FORCE) toolset has been developed, consisting of Risk Analysis Virtual Environment
(RAVEN), Holistic Energy Resource Optimization Network (HERON), Feasible Actuator
Range Modifier (FARM), Tool for Economic Analysis (TEAL), and the HYBRID model
repository [15,16]. This work used HYBRID, RAVEN, and HERON, each of which are
described in the following sections.

2.1.1. HYBRID

HYBRID is an open-source repository of system models, primarily transient physical
models written in the Modelica language, using the commercial Dymola compiler. Modelica
is an acausal, inherently dynamic, and object-oriented development language. Energy
system models including nuclear reactors, industrial processes, balance of plants (BOPs),
and more are in this repository, allowing for large IESs to be modeled and studied [28,29].

2.1.2. Risk Analysis Virtual Environment

RAVEN is a multipurpose uncertainty quantification, regression analysis, probabilistic
risk assessment, data analysis, and model optimization framework. It can sample and
execute a wide variety of software packages and then use the data gathered for different
operations, such as creating reduced order models (ROMs) or statistical analysis [30,31].
RAVEN was used in this work to create ROMs and sample Dymola models.

2.1.3. Holistic Energy Resource Optimization Network

HERON is a modeling toolset for the optimization and technoeconomic assessment of
various energy systems [32,33]. HERON can use surrogate models to create a network of
resources that it can optimize. These surrogate models are sets of relationships between
resource types. These models can also include limits, such as generation capacity, storage
capacity, ramp rates, and minimum generation. The optimization process incorporates
an inner and outer loop. The outer loop optimizes the IES by perturbing values in the
surrogate model, such as generation capacity or storage capacity. With information from an
outer loop iteration, the inner loop uses the model and demand data to generate a dispatch
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profile for a given time horizon, typically several years with hourly intervals. With the
dispatch profile, the inner loop can calculate the economic output of the system. This
value is used as the target variable for the outer optimization loop, which typically tries to
maximize the net present value (NPV) of the system, using a Bayesian optimizer.

The inner optimization is performed for a given project time and is broken down into
clusters. In this case, the project time was set to be 4 years, and the cluster was set to be
120 h (5 days). For each cluster, the dispatch is solved independently in parallel.

The core of the HERON input file consists of components. Each component is a surro-
gate model representing a part of an IES. A component can produce, consume, transfer, or
store one or more resources. The capacities of each of these components can be a fixed value,
a swept value, or an optimized value. Each component can be either fixed or independent.
A fixed dispatch sets the output to be a constant value at all times. Independent dispatch
allows for the output to be varied by the inner optimizer to optimize the dispatch. For
storage components, there is an additional parameter for periodic or nonperiodic storage.
Periodic storage makes it so that the final storage level is equal to the initial storage level.
Periodic storage is needed because the dispatch for each cluster is solved independently
without any knowledge of the previous or next cluster. Economic values, such as capital
costs (CAPEX), component lifetime, variable operations and maintenance costs (OPEX),
and fixed operating and maintenance costs, can also be imputed for each component. These
are used to calculate the desired resulting economic values such as NPV that will be used
by the optimizer.

Figure 5 shows the HERON workflow. With the autoregressive-moving-average
(ARMA) ROMs for demand/generation and surrogate models, a HERON input file is
created. HERON will use this input file to generate a RAVEN input file of the outer
optimization loop. This outer loop optimizes the component variables, such as capacity
to maximize the NPV of the system. To find the NPV of the system with a given set of
component sizes, the outer loop creates and automatically runs another RAVEN input
file for an inner loop. This inner loop uses the ARMA ROM to create a set of histories.
Then, each synthetic history is broken into years and clusters, with each year having one
or more clusters. For each cluster, the optimized dispatch for each component is found.
From this, the total NPV for each set of histories can be determined. The mean NPV of the
set of histories is used to inform the outer loop optimizer. With this mean, value the outer
loop perturbs the component variables and generates a new inner loop with a new set of
synthetic histories [34].
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2.2. Workflow

Figure 6 depicts the proposed workflow for researching IESs for different microgrids.
Using existing and newly created models from HYBRID, a dynamic systems model for
each scenario will be created. From this model, a system network and surrogate models
will be created for the HERON input file. Historical data from El Hierro was used to train
a ROM using ARMA models. With the surrogate models; ARMA ROMs; and additional
economic data, such as capital costs and operational costs, the full HERON input file will be
created. With this, the microgrid will be optimized using the Bayesian optimizer built into
RAVEN and HERON. HERON will also create the dispatch profiles for each component,
such as the wind turbines, TES, microreactor, and BOP. Using the demand profiles for the
ARMA ROMs as inputs for the dynamic models, the results of the HERON dispatch can be
analyzed and validated against the full dynamic model.
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2.3. Modeling

Models from the HYBRID repository were used to create a dynamic model of the
microgrid IES. Models that used this work were developed in the Modelica language and
are able to simulate the transient behavior of the IES.

2.3.1. Prismatic HTGR Microreactor

A prismatic HTGR reactor model from HYBRID was used for the microgrid IES
dynamic model. This reactor model simulates the primary loop of the reactor while taking
into account the feedback mechanisms of the core [35]. This model provides the heat source,
for which energy will be transferred through the TES system to be converted to electricity
and clean water via the BOP and MEE system.

2.3.2. Multiple Effect Evaporator

An MEE model was used to model the thermal desalination plant. This model uses
a cascade of dual two-phase heat exchangers connected to boiling volumes to purify
saltwater [36].

2.3.3. Balance of Plant

A modified version of an existing BOP model in HYBRID was used as the CHP plant to
generate electricity and dispatch heat from an extraction point to the MEE system. During
nominal operation, steam is extracted from between the high- and low-pressure sections
of the turbine and sent to the MEE system. If the electrical demand of the microreactor
is sufficiently low, to the point where the demand steam flow rate through the turbine is
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exceeded by the MEE system’s demand, the main steam is diverted instead of using an
extraction line.

2.3.4. Thermal Energy Storage

A TES model from the HYBRID repository was used [37]. It is modeled as two fluid
volumes, one for the hot tank and the other for the cold tank. Solar salt is used as the
storage media, and it exchanges heat through a charging and discharging heat exchanger.

2.3.5. Control Systems

The complete control system can be seen in Figure 7. Control rods and a helium
circulator control reactor power. The control rods maintain the core exit temperature,
and the helium circulator controls the power level of the reactor. The two-tank molten
salt TES has two control valves: the charging heat exchanger valve (CHXV) controls the
flow through the charging heat exchanger, which is interfacing with the reactor, and the
discharging heat exchanger valve (DHXV) controls flow through the discharging heat
exchanger, which is connected to the BOP. The CHXV is used to maintain the hot tank
inlet temperature. The DHXV is used to maintain the pressure in the steam generator
(discharging heat exchanger). The BOP has several valves and pumps to control the
system and allow it to meet both electrical and heat demand. The turbine control valve
(TCV) is used to control the turbine output power to meet demand. The feed heating
valve (FHV) is used to maintain feed water temperature by bypassing main steam to the
second open feedwater heater. While feedwater temperature is typically not controlled
in nuclear power plants, a control system was added in these models to ensure that the
feedwater conditions going to the steam generator remain within their design limits in
order to guarantee minimum salt temperature is maintained, as well as to prevent thermal
cycling [38]. The third feedwater pump (FWP3) controls the flow rate through the cycles
and is used to maintain the exit temperature of the steam generator. An extraction control
valve (ECV) was placed between the sections of the turbine because the pressure at the
inlet of the turbines is heavily dependent on the flow rate through the system, and this flow
rate changes significantly with extraction for heat applications. The intermediate bypass
valve (IBV) is used to control the heat application. For the MEE system, the IBV is used to
maintain clean water production. All control variables and actuators are shown in Table 1.
This control system is consistent with other dynamic modeling efforts using HYBRID.
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Table 1. Control system variables and set points.

Actuator Controlled Variable Nominal Set Point

Control Rods Core Coolant Exit Temperature 630 ◦C

He Circulator Reactor Power Match Demand

Charging HX Valve Hot Tank Inlet Temperature 565 ◦C

Discharging HX Valve Steam Generator Pressure 120 bar

Turbine Control Valve Electrical Power Match Demand

Feed Heating Valve Feed Water Temperature 200 ◦C

Feed Water Pump Steam Temperature 540 ◦C

Extraction Control Valve Extraction Pressure 3 bar

Intermediate Bypass Valve MEE Water Production 8 kg/s

2.4. Microgrid Model

A complete microgrid was modeled with the microreactor, TES, BOP, and heat applica-
tion. The Modelica model for microgrid is shown in Figure 8. Historical electrical demand
data were used as the input demand for the model, and a constant demand of 8 kg/s, or
~10% of current freshwater usage, was used for the MEE system. This amount was chosen
as it is low enough to not overly reduce the efficiencies of the CHP plant while still being
enough to provide a significant amount of fresh water. Realistically, any amount of water
production could be chosen, though it would affect the overall efficiency of the system.
Increasing the amount of water production would cause the BOP to operate in bypass
mode rather than extraction mode more often or would require the BOP to be redesigned
as a back-pressure configuration.
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Additional Controls

In addition to the nominal control system, there are other system controls to prevent
the TES from overfilling or emptying completely. For the overfilling case, there are two
options: reduce reactor power or bypass steam to the condenser. Bypassing steam is
the simplest but wastes some of the reactor fuel. The condenser system must also be
sized adequately for this purpose. The other option of reducing reactor power can also
present challenges. While load following is possible, there are physical constraints to ramp
rates and ramp frequencies due to fission product poisons, such as Xe-135. Additionally,
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frequent power adjustments will increase the wear on certain system components and
increase reliance on operators, which in a remote microgrid scenario may be located far
from the microreactor.

2.5. Optimization
2.5.1. Data Generation

To avoid the “golden year” problem, in which an optimizer can optimize for a single
rare event rather than more common trends, a large number of datasets is needed to
optimize the IES. As we only had data for a limited number of years for El Hierro’s
microgrid, synthetic data were needed. Synthetic data were obtained by training a ROM
on real data. For electrical demand and wind generation, this was performed using an
ARMA model with Fourier signal processing in RAVEN. This method uses real, historic
data to train a ROM, which can create statistically similar, but unique, demand profiles for
arbitrary time periods.

A ROM for electrical power demand profiles and wind generation was trained with
real power data from El Hierro [19]. Figure 9 is a heat map of a large number of electrical
demand signals created by the ARMA ROM.
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2.5.2. HERON Input File

A HERON input file requires a set of information for each component in the system.
This set of information creates a surrogate model for the optimizer to use. Because of
the large number of calculations performed, these are very simple models. The inputs
for the surrogate models are typically the resources a component produces or demands,
capacity limits, and economic data. In this scenario, the microreactor and TES size are
the components that were optimized. As HERON is an economic optimizer, costing
information is needed for many of the components. Microreactor costs were taken from
Abou-Jaoude et al. (2023) using the medium level cost estimates [39]. The TES costs were
taken from Gautam, Andresen, and Victoria (2022) [40], and only the energy CAPEX and
OPEX were used as it is assumed that the power CAPEX is part of the reactor CAPEX;
the same is assumed for the BOP component. The MEE system does not have any cost
associated with it as it is the same size all HERON runs that were performed for this study.
Because this and other associated costs were not used in this analysis, the absolute NPV
of the system is somewhat meaningless, but the change in NPV is not, so for this analysis,
only ∆ NPVs are reported. Table 2 tabulates the components in the HERON input file, and
Figure 10 is a diagram of the system as modeled in HERON.
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Table 2. HERON input file components.

Component Component Type Resource Capacity

Reactor Source Heat Opt

BOP Transfer Heat, Electricity Fixed

MEE Transfer Heat, Water Fixed

TES Storage Heat Opt

Diesel Source Electricity Fixed

Wind Source Electricity ARMA

PHS Storage Electricity Fixed

Grid Sink Electricity ARMA

Water Market Sink Water Fixed
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The HERON file is set up to run a 4-year analysis with 200 ARMA samples. TES
systems have 30-year operating lifetimes, and advanced reactor systems are expected to
have 60-year or longer lifetimes. As such, to obtain an accurate ∆ NPV to compare between
systems, lifetime costs were annualized within the actual HERON input.

The following equation was used to modify the capital costs.

Cactual ∗
i·(i + 1)t1

(i + 1)t1 − 1
= Cmodi f ied ∗

i·(i + 1)t2

(i + 1)t2 − 1
(1)

where
C = capital cost of the system;
i = discount rate;
t1 = system lifetime;
t2 = HERON project runtime.
In HERON, the nuclear island is modeled with two components: a microreactor and

a TES. The microreactor produces a resource called heat with a fixed dispatch. The TES
component stores heat with an independent dispatch. The heat resource can be used by a
BOP component to produce electricity and by an MEE component to generate purified water.
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Wind generation, diesel backup, and PHS are also modeled. Wind generation dispatch is
determined using an ARMA ROM. Grid electrical demand is calculated similarly with its
ARMA ROM. There is also a constant water demand of 8 kg/s, which is about 10% of the
island’s current water demand. Both the TES and PHS storage systems have a round-trip
efficiency (RTE) parameter. The RTE for the TES was set to be 99% [40], while the RTE for
the PHS was set to be 43% [41]. The transfer equations used in the surrogate models for
the BOP and MEE components are provided in Equations (2) and (3), respectively. These
equations were created by sampling the dynamic model at several steady-state conditions
and curve fitting a polynomial function to the data. The system size of the sampled model
was determined using the demand data from the microgrid.

QRX = 2.78·We + 0.6335·We
2 − 0.371·We

3 + 0.0651·We
4 − 0.0037·We

5 (2)

QRX = 0.2688· .
mwater (3)

where
QRX = reactor heat (MWth);
We = electrical power (MWe);
.

mwater = desalinated water mass flow rate (kg/s).
Because HERON is an economic optimizer, the price of electricity and diesel affect the

optimized solution. Depending on diesel prices and expected microreactor cost, there may
not currently be an economic case to build a microreactor for electricity generation; however,
economics is not the only driving factor. A nuclear system would further decarbonize the
microgrid, as well as add more resiliency and reliability because it would not be dependent
on the weather. The value of these additional factors is not easily quantifiable. For this work,
the goal was to find the optimized reactor and TES configuration that would reduce the total
amount of diesel used over the year to about 5% of the microgrid’s current consumption.

Table 3 lists the economic values used for the reactor and TES system. All the results
of this analysis are highly dependent on these costs. The cost of the microreactor is the
main driver of the system’s economics. Because the current cost estimates for microreactors
vary greatly, the optimized results change accordingly. The price of desalinated water is set
such that it breaks even with the cost of the reactor power required for the MEE system
(2.16 MWth).

Table 3. HERON component costs.

Component CAPEX OPEX Ref

Microreactor USD 13,000/kWe USD 100/MWhe [39]

Two-Tank Salt TES USD 18.3/kWhth USD 3.5/MWhth [40]

3. Results
3.1. Optimization

Several HERON runs were performed to analyze the proposed system with different
installation cases.

3.1.1. Diesel Pricing

Using the ARMA ROM trained on electrical demand and wind generation data from El
Hierro, 1000 ARMA sets were sampled, providing 292,000 cluster samples. For each cluster,
the average net demand was calculated (mean demand less mean wind generation). This
distribution of net demand is plotted in Figure 11, as are two reactor sizes and the demand
they are capable of fully meeting, assuming infinite no-loss storage and a constant-efficiency
BOP. Clusters to the left of each reactor line can be fully satisfied by the reactor and wind
without diesel. Clusters to the right require some amount of diesel to meet demand. This
figure illustrates the diminishing returns of increasing reactor capacity. For clusters to the
right of the reactor line, the reactor is operating at full power, and for the clusters to the
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left, the reactor power must be reduced or wasted as more power is being generated than
is needed. Because storage only works within a cluster, excess energy cannot be stored
for another cluster with higher demand. Figure 12 shows a complementary cumulative
distribution function (CCDF).
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For clusters where the demand is not fully met by the reactor power, most of the
demand is still met. Figure 13 shows the amount of demand missed by the reactor system
that would need to be made up with diesel. Assuming a constant thermal efficiency and
using the distribution in Figure 12, a theoretical curve was generated. To find the actual
amount, a sweep of reactor sizes was run in HERON, assuming a large TES capacity
(5000 MWhth). The actual missed demand is higher than the theoretical amount due to
the energy loss in the TES and PHS RTEs, as well as due to the variable Rankine cycle
efficiency caused by off-design operation. This shows the diminishing returns of increasing
reactor capacity.
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Missed demand was calculated using Equation (4).

MD =
Ediesel

Edemand − Ewind
(4)

where
MD = the percentage of demand missed by nuclear;
Ediesel = the average energy supplied by diesel backup;
Edemand = the average electrical demand of the system;
Ewind = the average energy supplied by wind.
To determine the price of electricity and diesel that was required to reduce the amount

of diesel to about 5% of the island’s current consumption, a set of optimizations was
performed. The reactor and TES sizes were optimized for a range of diesel prices, and the
percentage of diesel used for each case was calculated. With a diesel and electricity price of
USD 993/MWhe, the optimal reactor size was found to be 11.66 MWth, and the optimal
TES size was found to be 73.18 MWhth. This combination resulted in diesel being used
for 5% of the non-renewable electricity load. This diesel price is used for the remainder of
the results.

3.1.2. Optimization Surface

A sweep of reactor sizes and TES capacities was run to visualize the optimization
surface. This sweep allows for the smoothness of the solution space to be observed. Due
to the stochastic nature of the synthetic demand profiles created by the ARMA ROMs,
the optimization surface can be very rough if not enough samples are used in the inner
loop. This can make it difficult for the optimizer to find the global maximum rather than a
local maximum. The optimization surface (Figure 14) can also show the sensitivity of the
capacities on the NPV of the system. Because all constant costs are not accounted for, such
as the MEE cost, the results are shown as a ∆ NPV, where the configuration with the max
NPV is set equal to zero.
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3.1.3. Full System Optimization

Due to the stochastic nature of HERON, the optimized solution for each run is different.
The optimizer itself also adds uncertainty to the solution. To see this sensitivity, the same
optimization was run 1000 times, leading to 1000 different optimized solutions. Figure 15
shows a scatter plot of the results and the distribution of the resulting reactor and TES sizes.
The reactor power distribution is relativity tight, whereas the TES capacity shows higher
variance. The NPV of each result is shown as a ∆ NPV, with the point in red being the
result with the max NPV. The results show a relatively large range of TES sizes, from as
low as 40 MWhth to 140 MWhth, though most results are in the 70–120 MWhth range. The
reactor results are much more clustered, ranging from 11.3 to 12.5 MWth. There is a clear
gradient with the results for the NPV; the lower TES sizes have higher NPVs, though there
is a relatively small USD 0.5M difference between the best and worst results. This shows
that the optimizer tends to overestimate the size of the TES that is required. The result
with the highest NPV had a reactor size of 11.61 MWth and a TES size of 58.41 MWhth. The
standard deviation was 0.22 MWth for the reactor size and 11.89 MWhth for the TES system.
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3.1.4. Fixed Reactor Optimization

Realistically, no vendor will sell an 11.61 MWth reactor. It is more likely they will be
offered in a few discrete sizes. To understand the penalty for choosing a discrete reactor
size, for this analysis, the TES sizes were optimized for two fixed reactor sizes: 10 MWth
and 15 MWth.

For a 10 MWth reactor, the optimized TES size is 113.1 MWhth. The effect of TES size
on the ∆ NPV is shown in Figure 16, with the NPV of the case with no TES set equal to zero.
Even a small amount of TES allowed the reactor heat to be better utilized, greatly improving
the NPV. The NPV increased until the optimal point, and then it began to decrease as the
marginal improvement of reactor utilization became less than the cost to install more TES.
Because of the reduced reactor capacity relative to the optimal point, the diesel utilization
increased from 5 to 13.4%.
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The curve for the 15 MWth reactor followed a similar trend but with an optimized TES
size of 14.2 MWhth. This is because a 15 MWth reactor was oversized for the majority of the
clusters, so the TES was less useful, resulting in the relatively large size difference for the
TES systems for the two cases. Because the reactor size was greater than the optimized size,
diesel utilization dropped to 0.16%. As shown in Figure 17, the NPV of this case was lower
than that of the 10 MWth case.
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3.1.5. Dispatch

Using the optimized capacity, the dispatch for a single cluster was plotted (Figure 18a–d).
Figure 18a shows the reactor heat production and usage over the course of the cluster
length. The reactor produced a constant amount of heat for the entire cluster length, the
MEE system used a constant amount of heat, and the turbines used a variable amount of
heat depending on the electrical demand and the amount of wind generation in the system.
Excess heat was stored in the TES system and dispatched later when more heat is needed.
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The electricity production and usage are shown in Figure 18b. The nuclear-supplied
turbine and wind turbines supplied most of the electricity production in this cluster. The
wind generation was sporadic but generated a large amount of power when operating. This
generation was greater than what the grid requires, so the excess was stored in the PHS
system for later use. When wind generation was high, the nuclear turbine reduced power
and stored the excess heat in the TES system. Both storage systems were later discharged
to help meet peak demands in the cluster when there is low wind generation. Occasionally
during the cluster length, wind and nuclear were not sufficient to meet demand, so diesel
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backup was required. Figure 18d shows the constant water production meeting the constant
water demand.

3.2. Dynamic Modeling Results

Using the capacities found with the optimization, the dynamic model can be sized
and used to simulate a dispatch from the system. Using the 5-day dispatch shown in
Section 3.1.5, the dynamic model was run. The initial TES level was set to the same level
as that at the start of the HERON cluster. The electrical demand signal was set to be the
same as the electrical demand in the HERON run minus the power from wind generation
and the PHS system; the remaining electrical demand signal is the power required from
the turbine and diesel backup. The Modelica model is set up to try and meet this demand
as long as there is sufficient storage in the TES system. When the TES system is close to
emptying, the power demand signal is reduced to prevent the tank from fully emptying.

Figure 19 shows the electrical demand signal from HERON and the dispatch from
HERON and Modelica. The Modelica dispatch matched that of HERON for most of the
simulation time, with a few exceptions. During the first 24 h, the Modelica model under-
generated electricity. This was due to the HERON surrogate model calculating a lower
heat load than the dynamic model, causing the dynamic model to empty the storage more
quickly, further reducing the power output in the dynamic model. Further along in the
simulation, there were several times when the Modelica power flatlined due to the physical
limitations of the BOP, which were determined by the turbine sizes used in the model. This
comparison indicates that HERON is likely underpredicting the amount of diesel needed.
One limitation of HERON is the need for the storage level to start and end at the same level;
as a result, for many of the clusters with higher power generation than demand, HERON
will dump some of heat to waste when it could instead charge the TES. One important
validation in this comparison is that the dynamic model can meet the high ramp rates of
the system.
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Figure 20 shows the TES level of the simulation. The Modelica and HERON results
match well. One notable difference occurred around the 50-h mark, when the TES level
in the Modelica simulation flatlined as it approached 100% TES capacity. This was the
overflow control system bypassing steam to the condenser to prevent the tank from reaching
100% capacity and overflowing. The Modelica model also ended at a slightly different
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level because the Modelica simulation did not have a periodic shortage level requirement
like HERON.
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The dynamic simulation was also able to meet the water demand with minor variations,
as shown in Figure 21.

Energies 2024, 17, x FOR PEER REVIEW 20 of 24 
 

 

 
Figure 20. HERON dispatch TES level compared to dynamic model results. 

The dynamic simulation was also able to meet the water demand with minor varia-
tions, as shown in Figure 21. 

 
Figure 21. Dynamic model MEE results. 

A benefit of running this simulation with a full reactor model is being able to analyze 
the reactor’s response to the dynamic load of the CHP plant. Figure 22 shows the reactor 
power level, and Figure 23 shows the reactor control system’s response. The reactor power 
level changed minimally throughout the simulation with little adjustment needed from 
the control system; this was the result of the TES system acting as a buffer between the 
dynamic load and the reactor. 

Figure 21. Dynamic model MEE results.

A benefit of running this simulation with a full reactor model is being able to analyze
the reactor’s response to the dynamic load of the CHP plant. Figure 22 shows the reactor
power level, and Figure 23 shows the reactor control system’s response. The reactor power
level changed minimally throughout the simulation with little adjustment needed from
the control system; this was the result of the TES system acting as a buffer between the
dynamic load and the reactor.

The control system’s response to achieve this low power change in the reactor can also
be analyzed (see Figure 23). Both the control rods and the helium recirculator used only
minimal adjustments to maintain the core power. This again shows that the primary factor
stabilizing the reactor is the TES system, with its constant charge rate.
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3.3. Cost of Carbon Avoided

To calculate the cost of carbon avoided for this scenario, the optimized nuclear IES
was compared to the existing grid with additional desalination capacity. The additional
desalination capacity was assumed to be an RO system with an efficiency of 45 kWh/m3

and entirely powered by diesel generators.
Using the optimized reactor and TES sizes of 11.61 MWth and 58.41 MWhth, respec-

tively, the annualized cost of the reactor and TES system would be USD 10.702 M/yr. This
system would be able to replace 24,530 MWhe of electricity production per year, and an
additional 1000 MWhe/yr needed for desalination. Assuming a diesel emission rate of
0.79 tCO2/MWh, the nuclear IES would reduce the amount of CO2 emissions of a simi-
lar diesel-powered system by 20,000 tCO2/yr. Using the current estimated cost for this
proposed nuclear system, this results in a cost of carbon avoided of USD 530/tCO2.

4. Conclusions

This work presents a framework that can be used to optimize and evaluate nuclear IESs
for remote microgrids. Using the FORCE tools, an IES powered by a nuclear microreactor
was designed, optimized, and analyzed for use with the remote microgrid on the island of
El Hierro, Spain.

Using an artificially high diesel price of USD 993/MWhth, the mean optimal reactor
and TES sizes were found to be 11.61 MWth and 58.41 MWhth, respectively. The standard
deviation for reactor sizes was found to be only 0.22 MWth, while the standard deviation
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for the TES was 11.89 MWhth. The TES size was also optimized for two fixed reactor sizes
of 10 and 15 MWth, the optimal TES sizes for each being 113.1 and 14.2 MWhth, respectively.
These results can help inform stakeholders’ decisions on the possible implementation of a
microreactor into the microgrid.

A dynamic model of the microgrid was also created using models from the HYBRID
repository. These models were sized using the solution from the optimization. With this
model, the output dispatch from HERON was compared to the dispatch of the dynamic
model. This comparison showed reasonable matching, increasing confidence in the opti-
mization results. The dispatch also showed that the dynamic model could meet the ramp
rates while maintaining reactor power with minimal control adjustments.

There remain other challenges with implementing a microreactor power IES in a
remote microgrid, such as citing, licensing, operations, and security. These issues must be
addressed before such a system could be built. Despite these challenges and large costs,
this system would provide clean, reliable power and provide access to more fresh water.
The gird would become more resilient and the subsequent prices for electricity would be
more stable and less dependent on the fluctuating price of fossil fuels.
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