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Abstract: Power devices in series are low-voltage power devices used in medium- and high-voltage
applications in a more direct program. However, when power devices in series are used, because of
their electrical performance parameters or external circuit conditions, there are unique short-circuit
voltage imbalances, a serious threat to the safety of the device. The article first summarizes the
research status and characteristics of the four models of SiC MOSFETs based on the domestic and
international research on the models of SiC MOSFETs in recent years; second, the voltage balancing
technology of series-connected SiC MOSFETs is sorted out and summarized, and then the driving
circuits of SiC MOSFETs are sorted out and summarized. Again, several voltage balancing techniques
reviewed are compared in six different aspects: cost, modularity, complexity, speed of voltage
balancing, losses, and effectiveness of voltage balancing. Finally, an outlook of voltage balancing
techniques for series SiC MOSFETs is provided.

Keywords: silicon carbide metal–oxide–semiconductor field-effect transistors; voltage balancing
technology; device in series connection; mathematical model; drive circuit

1. Introduction

In recent years, with the rapid development of distributed generation technology,
the increase in DC loads, and the increasing demand for the power supply reliability of
various power-using loads, medium-voltage high-power DC converters have received
extensive attention from scholars at home and abroad [1,2]. Compared with traditional
medium-voltage AC converters, medium-voltage DC converters have the advantages of
transmission efficiency, good stability, and easy direct access to distributed resources [3,4].
Some of the common and important applications of high-power DC converters and their
corresponding voltage and power levels are given in Figure 1. Their typical applications
are communication and data centers [5,6], metro traction power supply systems [7], ship
power distribution fields [8], etc.

Power devices, as core electrical energy conversion devices, have been at the center of
demand for their high voltage, high current, and low loss. Figure 2 shows the general de-
velopment trends of power devices [9]. Compared with silicon-based MOSFETs and IGBTs,
SiC MOSFETs have excellent operating characteristics such as high operating frequency,
low on-resistance, high voltage and high temperature resistance, making them ideal for
manufacturing high-frequency, high-voltage, and high-power devices. Although the use of
silicon carbide metal–oxide–semiconductor field-effect tubes in high-voltage, high-power
applications is expected, at present, due to the manufacturing process, costs, and other
factors, commercial SiC power devices feature a maximum voltage level of 1700 V, and
the ability of insulated gate bipolar transistors (insulated gate bipolar transistors, IGBTs)
to withstand up to 6.5 kV of voltage is still a gap. There is still a gap between the device
voltage. In order to solve the problem of insufficient voltage capacity in individual SiC
MOSFET power devices, SiC MOSFET series operation is the most direct idea, but ensuring
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the voltage balance between series-connected SiC MOSFET devices has become an urgent
problem to be solved [10].
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In series SiC MOSFET operation, the voltage applied to each device is balanced under
ideal conditions. The safe operation of the device will not be affected. However, due
to the difficulty of ensuring that the internal electrical parameters of each SiC MOSFET
remain consistent during the production process, as well as the nonlinear variation in the
internal electrical parameters due to the influence of the peripheral circuits, unbalancing of
the voltage distribution between the devices connected in series can occur, which affects
the safe operation of the devices and can even result in irreversible damage [11]. The
voltage imbalance that exists in series SiC MOSFETs during turn-on or turn-off is mainly
categorized into static voltage imbalance and dynamic voltage imbalance. Static voltage
imbalance refers to the voltage imbalance between devices due to the different volt-ampere
characteristics of each SiC MOSFET device, temperature variations, etc., when the SiC
MOSFET is in a turn-on or turn-off steady state [12]. Dynamic voltage imbalance refers to
the fact that when SiC MOSFETs are in turn-on or turn-off transients, the differences in
the electrical parameters of the SiC MOSFETs themselves, as well as the inconsistencies in
the peripheral circuit parameters (stray inductance, buffer circuits, driver circuits, control
signals, etc.), result in an imbalance in the voltages on both sides of the various series-
connected SiC MOSFET devices [13]. If the problem of voltage unbalancing of devices
connected in series can be effectively solved, low-voltage devices can be applied in series
for medium- and high-voltage high-power conversion systems. The advantages of this
scheme are small size and weight, simple topology, high power density, and the ability to
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avoid the problems of a large number of devices and high capacitance of submodules in
multi-level circuits.

In order to solve the voltage unbalancing phenomenon between series-connected
SiC MOSFET devices, domestic and foreign scholars have proposed a variety of voltage
balancing techniques. According to their role position, they can be divided into voltage
balancing techniques on the driver side and voltage balancing techniques on the power
side [14–16], as shown in Figure 3. Among them, the voltage balancing technique at
the driver side mainly adjusts the gate-side input directly or indirectly through auxiliary
circuits or control strategies, so as to realize the dynamic and static voltage balance of
series-connected SiC MOSFETs. This technique can achieve a small unbalancing voltage,
but the modulation time is long, and the reliability is not high. The voltage balancing
technique on the power side mainly introduces RC/RCD snubber circuits or clamp circuits
at the drain of the SiC MOSFETs, which use the peripheral circuits to absorb the overvoltage
while indirectly buffering the transient action process of the device. This technique has a
faster response time. However, if a small unbalancing voltage is achieved, the parameter
design will become complicated. In addition, other voltage balancing techniques have been
proposed, such as the voltage balancing technique based on the series connection of SiC
MOSFETs and JFETs and the voltage balancing technique based on the series connection of
SiC MOSFETs with a single drive signal. The voltage balancing effects are all unsatisfactory.
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In different practical applications, it is necessary to select appropriate voltage balancing
techniques for series-connected SiC MOSFETs. Therefore, it is necessary to review and
summarize different voltage balancing techniques for series-connected SiC MOSFETs and
compare the voltage balancing effect, cost, complexity, and loss of each technique.

In order to realize the voltage balancing of series-connected SiC MOSFET devices, it is
necessary to start from the study of individual MOSFET devices, including the analytical
model of the device and the driving technology, etc., and then consider the principle of
series operation of the device, circuit design, and optimization methods. This paper firstly
summarizes the research status and characteristics of the four models of SiC MOSFETs
according to the research on the model of SiC MOSFETs at home and abroad in recent years;
secondly, the voltage balancing technologies of series-connected SiC MOSFETs are sorted
out and summarized; then, the driving circuits of SiC MOSFETs are also sorted out and
summarized; and finally, the research direction and optimization method of the voltage
balancing technology of series-connected SiC MOSFETs are looked forward to. Finally,
the research direction, development trend, and application prospect of voltage balancing
technology for series SiC MOSFETs are summarized.

2. Models of SiC MOSFET

The safe operation of SiC MOSFET devices is a crucial consideration in practical
applications, particularly during switching transients where MOSFETs are commonly
exposed to overvoltage or overcurrent conditions. The occurrence of transient voltage
imbalance during the operation of series-connected MOSFETs further exacerbates the
voltage stress on the devices. To guarantee the safe and reliable operation of MOSFETs,
accurate modeling of these devices serves as an effective means to assess their switching
behavior during the design phase. Since the advent of SiC MOSFETs, research into their
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simulation models has garnered extensive attention. Domestic and international scholars
have continuously strived to develop simpler and more precise models for SiC MOSFETs.
SiC MOSFET models can be broadly categorized into three types: behavioral models,
physical analytical models, and numerical models. Additionally, some scholars have
appropriately integrated these three models, leveraging their respective advantages to
create a fourth type—the hybrid model.

2.1. Behavioral Model

For experts and scholars who are solely focused on the external current and voltage
characteristics of SiC MOSFETs, the behavioral model is often the simplest and most
direct choice. Behavioral modeling involves abstracting the actual electrical behavior
of the device and fitting it to a mathematical model, without delving into the intricate
physical characteristics of the device’s operational process changes. The fitted mathematical
formulas solely aim to mirror the functional traits of the device and often bear no direct
relation to the underlying physical processes. Based on the switching characteristics of
SiC MOSFETs, the switching process can be segmented into the switching delay state,
current-switching state, voltage-switching state, and current/voltage oscillation state [17].
By constructing the equivalent circuit for each switching state and listing the corresponding
circuit equations, one can derive the transfer function or state equation that accurately
describes the SiC MOSFET’s switching behavior [18–20]. This model obviates the need
to consider the semiconductor’s physical mechanisms and clearly delineates the state
relationships at each stage of the SiC MOSFET’s switching process, thereby effectively
capturing its switching characteristics. Furthermore, most of the electrical parameters
necessary for constructing the behavioral model can be readily obtained from the device’s
datasheet, enabling hardware engineers to assess design schemes early in the system
design phase [21]. Behavioral models are favored in circuit and system-level simulations
due to their ease of parameter acquisition. Various studies have focused on refining these
models to better capture the characteristics of SiC MOSFETs. Reference [22] examines
the output characteristic curves of SiC MOSFETs in the non-saturated region, specifically
the relationship between drain-source voltage and drain current. By analyzing these
curves, the study extracts key parameters for model building and proposes a subcircuit
model based on the Level 3 MOSFET model in LTspice. This model is both structurally
simple and computationally efficient. Furthermore, the authors utilize MATLAB’s genetic
algorithm to automate model optimization. Comparison with experimental data from
double-pulse tests confirms the model’s accuracy in predicting time-domain switching
behavior and associated losses, making it suitable for SiC MOSFET application design.
Reference [23] constructs an analytical model of the ideal switching process of SiC MOSFETs,
revealing the interrelationships among different sub-states during switching. However,
the model’s lack of consideration for internal parasitic parameters limits its ability to
accurately describe actual SiC MOSFET switching characteristics. Reference [24] addresses
this limitation by optimizing the analytical model to fully account for internal MOSFET
and circuit parasitic parameters, resulting in more accurate results. However, the model
still neglects the nonlinearity of junction capacitance and transconductance parameters
within the MOSFET. Reference [25] proposes a SiC MOSFET switching behavior model
based on the finite state machine concept. The model divides the turn-on or turn-off process
into five stages, defining corresponding state equations and transfer conditions based on
transition relationships and state transitions between stages. It also considers the effects of
nonlinear capacitance and nonlinear transconductance parameters of SiC MOSFETs during
dynamic processes. Double-pulse test and simulation results demonstrate the model’s
accuracy in reflecting SiC MOSFET switching behavior, with voltage, current change rates,
and overshoots aligning well with test results. Reference [26] introduces a behavioral
model for simulating SiC MOSFET dynamic switching characteristics, consisting of a drain-
source resistor and three constant inter-pole capacitances. In this model, the drain-source
resistor’s resistance decreases from infinity to a very small value as the gate-source voltage
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increases. The model also considers the impact of system parasitic inductance on the
switching process but neglects the nonlinearity of the inter-pole capacitance. Reference [27]
extracts parameters such as SiC MOSFET inter-polar nonlinear capacitance using a simple
device to measure the MOSFET’s output characteristic curve, combined with parameter
manuals provided by the device vendor. Based on this, the authors propose a SiC MOSFET
behavioral model implemented in MAST language and simulate and verify its switching
characteristics in the SABER platform under static and dynamic conditions. This model
accounts for the effects of nonlinear conduction resistance and parasitic capacitance of the
MOSFET, offering the advantage of short simulation times. In summary, these studies
showcase various approaches to refining SiC MOSFET behavioral models, with each
addressing specific limitations and improving the model’s accuracy and applicability in
different contexts.

2.2. Physical Analytical Model

Physical analytical models, often referred to as mathematical models, rely heavily on
fundamental semiconductor physics theory. These models utilize three core equations from
semiconductor physics to elucidate the internal operational mechanics of semiconductor
devices. By solving these descriptive equations, one can derive expressions that describe
the distribution and movement of carriers within the device, which in turn allow for the
derivation of expressions for the device’s external characteristics. In the realm of MOSFETs,
several classical physical analysis models exist, notably the Hefner model, the Kraus model,
and the Sheng Kuang model. Each of these offers a distinct perspective on describing the
internal physical characteristics of MOSFET devices, thereby enhancing the accuracy of
both steady-state and dynamic characteristic analyses. However, constructing a precise
physical analytical model necessitates a thorough understanding of the MOSFET’s internal
structure, encompassing physical dimensions, doping concentrations within the device,
and the complex parasitic parameters that arise. In practical scenarios, acquiring such
detailed information can be challenging for device users, posing a significant hurdle in
model development. Certain references, such as [28], have employed a voltage-controlled
current source equivalent parasitic capacitor to simplify model structure and facilitate
parameter extraction. Yet, this model incorporates a parallel structure of a voltage source
and capacitor, which may compromise model convergence. References [29,30] have utilized
segmented fitting to boost fitting accuracy, albeit at the cost of reduced model convergence.
Moreover, while modeling the body diode, many studies treat it as a constant compo-
nent, neglecting any inputs into the diode model. In reality, temperature influences the
diode carrier diffusion rate. Consequently, some literature has incorporated the impact
of temperature on the volt-ampere characteristic curve of the body diode [30]. Addition-
ally, variations in gate-source voltage affect the concentration of diode carriers. Notably,
both increased temperature and gate-source voltage shift the volt-ampere characteristic
curve in the same direction, indicating that gate-source voltage is another crucial factor
in diode modeling. To enhance the accuracy and convergence of SiC MOSFET models
while reflecting their applicable operating conditions, reference [31] focuses on CREE’s
C2M0025120D (1200V/90A) as the modeling target. This study constructs a continuous
function that describes the model’s static characteristics as its core, and proposes a dy-
namic model with excellent convergence. Ultimately, a high-precision SiC MOSFET model
with robust convergence is established, as illustrated in Figure 4. This model represents
an advancement in capturing the complex behaviors of SiC MOSFETs under various
operating conditions.
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2.3. Numerical Model

Unlike the aforementioned two models, the numerical model eschews the direct
elucidation of the physical operating principles of carriers within the MOSFET and the
external current-voltage characteristics. Instead, it employs the finite element analysis
(FEA) method to construct the model, leveraging FEA software to conduct the simulation
analysis. The creation of this model type necessitates the utilization of large-scale simulation
software equipped with semiconductor simulation capabilities, while also demanding high
precision in the internal physical parameters of the device. In practical applications, some
experts and scholars have introduced a partial regional numerical modeling approach
to mitigate simulation complexity. This approach applies the FEA method solely to the
base region of the MOSFET, while continuing to use physical analysis methods for other
parts to streamline the analysis, yielding satisfactory results. Reference [32] has developed
a numerical analytical model for 6H SiC Schottky drain-source N-channel MOSFETs,
grounded in research on the working mechanisms of Schottky drain-source MOSFETs.
The voltammetric characteristics of the device are simulated through coupled solving,
accurately depicting the effects of tunneling current and barrier reduction, thus more
precisely reflecting the device’s characteristics. Reference [33] utilizes semiconductor device
simulation software to establish a numerical model that accurately mirrors the short-circuit
failure of SiC MOSFETs and Si MOSFETs. This model analyzes the short-circuit failure
mechanisms of field-effect transistors made from both SiC and Si materials. Reference [34]
presents a numerical model for the surface potential of short channels, considering quantum
effects. Based on this model, it analyzes the impact of source-drain bias on surface potential
distribution.

2.4. Hybrid Model

All three aforementioned MOSFET models possess their unique strengths and weak-
nesses, yet none of them effectively balances model accuracy with simplicity, thereby
limiting their broader application. In response to this limitation, some references have
explored the integration of high-accuracy physical analytical models with high-simplicity
behavioral models, proposing a hybrid model that incorporates all three types. For SiC
MOSFET devices, a classic model outlined in reference [35] is widely adopted. This model
builds upon the silicon-based Sajitang equation and the Shichman-Hodges model, while
accounting for the unique resistive characteristics of SiC devices, such as channel electron
mobility decay. It represents the static volt-ampere characteristics of SiC MOSFETs using a
segmented function, with its C-U (capacitance–voltage) characteristics typical of a vertical
structure capacitance model. However, due to the complexity of the segmented function,
this model often fails to converge in simulation programs like SPICE (Simulation Program
with Integrated Circuit Emphasis). Reference [36] complements the parameter extraction
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method of the model presented in reference [35]. To address the convergence issue, ref-
erence [37] merged the models across different intervals of volt-ampere characteristics
from reference [35], unifying the expressions of the current source model. However, the
expressions in the linear and saturation regions of this model deviate from those in refer-
ence [35], resulting in an unsmooth transition between intervals and discrepancies with
measured results. Building upon reference [37], reference [38] modifies the current source
model expression to ensure that the model combines good convergence with voltammetric
characteristics accuracy similar to that of the model in reference [35]. Additionally, it
introduces a new Miller capacitance model that considers hierarchical depletion, accurately
characterizing the C-U characteristics at low leakage source voltages, as illustrated in
Figure 5.

Energies 2024, 17, x FOR PEER REVIEW 7 of 26 
 

 

2.4. Hybrid Model 
All three aforementioned MOSFET models possess their unique strengths and weak-

nesses, yet none of them effectively balances model accuracy with simplicity, thereby lim-
iting their broader application. In response to this limitation, some references have ex-
plored the integration of high-accuracy physical analytical models with high-simplicity 
behavioral models, proposing a hybrid model that incorporates all three types. For SiC 
MOSFET devices, a classic model outlined in reference [35] is widely adopted. This model 
builds upon the silicon-based Sajitang equation and the Shichman-Hodges model, while 
accounting for the unique resistive characteristics of SiC devices, such as channel electron 
mobility decay. It represents the static volt-ampere characteristics of SiC MOSFETs using 
a segmented function, with its C-U (capacitance–voltage) characteristics typical of a verti-
cal structure capacitance model. However, due to the complexity of the segmented func-
tion, this model often fails to converge in simulation programs like SPICE (Simulation 
Program with Integrated Circuit Emphasis). Reference [36] complements the parameter 
extraction method of the model presented in reference [35]. To address the convergence 
issue, reference [37] merged the models across different intervals of volt-ampere charac-
teristics from reference [35], unifying the expressions of the current source model. How-
ever, the expressions in the linear and saturation regions of this model deviate from those 
in reference [35], resulting in an unsmooth transition between intervals and discrepancies 
with measured results. Building upon reference [37], reference [38] modifies the current 
source model expression to ensure that the model combines good convergence with volt-
ammetric characteristics accuracy similar to that of the model in reference [35]. Addition-
ally, it introduces a new Miller capacitance model that considers hierarchical depletion, 
accurately characterizing the C-U characteristics at low leakage source voltages, as illus-
trated in Figure 5. 

Drain (Metal)

N-epitaxial layer

depletion zone

P-wells

P+ N+

Source (metal)
barrier oxygen layer

Gate (polysilicon)Rs

Cgs Cox

CgdjImos

Cds

Dbody

RdN+

 
Figure 5. SiC MOSFET metameric cell profiles and modeling of aggregate elements in different re-
gions. 

3. Voltage Balancing Technique for Series-Connected SiC MOSFETs 
Figure 6 shows the division of voltage balancing techniques. The following section 

makes an overview of voltage balancing techniques in this vein. 

Figure 5. SiC MOSFET metameric cell profiles and modeling of aggregate elements in different
regions.

3. Voltage Balancing Technique for Series-Connected SiC MOSFETs

Figure 6 shows the division of voltage balancing techniques. The following section
makes an overview of voltage balancing techniques in this vein.
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3.1. Voltage Balancing Technology at the Power Side
3.1.1. Snubber Circuit

Snubber circuits are a widely used voltage balancing technology on the power side.
Common types of snubber circuits, as illustrated in Figure 7, include RC snubber circuits
and RCD snubber circuits, among others [39–42]. These circuits are constructed using only
passive components such as resistors, capacitors, and diodes, resulting in a simple and
reliable circuit structure. However, it is crucial to match the passive components with
the appropriate voltage ratings based on the device capacity. One drawback of snubber
circuits is that they can slow down the switching speed of power devices. Additionally,
they introduce additional losses into the system. Therefore, when designing snubber
circuits, careful consideration must be given to the parameters, particularly the capacitance
of the snubber capacitor. The design needs to balance the voltage balancing effect and
the device switching speed, as both aspects are crucial for the overall performance of the
system. To optimize the design of snubber circuits, engineers must carefully analyze the
system’s requirements and constraints. They must determine the appropriate values for
the resistors, capacitors, and diodes to ensure that the circuit can effectively balance the
voltage while minimizing losses and maintaining an acceptable switching speed. This may
involve iterative testing and adjustments to find the optimal combination of parameters.
In summary, snubber circuits are a valuable tool for voltage balancing in power-side
applications, but their design requires careful consideration of the parameters to ensure
optimal performance. By balancing the voltage balancing effect and the device switching
speed, engineers can create snubber circuits that are both effective and efficient.
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The research on improved snubber circuits that combine switching devices and passive
components aims to reduce the additional losses introduced by traditional snubber circuits.
By incorporating switching devices, these circuits can actively manage the energy stored in
the snubber during the power device’s turn-off and diode recovery phases. This energy
can then be fed back to the input power supply, significantly reducing snubber circuit
losses and improving overall performance [43–47]. One example of an improved snubber
circuit is the novel RCD snubber circuit topology proposed in reference [43], and the
circuit structure is shown in Figure 8. This circuit topology uses snubber capacitors to
clamp the maximum drain-source voltages of series-connected SiC-MOSFETs, ensuring
highly reliable switching of the power semiconductors. Additionally, by adjusting the
gate drive signal algorithm, the energy accumulated in the snubber capacitor can be
actively transferred back to the power supply, effectively reducing snubber circuit losses,
as shown in Figure 9. While these improved snubber circuits offer significant benefits in
terms of loss reduction and performance improvement, they also come with increased
complexity in circuit structure and component voltage withstand ratings. The use of
switching devices and active control algorithms introduces additional design considerations
and challenges. Despite these challenges, the potential benefits of reduced snubber circuit
losses and improved performance make these improved snubber circuits a worthwhile
area of research. Engineers must carefully balance the complexity and cost of these circuits
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against the potential gains in efficiency and reliability to determine the best solution for
their specific application. In summary, improved snubber circuits that combine switching
devices and passive components offer a promising approach to reducing additional losses
and improving performance. By actively managing the energy stored in the snubber,
these circuits can significantly reduce snubber losses while maintaining high reliability.
However, they also introduce increased complexity and design considerations that must be
carefully evaluated.
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3.1.2. Clamp Circuit

The clamp circuit is a specialized circuit configuration designed to interact with the
drain and gate terminals of a power device. Its purpose is to constrain the device’s voltage
within a predefined range, thereby guaranteeing its safe and reliable operation. The
fundamental principle behind its operation is that, during the device’s shutdown sequence,
if the power device’s voltage surpasses a specified threshold, the clamp circuit becomes
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conductive. This, in turn, triggers the injection of current into the power device’s gate,
effectively mitigating the rate of increase of the drain-source voltage. A typical clamp
circuit, as illustrated in Figure 10 [48–52], is a concept initially pioneered by Siemens [48]
and subsequently adopted widely in engineering by companies like Alstom and ABB. This
clamp circuit, specifically the regulator clamp, is interconnected between the MOSFET’s
drain and gate. When the device voltage exceeds the regulator’s voltage threshold, the
regulator becomes conductive, allowing a feedback current to be injected into the gate
through the clamp circuit. This mechanism achieves off-peak voltage balancing for the
device. However, the startup of this circuit clamp is not seamless. The voltage at the
MOSFET terminal reaches VZ before it can be controlled, limiting the ability to perform
comprehensive process control. Consequently, losses increase and control becomes less
effective, with the clamp circuit exhibiting significant transient power consumption. To
address these issues, J. Saiz and colleagues designed a voltage slope adjustment circuit in
2021 [49], enhancing accuracy in voltage transient regulation by incorporating additional
Zener diode groups. In practical applications, the voltage clamp method is often combined
with RC/RCD buffer circuits. Hongfei Gong and team, in 2021, integrated an RCD snubber
circuit with a Zener diode clamp circuit, analyzing its advantages from a loss perspective
across different loads [50]. The circuit structure is depicted in Figure 11. In 2019, Zhe Wang
and colleagues proposed a parametric design method for hybrid voltage balancing circuits
that merge snubber and voltage clamp circuits. This method considers MOSFET switching
losses, voltage balancing circuit losses, MOSFET voltage stress, and switching frequency,
ultimately enhancing system efficiency and reliability [51]. The traditional voltage clamp
method necessitates the use of multiple driver circuits, all requiring isolation from the
high-voltage power supply. This results in harsh component operating conditions and
complex circuits, hindering integrated applications. To tackle this challenge, Rui Wang
and team designed a coupling circuit between voltage clamp equalization and single drive
signal output, thereby improving the stability of the equalization circuit [52]. The clamp
circuit boasts simplicity and high reliability, with relatively low requirements for MOSFET
parameter consistency, making it easily applicable to multiple MOSFET series connections.
However, it falls short in achieving real-time transient regulation for voltage fluctuations
and necessitates the integration of passive voltage balancing to ensure effective balancing.
Furthermore, akin to the snubber circuit, while the voltage clamp circuit can effectively
mitigate voltage imbalances among series-connected MOSFETs, it introduces additional
current into the MOSFET gate. When the MOSFET operates in the active region and the gate
voltage rises, prolonged conduction and frequent activation of the voltage clamp circuit can
result in extremely high switching losses for the MOSFET, alongside a significant imbalance
in switching losses among series-connected MOSFETs. This imbalance in switching losses
can be particularly severe.
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3.2. Voltage Balancing Technology at the Driver Side
3.2.1. Voltage Balancing Technique for Drive Delay

Drive signal delay is an effective technique for voltage balancing in power device
drivers. The fundamental principle involves sampling the drain-source voltage of the series-
connected device using a sampling circuit. This sampled voltage is then substituted into the
voltage balancing algorithm computation within the controller. By adjusting the edge delay
of the drive signal for the subsequent switching cycle, heterocyclic voltage balancing control
of the series-connected device is achieved. Figure 12 illustrates a typical drive signal delay
modulation circuit, which often employs a master-slave control approach to achieve voltage
balancing by adjusting the delay of the slave signal. Current research primarily focuses on
refining the implementation of the voltage balancing algorithm. Reference [53] introduces
a voltage balancing algorithm with a fixed adjustment step for drive delay. This algorithm
determines the direction of the voltage difference in the current switching cycle by assessing
the same in the preceding cycle. If the voltage difference exceeds a positive threshold, the
slave signal delay is increased by a fixed step in the subsequent switching cycle; conversely,
if the voltage difference falls below a negative threshold, the delay is shortened by a fixed
step. While adaptable to various voltage and current conditions, this technique suffers from
slow adjustment speeds and limited accuracy. Reference [54] proposes a voltage balancing
algorithm with dichotomous delay adjustment. The underlying concept is similar to
that of [53], but the delay adjustment time is determined in a step-by-step, dichotomous
manner through a state machine, thereby enhancing the speed and accuracy of delay
adjustments. References [55–60] establish a closed-loop control relationship between signal
delay and voltage difference, further improving the speed of voltage balance adjustments.
However, the linear relationship between signal delay and voltage difference is derived
from experimental fitting, lacking a theoretical analysis of its intrinsic link. Additionally,
these references do not delve into the design of closed-loop regulation control parameters
for the drive signal, and the parameter design process becomes complex when the operating
point changes.
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References [61–63] propose a voltage balancing technique for drive signal delay that
leverages a clamp circuit, as depicted in Figure 13. This technique represents an innovation
in the sampling method employed in voltage balancing techniques for drive signal delay. Its
core principle involves obtaining the clamp circuit’s on-time duration (AC, or action time)
by sampling the voltage drop across a series sampling resistor within the clamp circuit.
The voltage balancing algorithm then adjusts the drive signal delay between devices based
on this on-time duration. This method combines the clamp circuit with drive signal delay
technology, aiming to prevent overvoltage damage to the device while achieving rapid
voltage balancing of the series-connected device. However, the circuit implementation
is relatively complex, and issues such as the additional loss introduced by the clamp
circuit persist.
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3.2.2. Voltage Balancing Technique Based on Coupled Inductors

In 2002, Japanese scholars introduced a voltage balancing technique that utilizes
coupled inductors. The primary principle of this technique involves employing mutual
inductance to couple the gate signals, thereby suppressing discrepancies in gate currents,
compensating for delays between drive signals, and ensuring synchronization of the gate
signals, as illustrated in Figure 14.

Energies 2024, 17, x FOR PEER REVIEW 14 of 26 
 

 

Driving          
circuit

Driving          
circuit

M1

M2

 
Figure 14. Voltage balancing technique based on coupled inductors. 

As depicted in Figure 15, reference [64] introduces a simple, swift, and economical 
dynamic voltage balancing circuit designed to mitigate voltage imbalances between se-
ries-connected SiC MOSFETs. This circuit comprises an RC snubber and a coupled induc-
tor, which efficiently detects drain-source voltage imbalances and appends a compensa-
tory signal to the gate drive voltage. The article elaborates on the operational principles of 
this method and provides guidelines for selecting circuit parameters. Furthermore, it pro-
poses an optimized layout for the circuit within a typical half-bridge SiC power module, 
aiming to minimize the spurious parameters induced by the coupled inductor. The pro-
posed method has been experimentally validated under various conditions, demonstrat-
ing that it significantly reduces the capacitance value of the buffer capacitor compared to 
the pure RC snubber circuit voltage equalization approach. Notably, as only passive com-
ponents are utilized in the feedback loop, the proposed method is both reliable and 
straightforward. 

M1

M2

1+
1−
2+
2−

3+
3−
4+
4−

1+

1−

2+
2−

3+
3−

4+
4−

Rg2

Rg1

Rg3

Rg4

i1

i2

Lp Lp

Lg

Lp Lp

Lg

iLg1

iLg2

 
Figure 15. Circuit structure for mixing coupled inductor and RC snubber circuits. 

As illustrated in Figure 16, reference [65] introduces a single-driver, magnetically 
coupled, voltage-source-type gate driver. With SiC MOSFETs serving as typical voltage-
controlled devices, this proposed gate driver boasts a straightforward and cost-effective 
design, devoid of a flux reset winding on the secondary side. Thanks to the magnetic con-
straint, the drive voltages can achieve a high degree of synchronization, thereby minimiz-
ing the series voltage imbalance of the power devices that may arise from unsynchronized 
drive signals. 

Figure 14. Voltage balancing technique based on coupled inductors.

As depicted in Figure 15, reference [64] introduces a simple, swift, and economical
dynamic voltage balancing circuit designed to mitigate voltage imbalances between series-
connected SiC MOSFETs. This circuit comprises an RC snubber and a coupled inductor,
which efficiently detects drain-source voltage imbalances and appends a compensatory
signal to the gate drive voltage. The article elaborates on the operational principles of this
method and provides guidelines for selecting circuit parameters. Furthermore, it proposes
an optimized layout for the circuit within a typical half-bridge SiC power module, aiming
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to minimize the spurious parameters induced by the coupled inductor. The proposed
method has been experimentally validated under various conditions, demonstrating that it
significantly reduces the capacitance value of the buffer capacitor compared to the pure RC
snubber circuit voltage equalization approach. Notably, as only passive components are
utilized in the feedback loop, the proposed method is both reliable and straightforward.
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As illustrated in Figure 16, reference [65] introduces a single-driver, magnetically
coupled, voltage-source-type gate driver. With SiC MOSFETs serving as typical voltage-
controlled devices, this proposed gate driver boasts a straightforward and cost-effective
design, devoid of a flux reset winding on the secondary side. Thanks to the magnetic con-
straint, the drive voltages can achieve a high degree of synchronization, thereby minimizing
the series voltage imbalance of the power devices that may arise from unsynchronized
drive signals.
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3.2.3. Voltage Balancing Technique for Closed-Loop Drive Signal

Fully controlled power devices, such as IGBTs and MOSFETs, can be manipulated by
adjusting the amplitude of their drive signals to control their switching processes. Conse-
quently, utilizing active drive technology to achieve voltage balancing in series-connected
devices is a well-established method. Compared to voltage balancing techniques at the
power end, active closed-loop drive voltage balancing technology offers the advantages
of minimal additional losses and numerous degrees of control freedom. The fundamental
principle of this technology involves designing an active closed-loop drive circuit that
utilizes the voltage difference across the series-connected devices to control hardware
circuits or controllers. By modulating the gate voltage or gate current, this approach en-
ables the regulation of the device’s switching speed and the voltage balance control of the
series-connected devices. The principle circuit of the active closed-loop drive, depicted in
Figure 17 [66–72], primarily aims to achieve voltage balancing by sampling the device’s
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drain-source voltage and adjusting the drive signal through a control unit. Reference [66]
introduces an enhanced control circuit shown in Figure 18, which modifies the original cir-
cuit by incorporating a bipolar transistor and pulsing the control signal. This modification
ensures that the external capacitor is fully reset during each switching cycle. Additionally,
the article presents a simplified model of active dv/dt control, revealing a linear relation-
ship between the control voltage and the device’s dv/dt. The article further describes
a feedback control model using differential equations for stability analysis, providing a
parameter selection guide for the control process. Reference [67] achieves soft turn-on and
soft turn-off, along with controllable output dv/dt, by utilizing distributed resonant capaci-
tors for dynamic voltage balancing. This eliminates the need for external dv/dt filters. In
reference [68], a novel active gate driver with a variable gate voltage regulator is proposed.
It employs a single P-channel MOSFET to time the connection of a pre-charge capacitor in
series with the input capacitor, enabling adjustable switching transients for each device
in the stack. These advantages are particularly evident when applied to low-power SiC
MOSFETs with relatively small external resistances. The article presents two sampling and
voltage balancing control circuits based on different processors, tailored to different switch-
ing frequencies and costs. It specifies their operating principles and design guidelines, and
experimentally demonstrates their performance in voltage balancing control. On the other
hand, references [69–72] adjust the compensating current source injection or extraction
based on the reference voltage waveform Vref of the device voltage. By comparing the
difference between the VDS sampling voltage value and the given reference voltage Vref,
these references realize voltage balancing.
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3.3. Other Voltage Balancing Techniques
3.3.1. Voltage Balancing Technique for Single Drive Signal

To address the challenge of assigning independent drive signals to multiple devices
in series, which complicates the overall structure, references [73–75] propose a circuit
structure for series-connected devices that operates using a single drive signal. Specifically,
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reference [73] introduces a new series-connected topology for SiC MOSFETs, as illustrated in
Figure 19. In this topology, three SiC MOSFETs connected in series are driven synchronously
by a single gate drive. The article delves into the working principle of this topology and
provides an analysis. Reference [74] presents a high-voltage series-connected SiC MOSFET
module designed for use as the main switch in a repetitive high-voltage nanosecond
pulse generator. This module boasts a minimal component count and requires only a
single external gate driver, making it suitable for compact equipment. By analyzing
the operational principle, three topologies for series MOSFET modules are proposed.
Experimental comparisons of the switching behavior among three different topologies with
four SiC MOSFETs connected in series are conducted. The study investigates the variations
in switching characteristics of the series-connected SiC MOSFET module for different
numbers of devices and optimizes the layout to reduce pulse lead time and enhance output
pulse quality. Reference [75] examines the topology of series-connected power devices
and introduces a novel single-signal driver. Compared to traditional driving methods, the
proposed gate driver offers improved compactness, stability, and scalability. Notably, the
designed structure effectively addresses and suppresses gate oscillation issues.
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3.3.2. Voltage Balancing Technique Based on SiC MOSFETs in Series with JEFTs

Another incoming voltage balancing technique is based on SiC MOSFETs in series
with JFETs, also called super JFETs [76,77]. In reference [76], in order to solve the problem
of electrical parameter deviation in the series device structure, an optimized voltage control
method is introduced, which can ensure voltage balancing in both static and dynamic
states. In the absence of a Zener diode array, this strategy can significantly reduce the
turn-off loss. As shown in Figure 20, the article also proposes this hybrid MOSFET-JFET
circuit structure to suppress the parasitic capacitance effect of SiC MOSFETs. The forward
gate drive voltage greatly accelerates the turn-on speed and reduces the switching losses.
A FREEDM super cascade structure for a 15 kV/40 A three-terminal power switch was
proposed in reference [77].
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4. Study of SiC MOSFET Driver Circuit

In addition to the effect of voltage balancing of series-connected SiC MOSFETs, which
is affected by the modeling accuracy, another key factor is the SiC MOSFET driving circuit.

During the high-speed turn-on/turn-off process of SiC MOSFETs, several critical issues
arise, including oscillations due to device parasitic parameters, electromagnetic interference
(EMI) problems, and electrical stresses on the devices, which cannot be overlooked [78].
Typically, the most prevalent solution involves incorporating RC snubber circuits into the
system’s main circuit to mitigate voltage and current spikes [79]. However, it is important
to note that these added snubber circuits introduce additional power loss to the entire
system, along with increased size and cost. Furthermore, in high-power power system
applications, the inherent structural complexity often makes it impossible to completely
eliminate device spurious parameters [80]. Consequently, the optimized design of gate
drivers has emerged as a focal area of research today. SiC MOSFETs and Si IGBTs are
voltage-controlled switching devices; there are many similarities in the drive, so their early
drive circuit design is mostly based on the existing Si device drive circuit design methods.
However, there are differences between SiC and Si power devices, and the requirements
for the drive circuit are also different. For example, if the SiC MOSFET gate charge Qg is
smaller, its gate-source voltage is more prone to oscillations; in addition, the SiC MOSFET
short-circuit withstand time is shorter than the silicon power device, so its drive protection
circuit detection time and short-circuit response time are shorter, and the response speed
of the drive circuit is more demanding. At present, most SiC MOSFET drive circuit chips
use IGBT driver chips, because SiC MOSFETs and IGBTs have similar characteristics, but
because the IGBT works at low frequency, the existing mature IGBT driver chip drive
capacity is smaller; the drive current is generally about 2A, and cannot give full play to the
SiC MOSFET’s high-frequency characteristics. In summary, studying a specialized circuit
to drive SiC MOSFETs is worthwhile.

In foreign countries, the current mainstream SiC MOSFET driver manufacturers
are ON Semiconductor, Core, Infineon, etc. These manufacturers have developed a SiC
MOSFET special driver chip, rather than the IGBT driver chip, to drive the SiC MOSFET.
Among them, ON Semiconductor’s driver chip has the ability to drive high-voltage, high-
frequency MOSFETs as well as perfect protection features, and Infineon’s driver chip can
do a two-stage shutdown to suppress dv/dt in the shutdown transient. Reference [81]
proposes a new multistage structure of a medium-voltage gate driver, which consists
of four main parts: a dc–dc isolation stage, a signal transmission stage, a gate drive
stage, and a short-circuit protection stage. The article also designs a medium-voltage
isolation transformer utilizing ferrite cores and windings embedded in polyamide material,
implemented in the form of a printed circuit board, with high noise immunity and reliable
signal transmission capability, while the driver occupies less space. However, the article
lacks the design of circuit parameters and experiments with high switching frequencies
and different switching tubes. An optically isolated gate driver for SiC power devices was
proposed in reference [82]. The article focuses on minimizing the common mode current
injection into the control circuit, thus adapting the gate circuit to higher fast switching
transient dv/dt. By reducing the common mode interference with the control circuit, signal
integrity can be improved, faults in the converter can be reduced, and the reliability of
converter operation can be enhanced. Although the article has done experiments applied to
switching tubes of different voltage and current levels, it can be seen that the voltage peaks
are larger during the switching transients of the switching tubes. A new gate driver based
on a multistage turn-off gate voltage application is proposed in reference [83], as shown in
Figure 21. The driver reduces the impedance of the gate driver by adding an additional
new auxiliary circuit with a triode series capacitor between the gate source. The article
establishes an equivalent model of the driver circuit as well as design principles for the
capacitor. However, it lacks experimental verification of different switching tubes as well
as different switching frequencies, and from the available experimental waveforms, the
driving signal waveform edge jumps slowly. Reference [84] proposes a novel single gate
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driver (SGD) scheme by adding additional gate diodes to effectively mitigate unwanted
gate voltage oscillations (GVOs). In the article, a small-signal model of the proposed SGD is
developed, and a stability analysis is presented to reveal the intrinsic mechanism of GVOs.
Based on the pole-zero plot and root-trajectory analysis, appropriate parameters of the
absorber circuit were determined. However, the designed driver is not compact enough
and has high losses.
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In China, Qin Haihong made an overview of the current SiC MOSFET common
driving technology and developments and gave a summary of whether the circuit is
isolated or not, has dead time, has anti-interference ability, etc. [85]. Yuan Jie proposed a
SiC MOSFET driving circuit built with discrete devices and gave detailed design ideas and
simulation verification for the overcurrent protection function to achieve the overcurrent
protection delay within 800 ns [86]. However, the article lacks analyses of disturbance
and reactive power loss. Xu Yao reported related research for the high-speed application
of SiC MOSFETs, achieving a high-speed drive of 1 MHz at 200 W with dynamic current
balancing, and realizing the parallel application of SiC MOSFETs [87]. However, the
article does not solve the problem of strong and weak electrical signal interference. Lei
proposed a closed-loop driver chip that detects the size of chip dv/dt and di/dt through
peripheral circuits, and dynamically adjusts the drive current to reduce the SiC MOSFET
switching loss [88]. However, from the experimental waveforms, it can be seen that the
drive signal delay is large, and the drive circuit is not designed to protect the circuit; the
reliability is not high. Zhou Qi analyzed the design of series drives for SiC MOSFETs,
proposed a SiC MOSFET series voltage balancing circuit, and simulated and verified its
circuit [89]. Tailei Du conducted research and design for the drive of the SiC module
type FF11MR12W1M1B11 of A company. On the basis of meeting the SiC drive current,
active clamp protection, desaturation protection, and fault signal feedback functions were
added [90]. Ke Zhao proposed a driving method and driving circuit to suppress the
threshold voltage drift in response to the serious problem of threshold voltage drift in SiC
MOSFETs. The driving circuit distinguishes the gate voltage between the dynamic process
of shutdown of the controlled device and the gate voltage after shutdown steady state by
introducing an intermediate level, so as to achieve the purpose of reducing the threshold
voltage drift of SiC MOSFETs, and at the same time retaining the advantage of negative
gate shutdown voltage [91]. Table 1 shows a comparison of several of these drives.
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Table 1. Comparison of drive performance.

Reference Isolated Efficiency Volumetric Interference
Resistance Cost

[81] yes middle small strong higher
[82] yes middle smaller stronger middle
[83] yes low middle - high
[84] yes high larger middle middle
[86] yes low middle - middle
[87] yes middle small - low
[88] yes higher large stronger middle
[90] yes low larger middle middle
[91] yes middle middle strong lower

5. Comparison and Perspectives of Voltage Balancing Techniques for Series Connected
SiC MOSFETs
5.1. Comparison of Voltage Balancing Techniques for Series-Connected SiC MOSFETs

Different voltage balancing techniques vary in terms of voltage balancing effectiveness
and ease of implementation because of different mechanisms. As shown in Table 2, this
section of the article will compare them in terms of cost, modularity, complexity, speed of
voltage balancing, losses, and effectiveness of voltage balancing.

Table 2. Performance comparison of voltage balancing techniques.

Voltage Balancing
Technology Reference Experimental Data Cost Modularity Complexity

Speed of
Voltage

Balancing
Losses

Effectiveness
of Voltage
Balancing

Voltage balancing
technology at the power

side
[43]

2.4 kV, four tubes in
series, equilibrium

time 200 ns, efficiency
less than 90%

lower high lowest faster large middle

Voltage balancing
technique based on SiC
MOSFETs in series with

JEFTs

[76]

4 kV, five tubes in
series, equilibrium

time 800 ns, efficiency
above 90%

lower middle lower middle middle middle

Voltage balancing
technique for single

drive signal
[74]

10 kV, ten tubes in
series, equilibrium

time 600 ns, efficiency
above 90%

lowest middle lower fastest middle bad

Voltage balancing
technique based on
coupled inductors

[65]

1.2 kV, three tubes in
series, equilibrium

time 750 ns, efficiency
above 90%

middle middle middle faster middle middle

Voltage balancing
technique for drive

signal delay
[54]

320 V, two tubes in
series, equilibrium

time ns level,
efficiency more than

95%

higher low high slow small good

Voltage balancing
technique for

closed-loop drive signal
[71]

400 V, four tubes in
series, equilibrium

time ns level,
efficiency above 90%

highest low high slow small good

Comparing the cost of several voltage balancing techniques discussed in this paper,
it can be clearly seen that voltage balancing technology at the power side and voltage
balancing techniques based on SiC MOSFETs in series with JEFTs are cheaper. Voltage
balancing techniques for a single drive signal can further reduce the cost because it requires
only one power supply, unlike the conventional gate driver that requires multiple isolated
power supplies for gate control. Voltage balancing techniques based on coupled inductors
have a relative increase in cost and volume due to the addition of coupled inductors in
the driver; finally, when comparing the voltage balancing technique for closed-loop drive
signals to the delayed voltage balancing technique for drive delay, although both techniques
require measurement and sampling of the device drain-source voltage, the delayed voltage
balancing technique for the drive requires a stronger processor for higher gating timing
calculations, and the cost is It is also more costly.
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When it comes to the modularity of voltage balancing techniques, the voltage balancing
technology on the power side performs the best. Voltage balancing techniques for drive
signal delay, voltage balancing techniques based on SiC MOSFETs in series with JEFTs, and
voltage balancing techniques based on coupled inductors can be considered to be a close
second in terms of modularity. Finally, voltage balancing techniques for closed-loop drive
signals and voltage balancing techniques for drive signal delays are also modular to some
extent but need to be adjusted in their control phase. In addition, in practice, certain voltage
balancing techniques may have limitations in terms of the number of devices connected
in series.

In terms of complexity, techniques that require the measurement of drain-source
voltages and the use of closed-loop controllers are much more complex than techniques
consisting of passive components only. This is why in Figure 22, the voltage balancing
technique with active closed-loop for the drive circuit and the voltage balancing technique
with delayed drive signals are ranked higher in terms of complexity. For the voltage
balancing technique with a single drive signal, the complexity lies in the fact that there
must always be enough gate drive power supplied to the MOSFET, regardless of the voltage,
duty cycle, and other conditions.
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The importance of the speed of voltage balancing stems from the fact that even a
small number of voltage balancing switching cycles can damage the MOSFETs in series.
Techniques such as voltage balancing with active closed loops in the drive circuit or voltage
balancing with delayed drive signals require several cycles to achieve proper voltage
balancing. In other words, although these techniques can achieve voltage balancing, it is
not straightforward compared to voltage balancing techniques on the power side.

The next comparison focuses on the additional losses incurred by the system. As
previously discussed, for fast-switching SiC MOSFETs, the voltage-balancing technique
on the power side inevitably results in losses that are equal to or even greater than those
of the device itself, positioning this technique at the bottom of the ranking in terms of
additional losses. The voltage balancing technique for a single drive signal and the voltage
balancing technique based on SiC MOSFETs in series with JFETs are likely to follow closely,
as they also necessitate the use of passive devices to achieve the desired voltage balance.
Conversely, voltage balancing techniques on the drive side incur relatively fewer additional
losses compared to the other techniques, as they do not significantly alter the switching
behavior of the power device. The final comparison revolves around voltage balance. In
practical applications, voltage imbalances within the range of 3% are considered acceptable.
Techniques such as voltage balancing for closed-loop drive signals and voltage balancing
for delayed drive signals have the potential to achieve minimal or even virtually zero
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voltage imbalance. The voltage balancing technique on the power side and the voltage
balancing technique based on SiC MOSFETs in series with JFETs may serve as the second-
best options, as achieving better voltage balancing results through the selection of passive
devices can become challenging. Lastly, the voltage balancing technique with a single drive
signal yields the poorest results.

5.2. Challenges and Prospects of Voltage Balancing Techniques for Series-Connected SiC MOSFETs

The advantages and disadvantages of various voltage balancing techniques have been
outlined above. With the growing diversity of converter circuit topologies utilizing SiC
MOSFET series structures, voltage balancing in series-connected SiC MOSFETs presents an
even more significant challenge and offers a broad scope for further development.

The disadvantage of the voltage balancing technique on the power side lies in the
significant extra loss it incurs. Therefore, accurately calculating these additional losses
and analyzing their causes can be instrumental in reducing the overall circuit loss from
the source and enhancing efficiency. Current research lacks sufficient precision in calcu-
lating losses within the voltage balancing circuits at the power side of series-connected
SiC MOSFETs. To address this, an accurate loss model for the voltage balancing circuit
of SiC MOSFET devices must be established. This model should incorporate factors such
as temperature to enable comprehensive loss calculations, thereby mitigating the adverse
impact of the power-side voltage balancing technique on the entire circuit. The reliability
of the voltage balancing technique on the driver side is relatively low. Therefore, analyzing
the voltage balancing technique across various application scenarios should encompass
multiple aspects, including its impact on voltage balancing and circuit reliability. While
existing research has demonstrated that the voltage balancing techniques for drive signal
delay and closed-loop drive signals can achieve a higher degree of voltage balancing, the
complex parameter calculations and control methods they employ introduce instability
into the circuit. Furthermore, current research lacks depth in analyzing circuit reliability.
It is imperative to incorporate circuit reliability analysis into the parameter selection pro-
cess and strive to simplify the control algorithm as much as possible. As SiC MOSFET
process technology advances and SiC and other new-generation semiconductor materials
are utilized, the switching speed of individual SiC MOSFETs is increasing rapidly, and their
voltage withstand capabilities are becoming higher. Consequently, achieving voltage bal-
ance in series-connected SiC MOSFETs under high-voltage and high-frequency conditions
has emerged as a pressing issue. Current research lacks sufficient studies on series voltage
imbalance in high-voltage and high-frequency applications. For the power-side voltage
balancing technique, the voltage withstand capacity of passive devices must be taken into
account. For the driver-side voltage balancing technique, in addition to optimizing feed-
back time, exploring the benefits of combining different voltage balancing techniques can
be considered to achieve superior voltage balancing effects, thereby meeting the application
demands of high-voltage and high-frequency scenarios. In general, experts have achieved
significant advancements in the research of voltage balancing technology in recent years.
This includes the proposal of a universal analytical model for parameter extraction based
on datasheets, the optimization of snubber capacitors, and the implementation of multi-
segment smoothing control for clamping circuits. However, there are still some areas that
require further exploration. Specifically, there is a need to enhance the accurate modeling
of SiC MOSFETs. Additionally, the current voltage balancing techniques are predominantly
applied to series connections of 2 to 5 devices, with a notable lack of discussion on series
connections involving approximately 10 devices.

6. Conclusions

In this paper, based on summarizing the causes of voltage imbalance in series SiC
MOSFETs, we first introduce four classical SiC MOSFET models. Secondly, we review the
characteristics and basic theories of the existing voltage balancing techniques for series
SiC MOSFETs from three aspects: voltage balancing techniques on the power side, voltage
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balancing techniques on the driver side, and other voltage balancing techniques. Then, we
summarize the current development status of SiC MOSFET driver circuit development
status. Comparing six different aspects, i.e., the cost, modularity, complexity, speed of
voltage balancing, losses, and effectiveness of voltage, the paper compared several voltage
balancing technologies. The comparison results show that the simple and more traditional
voltage balancing technology on the power side is less complicated to implement and has a
lower cost, better modularity, and better voltage balancing effect at startup. However, when
it comes to the additional loss and voltage balance of the system, the voltage balancing
technique on the driver side is better than the former. Finally, the challenges and further
research directions for the study of voltage balancing techniques for series-connected SiC
MOSFETs are pointed out.
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