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Abstract: Hydropower units are essential to the safe, stable, and efficient operation of modern
power systems, particularly given the current expansion of renewable energy systems. To enable
timely monitoring of unit performance, it is critical to investigate the trends in vibration signals, to
enhance the accuracy and reliability of vibration trend prediction models. This paper proposes a
fusion model for the vibration signal trend prediction of hydropower units based on the waveform
extension method empirical mode decomposition (W-EMD) and long short-term memory neural
network (LSTMNN). The fusion model first employed a waveform matching extension method
based on parameter ergodic optimization to extend the original signal. Secondly, EMD was used
to decompose the extended signal sequence and reconstruct the decomposition components by the
extreme point division method, and the reconstructed high- and low-frequency components were
used as LSTMNN inputs for component prediction. Finally, the component prediction results were
superimposed with equal weights to obtain the predicted value of the vibration signal trend of the
hydropower unit. The experimental results showed that the W-EMD signal decomposition method
can effectively suppress the endpoint effect problem in the traditional EMD algorithm, improving the
quality of EMD decomposition. Furthermore, through a case study of the upper guide X direction
swing signal on the 16F unit of a domestic hydropower station, it was found that the proposed fusion
model successfully predicted anomalies in the unit’s swing signals; compared with SVR, KELM,
LSTMNN, and EMD + LSTMNN, the prediction accuracy was improved by 78.94%, 66.67%, 55.56%,
and 42.86%, respectively.

Keywords: endpoint effect; hydropower units; LSTMNN; trend prediction; vibration and swing
signals; W-EMD

1. Introduction

In the new power system, hydropower energy as a ‘stabilizer’ for the safe operation of
the system plays a crucial role, and the core equipment of hydropower is the hydropower
unit [1,2]. In the actual production process, the hydropower unit, as an important equip-
ment for grid peak shifting and frequency regulation, is affected by hydraulic, mechanical,
electrical, and other comprehensive factors in the operation process, so that the hydropower
unit produces a variety of faults and hidden dangers, which seriously affects the operational
status of hydropower plants [3–5]. With the continuous changes in operating conditions
and the accumulation of operating time, the performance of the unit equipment deteriorates
continuously, and even serious failures occur, increasing the maintenance cost of the unit.
The vibration and swing signals of a hydropower unit are a key monitoring quantity to
characterize its stable operation and contain a large amount of information on the operating
status of the equipment [6,7]. Therefore, research on the trend of vibration and oscillation
signals of the unit can timely grasp its operating status and law, avoid potential equipment
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failure risks, and thus effectively improve the comprehensive benefits of hydropower
stations [8,9].

The key to predicting the vibration and swing trend of a hydropower unit is to obtain
vibration and swing monitoring data on its key components during unit operation [10]. Due
to the non-smoothness and non-linearity of the vibration and swing signals, researchers
apply the empirical mode decomposition (EMD) [11] algorithm to the vibration and swing
signals of the unit and use the signal decomposition algorithm to preprocess the oscillation
data of the unit in order to get smoother sequence data and fully extract the information on
the unit’s operation state. In the EMD process, there is sometimes an inability to clearly
judge the extreme values at the endpoints, which in turn produces a ‘flying wing’ phe-
nomenon when fitting the envelope at the endpoints [12,13]. Aiming at the endpoint effect
problem in EMD of short data sequences, scholars at home and abroad have undertaken a
considerable amount of research, and the main solutions include two categories: one is to
improve the algorithm itself [14–16]; the other is to preprocess the signal itself [12,17,18].
Long short-term memory neural network (LSTMNN) as an improved variant of temporal
recurrent neural networks has been widely used in deep learning fields such as time series
prediction because of its characteristics of solving problems such as gradient explosion and
gradient vanishing [19–22].

In order to improve the accuracy of trend prediction and reduce the influence of
non-linear and non-stationary signals of the unit on the prediction results, combining
signal decomposition algorithms with machine learning prediction models [9,23,24] has
become the focus of trend prediction research. Hu et al. [25] adopted a noise reduction
method combining BA-VMD and wavelet thresholding and a long short-term memory
network (LSTM) prediction model to predict the trend of vibration signals. Qin et al. [26]
established a long short-term memory neural network (LSTM) prediction model for wind
speed prediction on the original wind speed series. Wang et al. [27] introduced a long
short-term memory (LSTM) neural network and proposed a comprehensive deterioration
index (CDI) trend prediction model based on the time–frequency domain, improving
the prediction accuracy for the condition trend of hydropower units. Zhao et al. [28]
proposed a prediction technique for short-term traffic flow, which utilizes empirical modal
decomposition (EMD) and long short-term memory neural networks (LSTM). Based on
this, this paper proposes a trend prediction fusion model for hydropower unit vibration
and swing signals based on W-EMD and LSTMNN. The fusion model first employed a
waveform matching extension method based on parameter ergodic optimization to extend
the original signal. Secondly, EMD was used to decompose the extended signal sequence
and reconstruct the decomposition components by the extreme point division method, and
the reconstructed high- and low-frequency components were used as LSTMNN inputs
for component prediction. Finally, the component prediction results were superimposed
with equal weights to obtain the predicted value of the vibration signal trend of the
hydropower unit. Taking the upper guide X direction swing signal of a hydropower unit
as an example, the effectiveness of the fusion model in the oscillation trend prediction of
the unit was verified.

In summary, the main contribution of this paper can be summarized as follows:

• An EMD endpoint effect suppression method based on waveform matching extended
(W-EMD) is proposed.

• Combining the proposed endpoint effect suppression method with LSTMNN and
reconstructing the decomposed signal by the method of extreme point division greatly
improves the quality of signal decomposition as well as the prediction accuracy of the
algorithmic model.

• The validity of the proposed method for predicting the vibration trend of hydropower
units is demonstrated through validation tests on specific examples.

The remainder of this paper is structured as follows: Section 2 describes in detail the
process of constructing the W-EMD + LSTMNN model and explains the individual evalu-
ation metrics. Section 3 proposes a concrete implementation of the Waveform matching
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extension-based EMD endpoint effect suppression approach. Section 4 verifies the validity
and superiority of the proposed model with a specific example of the swing of the upper
guide X direction of the hydropower unit, and the test results are analyzed in detail. Finally,
Section 5 summarizes the entire paper.

2. Model Construction and Related Evaluation Indicators
2.1. Establishment of Vibration and Swing Signals Trend Prediction Model for Hydropower Units

The proposed hydropower unit oscillation trend prediction model takes the upper
guide swing signal as an example, and first uses the parameter traversal optimization
waveform matching extension method to extend the signal endpoints in order to inhibit the
endpoint effect generated by EMD. Secondly, the EMD algorithm is used to decompose the
extended data to obtain multiple eigenmode components and residual components, and the
eigenmode components obtained from the decomposition are reconstructed by using the
method of polar point division, i.e., all the components are divided into the high-frequency
component (HFC) and the low-frequency component (LFC) by calculating the number of
polar points contained in each component. Finally, LSTMNN is used to predict the high-
and low-frequency component signals of the up-conducted swing signal of the hydropower
unit, and the component prediction results are superimposed with equal weights to obtain
the final prediction of the up-conducted swing. The signal component obtained by this
method significantly reduces the amount of prediction calculation and the complexity of
the prediction model and effectively improves the model prediction efficiency, prediction
stability, and generalization ability. A flowchart of the prediction model construction is
shown in Figure 1.
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2.2. Evaluation Indicators for Endpoint Effects

For an assessment of the effect of suppressing the endpoint effect, qualitative evalua-
tion indexes need to be selected, and in this paper, the similarity coefficients between the
EMD component signals and the actual components of the corresponding original signals
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are used to assess the effect of suppressing the endpoint effect. The formula for calculating
the similarity coefficient is as follows [29]:

ρ(xi(t), im fi(t)) =
cov(xi(t), im fi(t))√

σ(xi)
√

σ(im fi)
(1)

where cov(·) denotes the covariance; σ(·)is the variance; imfi denotes the i-th eigenmode
component of the signal after EMD; and xi is the actual constituent component of the
corresponding original signal. The larger the value of the similarity coefficient, the better
the suppression of the endpoint effect.

2.3. Predictive Model Evaluation Indicators

In order to compare more intuitively the prediction effect of the constructed fusion
prediction model on the trend of the vibration and swing signals of the hydropower unit,
mean absolute error (MAE), mean absolute percentage error (MAPE), mean square error
(MSE), and mean square percentage error (MSPE) are used as the evaluation indexes of
the prediction effect of the vibration and swing signals. The calculation formula is as
follows [30,31]:

MAE =
1
N

N

∑
i=1

|ŷi − yi| (2)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (3)

MSE =
1
N

√√√√ N

∑
i=1

|ŷi − yi|
2

(4)

MSPE =
1
N

√√√√ N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣2 (5)

where yi is the actual value of the X direction swing in the upper guide of the hydropower
unit, and ŷi is the predicted value of the X direction swing in the upper guide.

3. Improvement of EMD Algorithm

In order to adopt a suitable method for endpoint effect suppression, this study pro-
poses a waveform-matching extended method based on parameter traversal optimization
to improve the quality of empirical modal decomposition based on the pre-processing
method of the signal itself.

3.1. Waveform Matching Extended Method Based on Parameter Traversal Optimization
3.1.1. Definition of Waveform Matching Related Parameters

In this study, the signal waveform matching degree is defined by considering the
similarity of signals in shape and amplitude. The Pearson correlation coefficient reflects the
degree of linear correlation between two variables, i.e., the degree of similarity in shape
between the characteristic waveform and the matched waveform, and is calculated as
follows [32]:

ρ(x, y) =
cov(x, y)√
σ(x)

√
σ(y)

(6)

where cov(·) is the covariance between the two variables, and σ(·) is the variance between
the variables. The closer the correlation coefficient is to 1 or −1, the stronger the correlation
between the variables; the closer it is to 0 the weaker the linear correlation between the
variables.
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The Euclidean distance is used to measure the similarity in amplitude between the
eigenwave and the matching wave, and the formula is as follows [33]:

d(x, y) =
√
(∑ (xi − yi)

2) (7)

The Euclidean distance is usually expressed using the Euclidean distance similarity s [34]:

s =
1

1 + d(x, y)
(8)

where the value of s is in the range of [0, 1], and the larger the distance similarity s is, the
smaller d is, i.e., the closer the distance is, the larger the similarity is.

Finally, the above shape similarity and amplitude similarity index parameters are
reasonably integrated to obtain a comprehensive index for evaluating the matching degree
of waveforms, in order to comprehensively consider the degree of similarity between the
characteristic waveforms and the matched waveforms. Collating Equations (6)–(8) yields a
composite metric for waveform matching as:

P = α × ρ + (1 − α)× s, α ∈ [0, 1] (9)

where α is the degree of match parameter.

3.1.2. Verification of Simulated Signals

Taking the simulated signal x(t) as an example, the sampling frequency of the signal is
600 Hz and the number of sampling points is 800.

x(t) = cos(2π × 2t + 1) + sin(2π × 20t + 6) + cos(2π × 6t + 2) (10)

From Figure 2, the simulated signal fitted by cubic spline interpolation produces the
phenomenon of endpoint ‘flying wing’ due to the inability to determine the extreme values
at the endpoints.
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The waveform matching extended-based method is used to suppress the endpoint
effect of the signal during EMD. The specific steps of the method are:

(1) Taking the extended extension of the left endpoint of the simulated signal x(t) as an
example, the characteristic wave S1 (shown in Figure 3b) is defined, which has a very
large value point followed by a very small value point. Denote the left endpoint
corresponding to the eigenwave as S0, the first extreme value point as M0, and the
first minimal value point as N0; the length of the eigenwave is N, and the distance
between the left endpoint S0 and the first extreme value point M0 is L. For practical
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analysis, the characteristic wavelength can be defined according to the measured
signal characteristics.
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(2) Mark the extremely large and extremely small points within the index range of the
simulated signal x(t), and denote the set consisting of all extremely large points as
Mmax and the set consisting of all extremely small points as Mmin. Set the initial value
of the waveform match parameter α and the traversal step, take the first maximal
point M0 as a reference point, such that the length of the matching wave is the same as
the length of the eigenwave, and calculate the composite index of waveform matching
P for different values of the matching parameter α.

(3) The signal before the maximum value of the waveform matching index Pmax corre-
sponding to the matching wave is used as the extended wave to extend the original
signal. Record that the coordinate of the extreme value corresponding to M0 at this
point is Mp, and the coordinate corresponding to S0 is Xp = Mp- − L.

(4) Set in advance the number of points to be extended n, and using the waveform
corresponding to the first n points of Xp as the extended wave S3, the extension of the
left end of the signal x(t) is completed by moving this extended wave to just before S0.
Figure 3a shows the schematic diagram of the left endpoint of the simulated signal
after it is extended. Similarly, an extended extension of the right end of the simulated
signal can be achieved.

The x(t) extended results obtained by the above steps are shown in Figure 4.
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In order to verify the effectiveness of the waveform matching extended method
proposed in this paper, the empirical modal decomposition of the simulated signal x(t)
and its extended signal is carried out. Setting the number of signal left and right endpoint
extended points as n = 150, the actual component time sampling points range from 150 to
950 after they are extended, and the decomposition results are shown in Figure 5. Figure 5a
shows the result of the decomposition of the simulated signal x(t); the green dashed
line is the actual component of the signal and the red solid line is the EMD component,
and it is clearly observed that there is a fitting error at the endpoints of the components.
Figure 5b shows the result of the decomposition of the signal after it is extended, and
the EMD components are highly coincident with the actual components of the signal.
According to Equation (1), the results of the comparison of similarity coefficients of each
component before and after the signal is extended are shown in Table 1. As can be seen
from Table 1, the EMD endpoint effect of the simulated signal x(t) is significantly improved
after it is extended by the parameter traversal optimization waveform matching extension
method, which verifies the effectiveness of the extension method in suppressing the EMD
endpoint effect.
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Table 1. Comparison of similarity coefficients before and after extension.

Before Extension After Extension

IMF1 similarity coefficients 0.9921 1.0012

IMF2 similarity coefficients 0.9685 1.0009

IMF3 similarity coefficients 0.8944 1.0008

4. Instance Validation
4.1. Trend Prediction Analysis of Upper Guide Swing Signal on Hydropower Units

In order to verify the prediction effect of the proposed W-EMD and LSTMNN fusion
model, an experimental study and validation were conducted for the monitoring data
of unit 16F of a hydropower station in China. Taking the X direction swing signal of
the upper guide in the unit from 1 January 2023–30 July 2023 as the research object, the
trend plot of the upper guide X direction swing after outlier removal and missing value
processing is shown in Figure 6a. During the period from 1 January–16 July, the unit
was in a stable operation state, but on 17 July 2023, the upper guide slip rotor of the
unit suddenly went up, causing the upper guide swing to trigger a large alarm. In order
to better strengthen the role of near-term data and weaken the impact of forward data,
the above-mentioned cleaned upper guide swing data is processed by sliding average
to remove the jump value of the original data and improve the data quality. The sliding
window size is set to window_size = 50, and the processed upper guide X direction swing
signal is shown in Figure 6b.
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Figure 6. Upper guide X direction swing sequence of unit 16F. (a) Swing of upper guide in X direction
data. (b) Swing data of the upper guide in the X direction after sliding average.

4.2. Swing Signal Decomposition and Component Reconstruction

The component results of the upper guide X direction swing signal are shown in
Figure 7 after EMD decomposition; Figure 8 shows the EMD decomposition results of the
extended upper guide X direction swing signal based on the waveform matching extension
method based on parameter ergodic optimization. The number of extreme values can
reflect the fluctuation degree of each component, and the extreme point division method
is used to reconstruct each decomposition component. The number of extreme points of
each IMF component is shown in Table 2. In this paper, the appropriate extreme point
value E = 200 is selected as the threshold to distinguish the components of high-frequency
and low-frequency signals. Based on the decomposition results of the upper guide X
direction swing signal of the unit, the high-frequency components of the unextended signal
components are reconstructed from IMF1–IMF6, and the low-frequency component is re-
constructed from IMF7–IMF12. The high-frequency component of the extended component
is reconstructed by the IMF1–IMF7 combination and the low-frequency component is re-
constructed by the IMF8–IMF13 combination. The results of the component reconstruction
are shown in Figure 9.
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Table 2. The number of extreme points of each IMF component after EMD.

Upper guide
swing signal

Component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Number of extreme points 6341 4063 2347 1334 803 384

Component IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

Number of extreme points 194 94 39 15 5 2

After
extension

upper guide
swing signal

Component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Number of extreme points 6498 4197 2457 1407 840 522

Component IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

Number of extreme points 263 145 67 35 10 5

Component MF13 - - - - -

Number of extreme points 2 - - - - -

4.3. Analysis of Experimental Results

The reconstructed high-frequency and low-frequency components are substituted into
each prediction model. In the prediction process, the first 10 sets of historical data are
taken as inputs to predict the next 1 set of swing signal values, and the upper guide X
direction swing signal is divided into a training set and a test set according to the ratio
of 8:2. The LSTMNN used in this study consists of 6 layers with 128 hidden nodes per
layer and incorporates dropout technique at a rate of 0.1 to reduce model overfitting. In
addition, a batch of 128 iterations with 150 epochs was chosen to train the input data. An
Adam optimization algorithm was used to train the model efficiently for higher prediction
accuracy. Figure 10 shows the prediction results of the high- and low-frequency components
of the EMD + LSTMNN model and the W-EMD + LSTMNN fusion model.

After the prediction results of the high- and low-frequency components of the upper
guide X direction swing are obtained by the above model prediction, the final prediction
results of the upper guide X direction swing of the hydropower unit are obtained by
superimposing the equal weights of the component prediction results. In order to verify
the superiority of the W-EMD + LSTMNN model in the signal decomposition algorithm as
well as the effect of the swing signal prediction, SVR, KELM, a single LSTMNN model, and
the traditional EMD + LSTMNN model are selected as the comparison models. Figure 11
shows the comparison results of trend prediction models on the upper guide X direction
swing test set, where the histogram is the observed value of the upper guide X direction
swing signal, and the solid line is the predicted value for each model. The comparison
results of the observed and predicted values of the upper guide X direction swing signal
and the prediction errors of each model are visualized in Figure 11. By analyzing the
comparison chart of the prediction results of each model, it can clearly be seen that the error
curve of the proposed model (W-EMD + LSTMNN) is closer to zero, and its fluctuation
is smaller.

In this paper, four evaluation indexes, MAE, MAPE, MSE, and MSPE, are used to
assess the prediction results of different models, based on the test set of the upper guide
X direction swing data of the unit. The evaluation index results are shown in Table 3.
The prediction errors of the three prediction models on the test set of the upper guide X
direction swing signal are shown in Figure 12.

As can be seen from Table 3 and Figure 12, the evaluation index results of the W-EMD
+ LSTMNN fusion model proposed in this paper are better than those of other prediction
models. Compared with SVR, the evaluation indicators MAE, MSE, MAPE, and MSPE
obtained by KELM are generally lower; specifically, the reducing ratio in terms of MAE,
MAPE, MSE, and MSPE is 39.36%, 40.25%, 35,14%, and 36.84%, respectively. For a single
traditional LSTMNN model, on the unit upper guide X direction swing signal test set, the
MAE is 11.3369 µm, MAPE is 3.45%, MSE is 0.3285 µm, and MSPE is 0.09%. Compared with
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the traditional LSTMNN model, the prediction effect of the prediction model combining the
EMD signal decomposition algorithm with LSTMNN is improved. Where MAE is 9.4108
µm, MAPE is 2.85%, and MSE is 0.2713 µm, MSPE is 0.07%. Compared with the single
LSTMNN model and the traditional EMD + LSTMNN combination model, the proposed
W-EMD + LSTMNN fusion model in this paper has higher prediction accuracy, and its
MAE, MAPE, MSE, and MSPE on the upper guide X direction swing signal test set are
further reduced to 5.1112 µm, 1.6%, 0.1489 µm, and 0.04%, respectively. This avoids the
problem of prediction error due to the endpoint effect of the traditional combination model
and effectively improves the prediction accuracy.
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Figure 10. Prediction results for high- and low-frequency components. (a) The component predicted
result of the empirical mode decomposition + long short-term memory neural network model
(EMD + LSTMNN), (b) the predicted result of the waveform extension method empirical mode
decomposition + long short-term memory neural network model (W-EMD + LSTMNN).
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Table 3. Evaluation indicators of each prediction model.

MAE (µm) MAPE (%) MSE (µm) MSPE (%)

SVR 21.7025 0.0646 0.6708 0.0019

KELM 13.1596 0.0386 0.4351 0.0012

LSTMNN 11.3469 0.0345 0.3285 0.0009

EMD + LSTMNN 9.4108 0.0285 0.2713 0.0007

W-EMD + LSTMNN 5.1112 0.0160 0.1489 0.0004
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5. Conclusions, Recommendations, Policy Insights, and Future Works

In this study, we propose a fusion model based on the waveform extension method
to improve the empirical mode decomposition and the combination of long short-term
memory neural networks for predicting the swing trend of hydropower units. The results
show the following:

(1) The waveform matching extended method based on parameter traversal optimization
is used to process the x(t) of the simulated signal, and by comparing the similarity
coefficient of EMD before and after extension, the method effectively suppresses
the endpoint effect of EMD in the short-term data. Compared with the traditional
method of predicting each component separately after EMD, the method of component
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reconstruction reduces the noise and interference in the prediction process, and
effectively improves the stability and accuracy of the prediction model.

(2) In order to verify the effectiveness of the proposed fusion model W-EMD + LSTMNN
in improving the prediction accuracy, we studied the actual case of a sudden upward
movement of the upper conductance slip rotor of unit 16F of a hydropower station
in China, which led to the increase of the upper guide X direction swing. The
fusion model effectively avoids the endpoint effect problem caused by the traditional
empirical mode decomposition process, and compared with SVR, KELM, the single
LSTMNN model, and the traditional EMD + LSTMNN combination model, it was
found that W-EMD + LSTMNN, with the advantages of high prediction accuracy and
strong generalization ability, successfully analyzed and predicted the increasing trend
of an X direction pendulum of the upper guide, and discovered the potential hidden
danger of the unit. The results show that the proposed W-EMD + LSTMNN fusion
model has important application prospects in hydropower system operation state
monitoring, and provides a reliable reference for hydropower unit trend prediction.

Since methods for suppressing the EMD endpoint effect are constantly evolving,
whether the method proposed in this paper can serve as the best method for suppressing
the endpoint effect requires extensive experimental studies. Therefore, in our future
work, we will first investigate new methods to suppress the EMD endpoint effect and
combine them with different machine-learning models to improve the quality of data
decomposition as well as the prediction accuracy of the models for real-time prediction
in practical applications. Secondly, the structure of the neural network model proposed
in this paper is continuously optimized, and methods such as incorporating the attention
mechanism are used to further improve the prediction accuracy and generalization ability
of the prediction model. Finally, the results in Conclusion (2) were investigated in detail,
and the scope of the dataset was enlarged or applied to different datasets in order to
examine the practicability and effectiveness of the model proposed in this study.
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