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Abstract: With the rapid development of renewable energy, accurately forecasting wind power is cru-
cial for the stable operation of power systems and effective energy management. This paper proposes
a short-term wind power forecasting method based on the Orthogonalized Maximal Information
Coefficient (OMNIC) combined with an Adaptive fractional Generalized Pareto motion (fGPm)
model. The method quantifies the influence of meteorological factors on wind power prediction
and identifies the optimal set and number of influencing factors. The model accounts for long-range
dependence (LRD) in time series data and constructs an uncertainty model using the properties and
parameters of the fractional generalized Pareto distribution (GPD), significantly improving prediction
accuracy under nonlinear conditions. The proposed approach was validated using a real dataset from
a wind farm in northwest China and compared with other models such as Convolutional Neural
Network-Long Short-Term Memory (CNN-LSTM) and Convolutional Neural Network-Gated Re-
current Unit (CNN-GRU). Results show that the adaptive fGPm model reduces RMSE by 0.448 MW
and 0.466 MW, MAPE by 6.936% and 9.702%, and achieves an average R2 of 0.9826 compared to
CNN-GRU and CNN-LSTM. The improvement is due to the dynamic adjustment to data trends
and effective use of LRD features. This method provides practical value in improving wind power
prediction accuracy and addressing grid integration and regulation challenges.

Keywords: wind power forecasting; orthogonalized maximal information coefficient; adaptive
fractional generalized pareto motion model; LRD; uncertainty modeling

1. Introduction

The Wind energy, as one of the most critical renewable energy sources, plays a signifi-
cant role in the planning and scheduling of power systems. However, the uncertainty and
random fluctuations of wind power not only affect the stability of power generation but
also pose challenges to grid security and data processing efficiency [1]. The challenge of
wind power forecasting lies in its inherent uncertainty and random fluctuations, which
affect wind power output, energy integration, and forecasting accuracy. Additionally,
the mismatch between wind power and energy demand increases the complexity of grid
integration, necessitating more reliable forecasting methods [2].

Recent studies have shown that the combination of blockchain technology and machine
learning can enhance the data security and monitoring capabilities of distributed energy
systems. For example, Faheem, M. et al. [3] improved the ability to respond to network
attacks by using Industrial Wireless Sensor Networks (IWSNs) to monitor wind farm
events, thereby ensuring the communication security of renewable energy. Additionally,
Faheem, M. et al. [4] employed deep learning and LSTM models to identify network attacks,
enhancing the real-time detection and response capabilities of wind power systems, thereby
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improving the accuracy and response speed of wind power forecasts. Therefore, in the
face of wind power uncertainty and data security issues, increasing research focuses not
only on improving the accuracy of forecasting models but also on ensuring the security
and efficiency of data. This paper combines the OMNIC to analyze the correlation between
meteorological features and wind power and proposes a forecasting method based on the
Adaptive fGPm model, aiming to improve the accuracy and robustness of forecasts while
meeting real-time requirements.

In recent years, new technologies have continually emerged in the field of wind
power forecasting. For instance, Zhao, P. et al. [5] proposed a multi-step multivariate
residential load forecasting model based on a spatiotemporal graph attention mechanism,
which improves prediction accuracy by modeling spatiotemporal correlations. Zhang, Y.
et al. [6] proposed a wind power forecasting system that combines data augmentation
and algorithm improvements, which effectively enhanced the stability and accuracy of
wind power forecasting. Although these methods have been successful in other fields,
their application in wind power forecasting still requires further exploration. Therefore,
this paper proposes a wind power forecasting method that combines OMNIC with the
Adaptive fGPm model, aiming to address the long-range dependence and nonlinearity
characteristics of wind power data.

To tackle this issue, current research primarily focuses on improving feature input
and constructing precise models to enhance the accuracy and reliability of wind power
forecasting. In terms of feature extraction, researchers utilize feature processing techniques
to provide models with richer feature information. For instance, Ju, Y. et al. [7] constructed
a novel feature set by analyzing the characteristics of time series raw data from wind farms
and neighboring wind farms, proposing the use of CNN to extract information from input
data. Zhao, Y.B. et al. [8] were the first to apply the NeuralProphet model to decompose
wind power time series data, accurately capturing the complex nonlinear patterns hidden
within wind power time series.

In the realm of model construction, machine learning and deep learning have made
remarkable progress as the primary statistical models in the field of wind power forecasting
in recent years [9–12]. Liao, S.L. et al. [13] introduced a Light Gradient Boosting Machine
(LightGBM) model with strong nonlinear fitting capabilities, which can fully exploit the
valuable information in historical wind power operation data. Wang, Y.S. et al. [13] pro-
posed a wind farm output power forecasting model based on the Sliding Time Window
(TSW) and LSTM [14], effectively fitting the output power curve of the wind farm and
achieving accurate wind power prediction. Yu, C.Q. et al. [15] combined Graph Attention
Networks (GAT), GRU, and Temporal Convolutional Networks (TCN) to effectively extract
features from wind power time series data, significantly improving the model’s accuracy
and robustness. Yang Guohua et al. [16] proposed a short-term wind power forecasting
model based on Complementary Ensemble Empirical Mode Decomposition-Sample En-
tropy (CEEMD-SE),CNN, and LSTM-GRU [17], demonstrating that the model effectively
enhanced forecasting accuracy, reducing the error by 15.06%. However, deep learning
models require the setting of numerous parameters, and hyperparameters determined by
expert experience often differ from the optimal parameters needed by the model. Moreover,
as the volume of data increases, especially when the model becomes overly complex, more
computational resources and training time are required.

As a result, accurate wind power forecasting has become a key solution to the issues asso-
ciated with wind power grid integration [18]. Current methods have the following limitations:

(1) Data and model overfitting: Deep learning models and others require large amounts
of data, which can lead to overfitting and poor generalization to new data.

(2) Lack of Long-Range Dependence (LRD): Many models fail to capture the long-range
dependence in wind power time series data, affecting long-term forecasting accuracy.

(3) Difficulty in nonlinear modeling: Traditional methods struggle to effectively capture
the nonlinear characteristics of wind power time series, impacting forecasting accuracy.
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(4) High computational complexity: Complex models, especially deep learning models,
require significant computational resources and training time, which can hinder
real-time forecasting applications.

To further address these issues, this paper employs the OMNIC to analyze the correla-
tion between meteorological features and wind power for feature extraction [19], which
effectively meets the timeliness requirements of wind power forecasting tasks. Consider-
ing the long-range dependence characteristics of wind power [20,21]. an Adaptive fGPm
forecasting model is proposed to cope with the randomness and volatility of wind en-
ergy [22,23]. This approach builds upon the strengths of existing research while addressing
their shortcomings, such as the inability to model LRD effectively or adapt dynamically
to data changes. To verify the practicality and effectiveness of the proposed method, a
case analysis of wind power data from a wind farm in Northwest China is conducted [24].
Two scenarios are selected for the experiment: one with significant meteorological feature
fluctuations in winter from 12 December 2019, 7:00 to 14 December 2019, 19:00 (Case 1),
and another with smaller fluctuations in summer from 12 July 2019, 7:00 to 14 July 2019,
19:00 (Case 2), serving as historical feature data [25,26]. These data are used to predict
the optimal power change trends of wind power within the next 12, 24, 36, and 48 steps.
Compared with previous methods, the model shows higher precision in power forecasting.

The main motivations and objectives of this paper are as follows:

(1) Motivation: To address the uncertainty and complexity in wind power forecasting,
particularly the correlation and LRD characteristics of wind power, as well as the
nonlinear relationships between meteorological features and wind power.

(2) Objective: To capture the nonlinear correlation between meteorological data and
wind power using the OMNIC, optimize feature inputs, and fully explore the correla-
tion between wind turbine features and wind power output, thereby improving the
timeliness and accuracy of wind power forecasting.

(3) Objective: To propose an Adaptive fGPm iterative differential forecasting model
that considers the LRD characteristics in wind power time series data, and more
accurately predicts unstable stochastic processes by accounting for past, present, and
future states.

The main contributions of this paper are as follows:

(1) Improved Feature Extraction Method: By using the OMNIC to analyze the correlation
between meteorological features and wind power, this paper improves the feature
inputs for wind power forecasting, effectively capturing the nonlinear relationships
in time series data.

(2) Adaptive fGPm Model: A novel adaptive fGPm model is proposed, integrating long-
range dependence characteristics and dynamic parameter adaptation, capable of
addressing the randomness and volatility in wind power forecasting, thus providing
more accurate predictions.

(3) Innovative Algorithm Design: The proposed Adaptive fGPm iterative differential
forecasting model dynamically adjusts the diffusion coefficient, allowing it to automat-
ically adapt to data changes, optimizing system performance, reducing forecasting
errors, and enhancing prediction accuracy. This innovative design effectively over-
comes the limitations of traditional methods that fail to fully address the complexity
and nonlinear relationships in wind power time series.

(4) Validation with Real Data: The method is validated using real wind power data from a
wind farm in Northwest China, demonstrating that the model outperforms traditional
forecasting models in terms of prediction accuracy.

(5) Practical Application Value: This method improves the accuracy of wind power fore-
casting, providing a practical solution for wind power grid integration and ensuring
the stability of power systems.
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Innovation:

(1) Adaptive Feature: The proposed Adaptive fGPm iterative differential forecasting
model has the ability to dynamically adjust the diffusion coefficient, enabling it to
automatically optimize system performance in response to changes in the environment
during the forecasting process.

(2) Effective LRD Modeling: By incorporating long-range dependence characteristics, the
model can better handle long-term trends in wind power time series, thus improving
forecasting accuracy.

(3) Capturing Nonlinear Relationships: The use of the OMNIC method effectively cap-
tures the nonlinear relationships between meteorological features and wind power,
significantly enhancing the accuracy of feature inputs.

The structure of this paper is arranged as follows: Section 2 analyzes the input fea-
ture variables that affect wind power, introducing the principles and steps of the OMNIC
method in data preprocessing [27]. Section 3 discusses the properties and parameters of the
fractional-order Generalized Pareto Distribution (fGPD) [28], emphasizing the analysis of
the distribution’s LRD and heavy-tailed characteristics [29]. Additionally, the mathematical
expression of the adaptive fGPm model and its incremental form are introduced, explor-
ing the LRD characteristics of fGPm and the process of generating numerical sequences.
Section 4 proposes an adaptive fGPm iterative differential forecasting model based on
Langevin-type stochastic differential equations (SDE) [30,31], describing its parameter esti-
mation methods. Section 5 conducts experimental validation using measured wind power
data from a wind farm in Northwest China, demonstrating the efficiency and applicability
of the model through comparisons with other models [32,33]. Finally, Section 6 summarizes
the main research findings of this paper and discusses future research directions.

2. Feature Extraction

Within wind farms, a multitude of factors can influence the power output of wind
energy, with meteorological characteristics being the most critical, such as wind speed,
direction, temperature, humidity, and air pressure [34,35]. Selecting features based solely
on the correlation between two variables may lead to significant redundancy among
them [36,37]. In this study, we employ the OMI-Coherence to analyze the correlation
between meteorological characteristics and wind power, which more accurately captures
the nonlinear relationships between variables [38]. The specific implementation steps are
as follows:

Step 1: Define Mutual Information
For a two-dimensional dataset D = (X, Y) composed of variables X and Y, divide the

space along each axis into intervals X0 and Y0, forming a grid G of size X0 × Y0 [39]. Based
on the distribution of D/G, the mutual information between X and Y is defined as:

I(X, Y) =
Y0

∑
i

X0

∑
j

p(i, j) log2

(
p(i, j)

p(i)p(j)

)
(1)

where p(i, j) is the joint probability distribution of X and Y, and p(i) and p(j) are the
marginal probability distributions of X and Y, respectively [40].

Step 2: Calculate and Normalize Mutual Information
From the grid G, identify the maximum value of mutual information I(D, X0, Y0) as the

output. Construct a normalized feature matrix M based on this value [41]. The normalized
mutual information matrix MIC for a total sample size of n is given by:

MIC = max
X0Y0<B(n)

(M(X0, Y0))M(X0, Y0) =
I(D, X0, Y0)

log2 min(X0, Y0)
(2)

Step 3: Compute OMI-Coherence
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For the set of variables S = {x1, x2, x3, · · · , xn} and the target variable Y, calculate
the maximal information coefficient value between the feature information of xk+1, which
is independent of the selected variable set Sk, and the target variable Y [42]. This is
expressed as:

OMICS(xk+1, Sk) = OMI-Coherence (xk+1; Y | Sk)

= maxfunctions f ,g
I( f (xi);g(Y))

max(H( f (xi)),H(g(Y)))
(3)

Here, I( f (xi); g(Y)) represents the mutual information between the transformed vari-
ables [40].

Step 4: Variable Selection and Ranking
Based on the OMI-Coherence values, select the variable with the highest OMI-Coherence

value, then incrementally add other variables according to the ranking rules established [43].
The feature vector selected after the k-th choice is used to construct the final feature sequence:

Sk = argmax
xk∈S−sk−1

(OMICS(xk, Sk−1)) (4)

This approach effectively selects the most relevant features from meteorological char-
acteristics for wind power forecasting, reduces redundancy among features, and enhances
the performance of the predictive model.

3. Model Principle
3.1. Properties and Parameter of the Fractional-Order GPD

The GPD [44] serves as an extension of the Pareto distribution, characterized for
modeling the tail behavior of probability distributions with heavier tails. Its Probability
Density Function (PDF) is:

f ( x|µ, δ, α) =
1
2δ

[
1 +

1
αδ

|x − µ|
]−1−α

(5)

In this context, µ represents the location parameter of the distribution, δ denotes the
scale parameter, and α signifies the shape parameter [45].

Figure 1 illustrates the GPD with its tail decaying in accordance with a power law.
The larger the value of the shape parameter α ∈ (0, 2], the more pronounced the heavy-
tailed nature of the distribution, resulting in a more rapid decrease within the same time
frame [46]. Conversely, a smaller α indicates a greater impulsiveness in the sequence, where
anomalies occurring further from the central position have a more substantial impact [47].
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As shown in Figure 2, the scale parameter δ of the GPD signifies the extent of deviation
from the mean. When δ ≥ 0 it reflects the dispersion of the distribution around the mean,
and in a particular case, it is analogous to the variance of a normal distribution [48].
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Hence, if a stochastic process X(i) exhibits power-law decay in its probability distribu-
tion, characterizing heavy tails, it will also manifest LRD characteristics in the realm of its
autocorrelation function [49].

3.2. fGPm Model and LRD Characteristics

In the literature, a class of fGPm models, founded on stochastic Weyl integrals [50], is
defined with the following expression:

BH(t) =
∫ ∞

−∞



a

(t − s)
H−

1
2

+ − (−s)
H−

1
2

+

+
b

(t − s)
H−

1
2

− − (−s)
H−

1
2

−




B(ds) (6)

BH(t) is a fractional Brownian motion with Hurst exponent H, where H is the self-
similarity parameter that controls the self-similarity or LRD of the process. B(ds) represents
a Gaussian process with mean 0 and variance |ds|, which serves as the driving noise

in the process. In the Ito process. In which (x)H− 1
2

+ = (−x)H− 1
2

− =

{
x, x > 0
0, x ≤ 0

, The

term (t − s)H− 1
2 − (−s)H− 1

2 represents the self-similarity of the fGPm model. a, b are real
constants, which respectively control the volatility and mean of the stochastic process,
and satisfy |a|+|b|> 0 . The Hurst index determines the correlation between the past at
time t and the future at time s. Its autocorrelation function is given by:

RBH (t, s) =
Γ(1 − 2H) cos πH

πH
(H + 1/2)Γ(H + 1/2)

[
|t|2H+|s|2H−|t − s|2H

]
(7)

The autocorrelation function of the fGPm varies over time, as the characteristics of
wind power generation and the impact of multi-dimensional environmental factors on
wind power output exhibit non-stationarity in industrially collected data. Consequently,
the LRD characteristics of the fGPm model are determined by the relationship between the
self-similarity parameter H and α. The larger the product of H and α, the stronger the LRD
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characteristics of the fGPm model, leading to a more complex and variable trend in the
stochastic sequence. When 0 < H < 0.5, BH(t) possesses anti-persistence, indicating that
the past correlations of the fGPm model are inversely related to future trends. Conversely,
when fα,H(a, b; t, s), the integral kernel function fα,H(a, b; t, s) changes very slowly with
the variable s [51], causing the integral of the kernel function to diverge at infinity. This
persistent effect endows the fGPm model with LRD characteristics, making it a suitable
model for forecasting.

3.3. Generation of Numerical Sequences for fGPm Processes

The central idea of LRD stochastic model forecasting is to generate numerical se-
quences using stochastic models to approximate the actual wind power random sequences.
Compared to other methods, there is an improvement in the length and accuracy of the
forecast. The expression of the fGPm model is presented in Equation (8) as follows:

PH,α(t) =
∫ ∞

−∞



a

(t − s)
H−

1
α

+ − (−s)
H−

1
α

+


+b

(t − s)
H−

1
α

− − (−s)
H−

1
α

−




p(ds) (8)

The fGPm is defined using the Riemann-Liouville fractional integral [52] as follows:

PH,a(t) =
1

Γ
(

H +
1
2

)∫ t

0
(t − τ)

H−
1
2 p(dτ) (9)

In which Γ(x) =
∫ ∞

0 tx−1e−tdt denotes the gamma function, and H represents the
calculated Hurst value. By discretizing the increment PH,α(t) of the fGPm model, the model
generates a stationary increment sequence, that is, the fractional-order Lévy stable noise
sequence XH,α(t) [53], which is expressed as (Equation (10)):

XH,α(t) = PH,α(t + 1)− PH,α(t) =
∫ ∞

−∞

 a
[
(t + 1 − s)H−1/α

+ − (−s)H−1/α
+

]
+

b
[
(t + 1 − s)H−1/α

− − (−s)H−1/α
−

] pds (10)

Equation (10) describes the fGPm incremental process, which represents the increment
of the fGPm process between the continuous time points t and t + 1, simulating the
dynamic behavior of a time series. The key elements of this incremental process are
the power-law functions and the noise process, which control the variation of the time
series. (t + 1 − s)H−1/α − (−s)H−1/α control the long-range dependence (LRD) of the time
series. wα(s) represents the noise component of the process and follows the generalized
double Pareto distribution (GPD). Subsequently, integrating or accumulating this noise
yields the numerical simulation sequence of the fGPm model, with the expression provided
as follows:

PH,α =
1

Γ(α + 1)

∫ ∞

−∞

 a
[
(t + 1 − s)H−1/α

+ − (−s)H−1/α
+

]
+

b
[
(t + 1 − s)H−1/α

− − (−s)H−1/α
−

] ωa(s)ds (11)

As illustrated in Figure 3, when 0.5 < H < 1, it is observable that as the value
of α increases, the stochastic fluctuations of the fGPm model become less pronounced and
occur more rapidly. This implies a diminishing impulsiveness characterized by heavy tails
and sharp peaks, with the LRD properties becoming increasingly evident.
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3.4. Establishing an Uncertainty Model with Adaptive fGPm

Uncertainty is a pivotal element in wind power forecasting, predominantly stemming
from environmental noises that encompass the random variations of meteorological at-
tributes such as wind speed, direction, and temperature. To capture these uncertainties
more precisely, this paper proposes an Adaptive fGPm model featuring a self-adjusting
diffusion coefficient. This model is adept at updating the evolution within stochastic pro-
cesses in a self-adaptive manner, offering a more robust modeling of trend uncertainties for
the prediction of wind power.

The definition of the adaptive diffusion coefficient is presented in Equation (12):

σH(t) = σH(t − 1) + ε (12)

In Equation (12), the stochastic sequence ε ∼ N
(
0, σ2

ε

)
reflects the variations in envi-

ronmental noise, while σ2
ε measures the intensity of randomness. The diffusion coefficient

is initialized at 1 and, over time and with the accumulation of data, it will adaptively adjust
according to actual observed values.

The general form of the driving process for the Adaptive fGPm model, as presented
in [54] (Equation (13)), is expressed as follows:

X(t) =
1
2

XH,α(t) + σH(t)PH,α (13)
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4. Forecast Model Construction
4.1. Establishment of Iterative Differential Forecasting Model

A. A. Stanislavsky et al. [55] introduced a FARIMA model incorporating Pareto noise,
which serves as a discrete-time analogue of the fractional Langevin equation, accounting
for non-Gaussian statistical measures and LRD [56]. Building upon this foundation, this
paper further explores the Langevin-type stochastic differential equation driven by the
GPD as follows (Equation (14)):

dX(t) = b(t, X(t))dt + δ(t, X(t))dpa(t) (14)

Here, dpa(t) represents the increment of the Generalized Pareto Motion; replac-
ing PH,a(t) with Pa(t) yields the Langevin-type stochastic differential equation driven
by the fGPm as follows (Equation (15)):

dXH,a(t) = µ(t, XH,a(t))dt + δ(t, XH,a(t))dPH,a(t) (15)

In this equation, µ is the expected location parameter and δ > 0. Within the adaptive
fGPm framework, the iterative forecasting model is constructed based on incremental mod-
eling. By integrating the discrete form of the fractionalorder Ito process with a differential
equation, we derive the iterative differential forecasting model based on the adaptive fGPm
model (Equation (16)):

PH,α(t + 1) = PH,α(t) + µPH,a(t)∆t + δPH,a(t)wα(t)(∆t)H− 1
2+

1
α (16)

where, 0 < H < 1, to ensure long-term dependence is maintained, and the time step ∆t > 0,
to ensure the stability of numerical integration.

4.2. Parameter Estimation of the New Feature Function

The precise estimation of the shape parameter α, the location parameter µ, and the
diffusion parameter δ is essential for the construction of the predictive model based on the
adaptive fGPm [57]. The Log-Likelihood Estimation (MLE) method is utilized to estimate
the specific parameters within the adaptive fGPm model framework [58]. The specific
process is as follows:

Step 1: First, define the sample sequence |xi|i=1...N as the sampling data of the adaptive
fGPm, where x(1) ≤ x(2) ≤ · · · ≤ x(N) and so on, in ascending order of the statistical data.

Step 2: Calculate the mean of the sequence µ using Equation (17).

µ =
1
N

N

∑
i=1

xi (17)

Step 3: Assume that the random variable, from which all sample sequences xi|i=1...N are
individually drawn, has a probability density function that is a complex function related
to θ. The log-likelihood function for parameters α and δ is then given by Equation (20).

L∗(θ) = − log 2 − N −
N

∑
i=1

log(1 − θxi)− N log

[
− 1

Nθ

N

∑
i=1

log(1 − θxi)

]
(18)

Step 4: When θ < 1/x(N), the local maximum value θ̂ is computed using the method
of maximum likelihood estimation, yielding the following maximum likelihood estimates:

θ̂ = argmax
µ

L∗(θ | xi) (19)



Energies 2024, 17, 5848 10 of 20

The maximum likelihood estimate for α is:

â = −N
N

∑
i=1

log
(
1 − θ̂xi

)
(20)

The maximum likelihood estimate for δ is:

δ̂ =
2
âθ̂

(21)

5. Experimental Cases and Analysis
5.1. Data Description

To validate the effectiveness of the adaptive fGPm proposed in this paper for short-
term wind power forecasting, a wind power dataset from a wind farm in Northwest China
was selected for analysis. The data spans from 1 October 2019, 00:00 to 25 December 2019,
23:45, with a sampling frequency of 30 times per minute. The dataset includes meteoro-
logical characteristics and corresponding power data, comprising local temperature, air
humidity, atmospheric pressure, wind speed, and direction. By employing OMI-Coherence
analysis, numerical weather prediction (NWP) data strongly correlated with wind power
output were selected as model inputs. The forecasting target is set for wind power within
the next 6 to 24 h, predicted on an hourly average basis. The forecasting model integrates
the NWP data from the previous four days, historical power data, and one-day-ahead NWP
forecasts to predict the trend of wind power within the next 24 h.

5.2. Experimental Process

Due to the variability of wind speed, there is an inherent uncertainty in wind power
generation. This experiment selects two seasons with different meteorological character-
istics for study: one with high fluctuation in winter and another with relatively stable
conditions in summer. Specifically, Case One involves data from 1 December 2019, 7:00
to 11 December 2019, 18:00, as shown in Figure 4, totaling 132 data points as the subject
of study.
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Before using the adaptive fGPm iterative model for prediction, it is first confirmed
whether the selected wind power sequence possesses LRD, ensuring the systematic and
scientific nature of the research. The overall experimental procedure is depicted in Figure 5.
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Figure 5. Wind farm power generation forecasting model framework.

As shown in Figure 5, detailed preprocessing of the historical operation data from the
wind farm was first carried out, including the removal of outliers and effective imputation of
missing values. Given the coupling between features in the original dataset, before feature
extraction and reconstruction, this study applied the OMI-Coherence method to accurately
capture the correlations between meteorological features and power generation. The results
indicate that wind speed, wind direction, humidity, temperature, atmospheric pressure,
and air density have correlation coefficients with power generation of 0.6808, 0.6267, 0.6426,
0.4645, 0.2763, and 0.1939, respectively. To efficiently extract pivotal features and reduce the
model’s input dimensionality, this study selected wind direction and speed, which have a
strong association with power output—as the input features for the NWP model, thereby
constructing a data sequence with significant predictive value. Subsequently, the study
employed an improved maximum likelihood estimation method to precisely estimate the
parameters of the wind farm forecasting model, with detailed estimation results presented
in Table 1. Based on the condition H > 1/α, the Hurst indices for the two data ensembles
were determined to be 0.8315 and 0.7915, both exceeding the threshold of 0.5, thereby
satisfying the criteria for LRD.

Table 1. Forecasting Model Parameter Estimation.

H α µ̂ δ̂

Case 1 0.8315 1.7142 640.2534 3.1201
Case 2 0.7915 1.7235 750.4211 2.6617

The key parameter estimates shown in Table 1 include H, shape parameter α, location
parameter µ̂, and diffusion parameter δ̂. Specifically, the H reveals the LRD characteristic
of wind power time series. Higher H values (such as 0.8315 in Case 1 and 0.7915 in Case 2)
indicate a significant persistence in trends, suggesting that historical patterns in wind power
output have a substantial influence on future predictions. The α represents the tail behavior
of the data distribution, with higher α values (1.7142 in Case 1 and 1.7235 in Case 2) reflecting
heavy-tailed characteristics, which help the model respond to large fluctuations in wind
power caused by environmental changes, enhancing its ability to handle extreme events.
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The µ̂ (640.2534 in Case 1 and 750.4211 in Case 2) indicates the central tendency of wind
power output, reflecting typical power output levels across different seasons.

To address the uncertainties inherent in wind power forecasting, δ̂ was introduced
to simulate disturbances, such as meteorological fluctuations, wind speed variations, and
environmental changes, which can lead to deviations in forecasted values. This parameter
enables adaptive adjustments according to actual observed values, allowing the model to
respond dynamically to these disturbances. The δ̂ results (δ̂ = 3.1201 in Case 1 and δ̂ = 2.6617
in Case 2) reflect the model’s flexibility in adapting to different levels of environmental
variability, with higher values indicating a greater responsiveness to fluctuations.

By incorporating these interference factors, the model improves its robustness and
accuracy in forecasting wind power trends. This approach not only substantiates the
scientific validity of utilizing the adaptive fGPm forecasting model for model construction
but also provides a solid foundation for setting the parameters effectively in the wind
power trend forecasting model.

5.3. Prediction Results
5.3.1. Case 1: Winter

Utilizing the NWP feature values and power data extracted from 1 December 2019,
at 07:00 to 11 December 2019, at 18:00 during the winter season as the input sequence,
the NWP data for the forthcoming day is employed as historical data to forecast the 12th,
24th, 36th, and 48th wind power values for the subsequent day. Figure 6 illustrates the
wind power forecast curve, derived from the adaptive fGPm-based iterative differential
prediction model, juxtaposing the predicted and actual wind power values.

Energies 2024, 17, x FOR PEER REVIEW 13 of 21 
 

 

  

(a) (b) 

  

(c) (d) 

Figure 6. Winter Wind Power Forecasting Results for Wind Turbine Generators; (a) predicting 12 

steps; (b) predicting 24 steps; (c) predicting 36 steps; (d) predicting 48 steps. 

5.3.2. Case 2: Summer 

The NWP data and power data from 1 July 2019, 7:00 a.m. to 12 July 2019, 6:00 p.m., 

along with the NWP data for the following day, were used as historical data. The adaptive 

fGPm-based iterative differential forecasting model was then applied to predict 12, 24, 36, 

and 48 wind power values for the next day, as shown in Figure 7. 

Figure 6. Winter Wind Power Forecasting Results for Wind Turbine Generators; (a) predicting
12 steps; (b) predicting 24 steps; (c) predicting 36 steps; (d) predicting 48 steps.



Energies 2024, 17, 5848 13 of 20

5.3.2. Case 2: Summer

The NWP data and power data from 1 July 2019, 7:00 a.m. to 12 July 2019, 6:00 p.m.,
along with the NWP data for the following day, were used as historical data. The adaptive
fGPm-based iterative differential forecasting model was then applied to predict 12, 24, 36,
and 48 wind power values for the next day, as shown in Figure 7.
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Figure 7. Summer Wind Power Forecasting Results for Wind Turbine Generators; (a) predicting
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In Figure 7, the predicted values are shown alongside the actual observed wind power
data. The comparison demonstrates that the adaptive fGPm model accurately captures
short-term fluctuations in wind power, particularly over the initial forecast periods (12 and
24 h). The model is able to closely mirror actual power output, reflecting its robustness in
adapting to observed values. However, as the forecasted period extends to 36 and 48 h, the
model’s accuracy begins to decline. This trend is expected, given the inherent uncertainty
in wind power predictions, as the further ahead the prediction, the more susceptible it
is to errors arising from factors such as sudden wind direction changes, weather system
dynamics, and real-time environmental changes.

Figures 6 and 7 distinctly demonstrate the precision of the adaptive fGPm iterative
differential forecasting model in capturing the short-term trends in wind power output for
wind turbines. Comparative analysis of the model’s forecasts against actual wind power
data reveals improved accuracy. Nonetheless, it is observed that the accuracy of wind
power trend predictions for the same sequence of samples decreases as the forecasted
period extends.
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5.4. Model Performance Analysis

To comprehensively evaluate the forecasting accuracy of the adaptive fGPm-based
iterative differential prediction model, this paper selects the Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of Determination
(R-squared, R2) as metrics for assessing the precision of the final point forecasts. The
calculation formulas are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi − ŷi

ycap

)2
(22)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (23)

R2 =

N
∑

i=1
[(yi − yi)(ŷi − yi)]

N
∑

i=1
(yi − yi)

2 N
∑

i=1

(
ŷi − ŷi

)2
(24)

In Equations (22)–(24), yi and ŷi represent the actual and forecasted power at time
instance i, respectively; yi and ŷi denote the mean values of the actual and forecasted
powers, respectively; N is the number of samples; and ycap signifies the installed capacity.

Error Analysis from Table 2 Leads to the Following Conclusions:

(1) RMSE and MAPE: The data in the table reveal that, overall, the RMSE and MAPE
values for winter are significantly higher than those for summer, indicating higher
forecasting accuracy during the relatively stable wind speeds of summer. Concur-
rently, within the same season, as the forecast length increases, the RMSE and MAPE
values gradually increase, yet maintain relatively small means. This suggests that,
although winter forecasting errors may exhibit larger fluctuations in some cases, the
general level remains acceptably low.

(2) R2: Utilizing the coefficient of determination to assess the final forecast results, the
values for summer are notably higher than those for winter. This indicates a greater fit,
with the independent variables explaining the dependent variable to a higher degree,
thereby signifying a more valuable reference for the forecasting model.

Table 2. Forecast Model Performance Analysis.

Season Forecast Length
Evaluation Metrics

RMSE(MW) MAPE(%) R2

Winter

12 0.842 22.456 0.9614
24 1.014 23.412 0.9721
36 1.021 25.321 0.9717
48 1.332 26.334 0.9711

Summer

12 0.772 5.047 0.9750
24 0.956 5.678 0.9711
36 1.121 6.123 0.9817
48 1.242 7.123 0.9830

In summary, the adaptive fGPm iterative differential model has demonstrated a certain
level of effectiveness in wind power trend forecasting. In practical applications, when
selecting the forecast length, it is necessary to make flexible trade-offs based on specific
requirements to achieve an optimal balance.
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5.5. Comparison of Different Models
5.5.1. Comparative Analysis of Model Prediction Result

To substantiate the superior predictive accuracy of the proposed model, it was com-
pared with the adaptive fGPm and CNN-GRU models. Historical data, including NWP
and power output data, were collected on 26 December 2019 (winter), from 7:00 to 19:00,
and on 12 July 2019 (summer), during the same hours. Samples were taken every 30 min to
forecast the wind power output for intervals of 6, 12, 18, and 24 h ahead. The comparative
results are depicted in Figures 8 and 9.
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The comparative analysis from Figures 8 and 9 reveals that the power output of
wind farms is generally higher in winter than in summer. This phenomenon can likely
be attributed to the greater variability in wind speed during the winter months, which
in turn leads to a significant increase in the volatility of wind power output. All models
have demonstrated a satisfactory fit in simulating the actual wind power curves. However,
when confronted with sampling points where there are sharp changes in wind speed, the
adaptive fGPm model proposed in this study, with its capability to capture long-range
dependencies, shows a notably significant advantage in predictive accuracy. By conducting
an in-depth analysis of the data, this model significantly enhances the consistency between
predicted and observed values, achieving a high degree of accuracy in fitting the wind
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power curve. In contrast, the CNN-LSTM model exhibits relatively larger predictive errors
at some sampling points, indicating a potential need for further optimization in handling
such extreme fluctuations. This refined translation maintains the original message’s intent
while enhancing the language for a professional and academic context.
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5.5.2. Performance Comparison of Different Models

In the performance comparison of various models, the evaluative indicators presented
in Table 3 indicate that the Adaptive fGPm model demonstrates superior performance
over the CNN-GRU and CNN-LSTM models in two pivotal metrics: RMSE and MAPE.
The RMSE of the Adaptive fGPm model exhibits an average decrease of 0.448 MW and
0.466 MW relative to the CNN-GRU and CNN-LSTM models, respectively. Additionally,
the MAPE has seen an average reduction of 6.936% and 9.702%, respectively. This significant
improvement in performance is mainly due to two key aspects: First, the model’s adaptive
drift coefficient dynamically adjusts to incoming data, more accurately reflecting the trends
in wind power variations. Second, by effectively harnessing the LRD features of time series
data, the model distills overall characteristics and accentuates the importance of critical
input information, which substantially improves the precision of the forecasts.
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Table 3. Comparative Analysis of Forecasting Results Across Various Models.

Season Prediction
Time

CNN-GRU CNN-LSTM Adaptive fGPm

RMSE(MW) MAPE(%) R2 RMSE(MW) MAPE(%) R2 RMSE(MW) MAPE(%) R2

Winter

6 h 0.887 30.321 0.9421 1.223 37.125 0.9212 0.505 19.231 0.9678
12 h 0.997 31.151 0.9511 1.321 38.243 0.9328 0.609 20.421 0.9720
18 h 1.552 32.321 0.9624 1.421 39.354 0.9427 0.891 21.504 0.9812
24 h 1.921 33.256 0.9725 1.521 40.321 0.9578 0.997 22.022 0.9878

Summer

6 h 0.778 7.126 0.9510 0.899 8.121 0.9312 0.231 5.231 0.9895
12 h 0.887 8.326 0.9623 0.951 8.231 0.9427 0.401 4.355 0.9778
18 h 0.901 8.541 0.9711 0.996 9.332 0.9513 0.586 5.501 0.9895
24 h 0.998 9.231 0.9778 1.211 9.512 0.9620 0.799 6.521 0.9955

Average 1.115 20.034 0.9613 1.193 23.800 0.9427 0.627 13.098 0.9826

Table 3 also shows the R2 values, which reflect the predictive accuracy of the models.
The CNN-GRU model has an average R2 value of 0.9613, indicating strong predictive
capability. The CNN-LSTM model has an average R2 value of 0.9427, slightly lower than
CNN-GRU but still shows good performance. The Adaptive fGPm model outperforms
both, with an average R2 value of 0.9705, demonstrating superior accuracy and stability
in wind power forecasting. This suggests that the Adaptive fGPm model is better at
capturing the dynamic trends in wind power data, which contributes to its overall higher
prediction accuracy.

6. Conclusions

The adaptive fGPm iterative differential forecasting method proposed in this study
demonstrates superior performance and high accuracy in short-term wind power fore-
casting, showcasing significant practical application potential. The main conclusions are
as follows:

Key Role of Data Processing: To address the impact of the complex temporal charac-
teristics of wind power generation on model accuracy, we employed the Orthogonalized
Maximum Information Coefficient feature selection method. This significantly enhanced
the correlation between wind power and the selected features, validating the effectiveness
of the feature extraction approach.

LRD Characteristics of Wind Power Series: By analyzing the relationship between the
Hurst parameter and feature indices, we revealed the LRD characteristics of wind power
series. This finding provides a theoretical basis for modeling with the adaptive fGPm,
particularly improving trend prediction accuracy under optimized sample lengths and
forecasting horizons.

Parameter Estimation of New Feature Function Method: We successfully applied a
new feature function method to estimate parameters such as stability index, skewness
index, drift coefficient, and diffusion parameter within the adaptive fGPm model, laying a
solid foundation for building a reliable forecasting model.

Superiority of the Adaptive fGPm Forecasting Model: The adaptive fGPm iterative
differential forecasting model effectively addresses uncertainties in wind power generation
by introducing tail parameters, thereby enhancing the flexibility of LRD characterization.
This model demonstrated advantages in forecasting high-volatility data, with its diffusion
coefficient adapting to environmental changes to more accurately reflect dynamic wind
power characteristics.

Comparison with Other Models: Comparative analyses with mainstream forecasting
models such as CNN-GRU and CNN-LSTM demonstrated the superiority and versatility of the
adaptive fGPm model in describing wind power data, achieving higher prediction accuracy.

In summary, This research provides an innovative adaptive fGPm iterative differ-
ential forecasting model for accurate short-term wind power predictions, aiding power
departments in optimizing generation planning and scheduling. Furthermore, it serves
as an effective reference for other time series forecasting scenarios, such as wind speed,
photovoltaic generation, and precipitation.
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