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Abstract: In this study, we propose a regression-based method for forecasting monthly electricity
consumption in South Korea. The regression model incorporates key external variables such as
weather conditions, calendar data, and industrial activity to capture the major factors influencing
electricity demand. These predictor variables were identified through comprehensive data analysis.
Comparative experiments were conducted with various existing methods, including univariate time
series models and machine learning techniques like Holt–Winters, LightGBM, and Long Short-Term
Memory (LSTM). Additionally, ensemble methods combining two or more of these existing methods
were tested. In the empirical analysis, the proposed model was used to forecast monthly electricity
demand for a 24-month period (2022–2023), achieving a mean absolute percentage error (MAPE) of
approximately 2%. The results demonstrated that the proposed method consistently outperforms all
benchmarks tested in this study.
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1. Introduction

In the past several decades, South Korea has seen remarkable economic growth. Ac-
cording to the recent World Bank report, one of the key drivers of this success has been
Korea’s strategic investments in infrastructure [1], particularly in the reliable supply of
electricity, which has supported the competitiveness of its manufacturing sector. Korea
ranks first among high-income OECD (Organisation for Economic Co-operation and Devel-
opment) countries in the “Getting Electricity” category of the World Bank’s Doing Business
Index [2], emphasizing the importance of stable power infrastructure to overall national
competitiveness. Effective and efficient management of the power system is essential for
maintaining this competitive edge, with the first critical decision being accurate load fore-
casting. Accurate electricity demand forecasting offers multiple benefits, such as reducing
investment costs, enabling more efficient scheduling of power plant development, and
improving the planning of distribution and transmission grids [3]. In this context, this
study proposes a method for load forecasting in South Korea. We focus on mid-term
load forecasting, using a regression-based method that incorporates key external variables
influencing electricity demand.

Load forecasting can be categorized into short-term, mid-term, and long-term, each
serving distinct purposes in the management and planning of power systems. Short-term
load forecasting (STLF), which typically spans hours to weeks, is essential for operations
such as balancing electricity supply and demand, scheduling unit commitments, and
managing the grid’s stability [3,4]. Mid-term load forecasting (MTLF), which covers periods
from several months to a year, is used for optimizing maintenance schedules, planning fuel
supply, and preparing for seasonal peaks in demand [4]. Finally, long-term load forecasting
(LTLF) is necessary for strategic decisions regarding investments in infrastructure, such as
building new power plants and expanding transmission networks [4]. Given the various
applications of these forecasting categories, this study focuses on MTLF in South Korea
and proposes a method to forecast the monthly electricity consumption of the country.
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The literature on load forecasting is extensive, with several survey papers having
been published on the topic. Among the recent surveys, the works by Wang et al. [3] and
Kuster et al. [4] are introduced. According to Kuster et al.’s 2017 survey, which provided a
comprehensive review of electrical load forecasting models, research on MTLF was under-
represented compared to studies on STLF and LTLF [4]. However, by 2022, the increasing
importance of MTLF had become evident, as seen in the survey by Wang et al., which
focused specifically on MTLF [3]. This growing trend reflects the expanding recognition of
the important role that MTLF plays in enhancing overall power system productivity.

Several recent studies have contributed to the advancement of MTLF, and most of
them utilized sophisticated machine learning and hybrid models to improve accuracy.
Rubasinghe et al. [5] employed a CNN (Convolutional Neural Network)-LSTM hybrid
model to forecast monthly peak loads over three years using data from New South Wales,
Australia. Jain and Gupta [6] compared various machine learning approaches, including
LSTM, RNN (Recurrent Neural Network), SVM (Support Vector Machine), and deep
learning models, and found that LSTM outperformed others in forecasting demand for
a 12-month period in Chandigarh, India. Li et al. [7] introduced a mid-to-long-term
forecasting model using an improved sparrow search algorithm (ISSA) combined with
SVM, applying it to five years of monthly load data in China. Jung et al. [8] proposed a
deep neural network (DNN) model with transfer learning for monthly load forecasting
in Seoul, Korea. Liu et al. [9] developed a hybrid model combining ensemble empirical
mode decomposition (EEMD) and Random Forest to forecast China’s power consumption
over six months, outperforming traditional methods. These studies share a common focus
on leveraging nonlinear modeling techniques and hybrid approaches, demonstrating the
efficacy of advanced machine learning models in the field of MTLF.

Despite the extensive research on load forecasting in South Korea, the majority of
studies are published in Korean, and most of them focus on STLF. In this paper, we
introduce several recent studies published in English, contributing valuable insights to
enhance understanding of this field. Lee [10] applied regression analysis for daily load
forecasting and provided a comprehensive review of various STLF methods in Korea. Lee
and Cho [11] employed a hybrid SARIMAX (Seasonal AutoRegressive Integrated Moving
Average with eXogenous factors)-LSTM model for daily forecasts, demonstrating superior
performance. Baek [12] extended the forecast horizon to mid-term (four weeks) using
daily data, with the RANN (Robust Adaptive Neural Network) model achieved the best
results. Ryu et al. [13] focused on day-ahead forecasts using 24 h load data, with DNN
outperforming other models. Except for Lee’s study, machine learning-based approaches
consistently outperformed traditional methods. Notably, weather data, calendar data, and
historical load data are common predictors across these studies. These factors will also be
prioritized in this study on South Korea’s load forecasting.

In summary, while many studies pointed out the importance of MTLF and its role,
research on load forecasting in South Korea remains primarily focused on STLF. In this
study, we focus on MTLF in South Korea, considering a forecasting horizon of two years.
To accomplish this, we first identify key factors that influence electricity demand. Based
on these findings, we propose a regression model that incorporates selected independent
variables representing these influential factors. We will then demonstrate the superiority
of the proposed model through comparative computational experiments with various
existing methods. Consequently, this study proposes the most suitable method for MTLF in
South Korea.

The remainder of this paper is organized as follows. The next section covers the data
analysis, presenting a basic time series analysis of the electricity demand and introducing
various external factors that could influence the demand. Section 3 presents the regression
model constructed using the independent variables selected through the data analysis.
Section 4 provides an empirical analysis, where monthly electricity demand for the years
2022 and 2023 is predicted to validate the performance of the proposed model through
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comparative experiments. Finally, the last section concludes the paper by summarizing key
findings, discussing implications, and suggesting directions for future research.

2. Data Analysis

In this section, we perform a comprehensive analysis of monthly electricity demand in
South Korea. First, we identify the key characteristics of the electricity demand time series
and then proceed to analyze various external factors that may influence this demand. For
this analysis, we use the monthly electricity consumption data for South Korea, which can be
obtained from the IEA (International Energy Agency) website (https://www.iea.org/data-
and-statistics/data-tools/monthly-electricity-statistics, accessed on 29 September 2024).

2.1. Electricity Demand

Figure 1 shows the time series of monthly electricity demand from 2012 to 2021,
providing a visual representation of the overall trend and seasonal variations in South
Korea’s electricity consumption.
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Figure 1. Monthly electricity consumption series of South Korea from 2012 to 2021.

As can be seen from the figure, the series exhibits both a clear upward trend and
seasonal fluctuations. The demand typically peaks during the summer months, and a
secondary peak is visible during the winter months. Over the observed period, the overall
demand for electricity has steadily increased, consistent with South Korea’s economic
growth and industrial development. Notable drops in consumption in 2020 could corre-
spond to the COVID-19 pandemic. From these observations, we recognize the importance
of considering both trend and seasonal components in forecasting models, which will be
further explored in the following sections. Among the several characteristics of the series,
the next figure is prepared to highlight the seasonality of electricity demand.

Figure 2 illustrates the average monthly electricity consumption in South Korea,
showing the distinct seasonality in demand. Notably, electricity consumption peaks during
the summer months of July and August, as well as the winter months of December and
January, reflecting increased usage for cooling and heating, respectively. The month of
February shows lower electricity consumption compared to the surrounding months, which
can be attributed to the fact that February has fewer days than other months, resulting
in reduced overall consumption. The following graph further confirms the presence
of seasonality.
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Figure 2. Average monthly electricity consumption in South Korea from 2012 to 2022.

In Figure 3, the ACF plot clearly confirms the presence of seasonality with a 12-month
frequency corresponding to a yearly cycle. In the PACF plot, a prominent spike is observed
at lag 12, which is larger than the spikes at any other lag. These aspects indicate that the
electricity demand from the same month in the previous year is highly correlated with
the current month’s demand. It is particularly notable that the correlation with electricity
demand from one year ago is much stronger than that with the demand from the immediate
previous month. This observation suggests that incorporating the electricity consumption
from the same month in the previous year as an explanatory variable in the forecasting
model would be beneficial.
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electricity consumption.

2.2. Weather Data

Weather information, including temperature, has been an essential component in
all the studies forecasting electricity demand in South Korea [10–13], consistently being
incorporated into prediction models. Among various weather variables, the following
figure presents the relationship between temperature and electricity demand. In this study,
all the weather data are collected from the Korean Meteorological Administration Weather
Data Service website (https://data.kma.go.kr/, accessed on 5 October 2024).

In Figure 4, the blue circles represent the scatter between monthly electricity consump-
tion and average temperature of the corresponding month, while the red stars show the
relationship between monthly electricity consumption and the average highest temperature
of the corresponding month. From visual information, it is clear that both temperature vari-
ables exhibit a non-linear relationship with electricity demand. As temperatures rise during
the summer months, there is an increase in electricity consumption due to cooling needs.
Conversely, lower temperatures in the winter correspond to increased electricity demand
for heating. These patterns confirm the significant influence of temperature on electricity
consumption in South Korea. Another weather variable recognized in this study is the

https://data.kma.go.kr/
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monthly total solar radiation, and the relationship between this variable and electricity
consumption is presented in the following figure.
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average temperature and average highest temperature.

Figure 5 shows the scatter plot illustrating the relationship between monthly electricity
consumption and total solar radiation of the corresponding month. Unlike temperature,
solar radiation does not show a straightforward linear relationship with electricity con-
sumption, making it harder to identify a direct correlation. In the plot, the data for July and
August are displayed with red squares, showing a generally positive correlation between
solar radiation and electricity consumption. In contrast, the data for the other months,
represented by blue circles, reveal a roughly non-linear inverse relationship between the
two variables. This suggests that in the forecasting model, total solar radiation should be
considered with adjustments according to the month, as its impact on electricity demand
varies between peak summer and other seasons.
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2.3. Calendar Data

Among the introduced studies on monthly electricity demand forecasting earlier, it
is noteworthy that Jung et al. [8] is the only study to utilize calendar data. In their study,
variables such as the number of days in the month, the number of weekdays, the number of
weekends, and the number of holidays on each weekday were incorporated. Considering
the significant difference in electricity consumption between working and non-working
days in South Korea, incorporating such information into forecasting models is reasonable.
The next figure is a chart that compares monthly electricity consumption between months
with relatively many non-working days and those with not many non-working days.

The calendar factor that influences electricity consumption is the number of non-
working days, including holidays and weekends, in a given month. Figure 6 compares
the average monthly electricity consumption based on the number of non-working days.
The left bar represents months with less than 10 non-working days, while the right bar
corresponds to months with at least 10 non-working days. The chart shows that electricity
consumption tends to be slightly higher in months with fewer non-working days. This
observation suggests that non-working days, when industrial and commercial activities are
reduced, lead to a decrease in overall electricity consumption compared to months with
more working days. Therefore, it is necessary to include calendar information related to
non-working days as a predictor in the forecasting model.
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2.4. Other External Factors

In mid-term load forecasting, aside from weather and calendar information, economic
variables are often used as predictors [5,7,9]. While macroeconomic variables are essential for
long-term electricity demand forecasting, they are considered somewhat indirect predictors
for mid-term load forecasting. Therefore, this study aims to identify external factors that have
a more direct influence on mid-term electricity demand. Looking at where electricity is con-
sumed in South Korea, approximately 50% of the country’s electricity usage has consistently
come from the manufacturing sector for several decades. In exploring specific statistical indi-
cators that could measure the scale of the manufacturing sector, which accounts for half of the
nation’s electricity consumption, we identified the number of registered factories, which was
collected from the Korean Statistical Information Service site (https://kosis.kr). The following
figure presents a chart showing the relationship between annual electricity consumption and
the number of registered factories for the corresponding year.

Figure 7 illustrates the relationship between annual electricity consumption and the
number of registered factories in South Korea from 2012 to 2021. Although the relationship
is not perfectly proportional, there is a noticeable positive correlation between the two

https://kosis.kr
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variables. Because the number of registered factories is available on a semi-annual basis,
the data can be converted into monthly data using interpolation methods when applied to
a forecasting model.
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To examine the impact of another external factor, particularly the COVID-19 pandemic,
we compared monthly electricity consumption with the number of confirmed COVID-19
cases in South Korea. Figure 8 presents a time series chart of monthly electricity consump-
tion (blue line) and confirmed COVID-19 cases (red line) from January 2020 to December
2021. Due to the rapid increase in confirmed cases, the COVID-19 data have been log-
transformed and are displayed as log (monthly confirmed cases + 1). Surprisingly, the
trends in confirmed COVID-19 cases and electricity consumption exhibit a certain degree
of similarity. Contrary to the initial expectation that an increase in confirmed cases would
lead to a decline in electricity demand, the data show that while electricity consumption
decreased in the early months of 2020, it gradually recovered as the country adapted to the
pandemic. This suggests that, over time, electricity consumption rebounded despite the
continued rise in confirmed cases, reflecting a shift in consumption patterns as businesses
and individuals adjusted to the prolonged impacts of COVID-19. Statistics of the con-
firmed cases are available at the World Health Organization (WHO) COVID-19 Dashboard
(https://data.who.int, accessed on 5 October 2024).
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2.5. Correlation Analysis

Based on the above data analysis, we identified explanatory variables that can mea-
sure each influencing factor. These variables include temperature, total solar radiation,
calendar-related factors, and economic indicators such as the number of registered factories.
To quantify the relationship between each derived variable and electricity demand, we
calculated the Pearson correlation coefficients between the monthly electricity consumption
and each variable at the corresponding month. The statistical significance of each corre-
lation coefficient was also assessed to ensure the reliability of the results. The following
table summarizes the Pearson correlation coefficients and their p-values for all tentative
explanatory variables.

As shown in Table 1, the variables “Month (numerical)”, “Number of Saturdays”,
“Number of Sundays”, and “Average cloud cover” were not found to be significant, so
they are excluded from further analysis. Additionally, we examine the correlations among
the explanatory variables that passed the significance test. If severe multicollinearity is
suspected among variables, it may be necessary to remove some of them. The results are
visualized and summarized in the figure below.

Table 1. Results of correlation analysis of factors influencing electricity consumption.

Influential
Factors Tentative Explanatory Variables Correlation

Coefficients p-Value

Trend Time index 0.4166 <0.0001

Seasonality Month (numerical) −0.0153 0.8686

Autocorrelation Load of the same month in the
previous year 0.8713 <0.0001

Calendar Data

Number of days 0.3513 0.0001
Number of Saturdays 0.0372 0.6865
Number of Sundays 0.0279 0.7622

Number of holidays on weekdays −0.2318 0.0108

Weather Data

Average temperature (◦C) −0.2432 0.0074
Average highest temperature (◦C) −0.2801 0.0019

Average cloud cover (1/10) 0.0483 0.6000
Total solar radiation (MJ/m2) −0.335 0.0002

Other Factors
Number of registered factories 0.4111 <0.0001

COVID-19 confirmed cases
(log-transformed) 0.3093 0.0006

As shown in Figure 9, some pairs of explanatory variables exhibit very high correla-
tions. Specifically, “Time index” and “Number of registered factories”, as well as “Average
temperature” and “Average highest temperature”, have correlation coefficients that are
nearly equal to 1. Consequently, we have decided to exclude “Time index” and “Average
highest temperature” from further analysis to avoid multicollinearity issues. Additionally,
“Total solar radiation” shows a high correlation with temperature variables, indicating po-
tential redundancy in information. Therefore, we will also exclude “Total solar radiation”.
In summary, the proposed model in the following chapter will utilize only the following
variables: load of the same month in the previous year; number of days; number of holi-
days on weekdays; average temperature (◦C); number of registered factories; COVID-19
confirmed cases (log-transformed).



Energies 2024, 17, 5860 9 of 16Energies 2024, 17, x FOR PEER REVIEW 9 of 16 
 

 

  
Figure 9. Heatmap of the correlation matrix for explanatory variables. 

3. Methodology 
In this section, we propose a regression-based model for forecasting monthly elec-

tricity demand in South Korea, using the findings from the above data analysis. The model 
incorporates the key characteristics of the electricity demand time series, such as trend 
and seasonality, along with external factors that are expected to influence electricity con-
sumption. The mathematical formulation of the regression model proposed in this study 
is as follows: 

Yt = β0 + β1Yt−12 + β2Mt + β3Tt + β4Dt + β5Ot + β6Ft + β7Ft·Mt + β8log(Ct + 1) + ϵt  (1)

where Yt is the monthly electricity consumption at time t; 
Yt−12 represents the electricity consumption for the same month from the previous 

year of time t; 
Mt is a categorical variable representing the month of time t; 
Tt represents the average temperature at time t; 
Dt is the number of days in time t; 
Ot is the number of holidays that falls on weekdays during time t; 
Ft is the number of registered factories at time t; 
Ct is the number of COVID-19 confirmed cases at time t; 
β0 is the intercept; 
βi are the coefficients for the independent variables, i = 1, 2, …, 8, and 
ϵt is the error term at time t. 
Here is a detailed explanation of each term in the regression model. Yt is the depend-

ent variable, representing the monthly electricity consumption at time t, which we aim to 
forecast based on the following independent variables. Yt−12 is the lagged term that ac-
counts for the strong seasonality with frequency of 12 month. Mt is the categorical variable 

Figure 9. Heatmap of the correlation matrix for explanatory variables.

3. Methodology

In this section, we propose a regression-based model for forecasting monthly electric-
ity demand in South Korea, using the findings from the above data analysis. The model
incorporates the key characteristics of the electricity demand time series, such as trend
and seasonality, along with external factors that are expected to influence electricity con-
sumption. The mathematical formulation of the regression model proposed in this study is
as follows:

Yt = β0 + β1Yt−12 + β2Mt + β3Tt + β4Dt + β5Ot + β6Ft + β7Ft·Mt + β8log(Ct + 1) + ϵt (1)

where Yt is the monthly electricity consumption at time t;
Yt−12 represents the electricity consumption for the same month from the previous

year of time t;
Mt is a categorical variable representing the month of time t;
Tt represents the average temperature at time t;
Dt is the number of days in time t;
Ot is the number of holidays that falls on weekdays during time t;
Ft is the number of registered factories at time t;
Ct is the number of COVID-19 confirmed cases at time t;
β0 is the intercept;
βi are the coefficients for the independent variables, i = 1, 2, . . ., 8, and
ϵt is the error term at time t.
Here is a detailed explanation of each term in the regression model. Yt is the dependent

variable, representing the monthly electricity consumption at time t, which we aim to
forecast based on the following independent variables. Yt−12 is the lagged term that
accounts for the strong seasonality with frequency of 12 month. Mt is the categorical
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variable representing month of time t. As can be seen from Figure 2, different months
exhibit distinct consumption patterns due to varying seasonal conditions. Tt representing
the average temperature during month t, captures a non-linear relationship between
temperature and electricity demand shown in Figure 4. The next two variables, i.e., Dt and
Ot, are related to calendar data. As confirmed in Figure 6, electricity consumption tends to
be relatively low on non-working days. In this study, the number of days (Dt) and number
of holidays on weekdays (Ot) are used to represent the calendar feature of each month.

The external factors included as independent variables in the model are the number of
registered factories (Ft) and the number of COVID-19 confirmed cases (Ct). The number of
registered factories is provided on a semi-annual basis, with data collected only in June
and December; thus, interpolation methods were employed to estimate the data for the
remaining months. Since the number of registered factories can have different impacts
on electricity consumption across months, an interaction term between the number of
registered factories (Ft) and the month (Mt) was also included in the model. The monthly
number of COVID-19 confirmed cases was log-transformed before being incorporated into
the model to ensure proper scaling. This transformation allows for better handling of the
sharp increase in confirmed cases and ensures that the variable is appropriately scaled for
the regression model.

This model aims to capture the key factors influencing electricity consumption, in-
corporating both temporal dependencies and external variables such as weather, calendar
data, and industrial activity. To identify the explanatory power of each variable, an analysis
of variance (ANOVA) was performed after fitting the regression model to the training data,
i.e., monthly electricity consumption data from 2012 to 2021. The results of the ANOVA are
summarized in Table 2.

Table 2. ANOVA table obtained from fitting the training data with the proposed regression model.

Sources Sum of Squares d.f. F-Value p-Value

Mt 122,677,400 11 8.28 <0.000
Yt−12 4,928,347 1 3.66 0.059

Dt 85,445 1 0.06 0.802
Ot 2,519,024 1 1.87 0.175
Tt 772,887 1 0.57 0.451
Ft 45,698,480 1 33.95 <0.000

Mt·Ft 36,876,620 11 2.49 0.009
log(Ct + 1) 4,060,276 1 3.02 0.086
Residual 122,499,000 91

As you can see from the table, the ANOVA results indicate that the month variable
and the number of registered factories are the most significant predictors of electricity
consumption, with extremely low p-values. These findings confirm the importance of
including seasonal and industrial activity variables in the model to accurately capture
variations in electricity demand.

4. Empirical Analysis

In this section, we evaluate the performance of the proposed regression model by com-
paring it with various existing forecasting methods. The analysis uses monthly electricity
consumption data from 2012 to 2021 as the training set, while predictions are made for
the years 2022 and 2023. In the following table, a subset of the training data is presented.
Table 3 displays a subset of the training data, including entries from the beginning and the
end of the training period. The notations in the header are consistent with those used in
the explanation of the regression model in Section 3.
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Table 3. A subset of the training data for monthly load forecasting in South Korea (2012–2021).

t Year Yt Yt−12 Mt Tt Dt Ot Ft Ct

1 2012 44,466.3 47,315.6 January −2.8 31 2 147,600 0
2 2012 42,717.7 38,033.8 February −2 29 0 148,071 0
3 2012 42,368.9 42,013.7 March 5.1 31 1 148,512 0
4 2012 37,448.9 37,712.0 April 12.3 30 0 148,984 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
117 2021 43,704.7 42,637.9 September 22.6 30 3 199,460 60,332
118 2021 43,952.7 41,230.4 October 15.6 31 2 199,815 52,613
119 2021 45,088.3 43,095.5 November 8.2 30 0 200,181 85,961
120 2021 51,165.7 50,595.7 December 0.6 31 0 200,535 182,904

The forecasting performance of each method is assessed using three widely accepted
evaluation metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and mean
absolute percentage error (MAPE). Here are the equations for the three performance metrics:

MAE = ∑n
i=1

|Ai − Fi|
n

(2)

RMSE =

√
∑n

i=1
(Ai − Fi)

2

n
(3)

MAPE =

{
∑n

i=1

(
|Ai − Fi|

Ai

)
/n

}
× 100% (4)

where Ai represents the actual value and Fi denotes the forecast at i-th time point in the
validation period, respectively. n is the number of months in the validation period. In this
test, n = 24.

For the performance comparison, we used three univariate forecasting methods and
five machine learning approaches. The univariate methods include Holt–Winters, SARIMA,
and Prophet, while the machine learning models consist of XGBoost, Random Forest,
LightGBM, Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM).
Each method is briefly described below:

• Holt–Winters [14]: A triple exponential smoothing method that accounts for level,
trend, and seasonality in time series data.

• SARIMA (Seasonal Autoregressive Integrated Moving Average) [15]: An extension
of the ARIMA model that includes seasonal components. In this test, the SARIMA
model is configured through a model identification process, where the parameters
(p,d,q)(P,D,Q) are set to (1,1,1)(1,1,1).

• Prophet [16]: A forecasting tool developed by Meta (formerly Facebook) that is known
for effectively handling time series data with daily, weekly, and yearly seasonality.

• Random Forest [17]: A widely used ensemble method constructing multiple decision
trees reduces overfitting and improves generalization through bagging and random
feature selection.

• XGBoost [18]: Another ensemble learning method based on decision trees. It uses
boosting to improve prediction accuracy by combining weak learners into a strong model.

• LightGBM [19]: A highly efficient gradient boosting framework that is optimized for
speed and performance.

• RNN (Recurrent Neural Network) [20]: A type of neural network designed for se-
quential data. RNNs can capture temporal dependencies by using loops within the
network structure, making them suitable for time series forecasting.

• LSTM (Long Short-Term Memory) [21]: A special kind of RNN that is capable of
learning long-term dependencies in time series data.
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Before presenting the results of the computational experiments, various details about
the experiments conducted in this study are summarized in Table 4.

Table 4. Experimental configuration for electric load forecasting in this study.

Category Description

Forecast Target Monthly electric load of South Korea

Forecast Horizon 24 months of years 2023 and 2024

Training Period 120 months of years from 2012 to 2022

Data Sources

- Monthly electricity consumption data (2012–2023) from IEA
- Weather data from Korean Meteorological Administration
- Number of registered factories from the Korean Statistical Information Service
- COVID-19 data from WHO Dashboard

Resources - Software: Python 3.10
- Hardware: Intel Core i7 processor with 16GB RAM.

Python Libraries

The proposed method: LinearRegression; Holt–Winters:
ExponentialSmoothing; SARIMA: SARIMAX; Prophet: Prophet; Random
Forest: RandomForestRegressor; XGBoost: XGBRegressor; LightGBM:
LGBMRegressor; RNN: Sequential; LSTM: LSTM

Hyperparameters

- XGBoost: n_estimators = 100, learning_rate = 0.1, max_depth = 3,
random_state = 42.
- Random Forest: n_estimators = 100, max_depth = 5, random_state = 42.
- LightGBM: n_estimators = 100, learning_rate = 0.1, max_depth = 3,
random_state = 42.
- RNN: 1 hidden layer with 50 neurons, adam optimizer,
50 epochs, batch_size = 32.
- LSTM: 1 LSTM layer with 50 units, 1 Dense layer, adam optimizer, 50
epochs, batch_size = 32.

In this study, a total of eight existing forecasting methods were used as benchmarks,
as mentioned above. Additionally, we used ensemble methods, which combine two or
more of these individual forecasting techniques, also as benchmarks. The following table
summarizes the performances of the forecasting results for monthly electricity demand
in South Korea for the years 2022 and 2023, using the proposed regression model and the
eight individual benchmarks.

Table 5 presents the comparison of the forecasting performance between the proposed
regression model and various existing forecasting methods based on three performance
metrics. Overall, the proposed regression model outperforms all other methods across
the board, achieving the lowest MAE, RMSE, and MAPE. In terms of MAE, the proposed
regression model is the only method that achieves an average error below 1000 GWh.
Furthermore, in terms of MAPE, the proposed model stands out as the only method to
achieve an error rate in the 2% range. None of the benchmark methods achieve a 2%
MAPE, which shows the superior predictive accuracy of the proposed model. Among the
benchmark methods, RNN achieved the best overall performance, outperforming other
machine learning models, while the model still did not surpass the accuracy of the proposed
regression model. When using the machine learning methods for forecasting, the same
independent variables from the proposed regression model were utilized as predictors.
These variables include Yt−12, Mt, Tt, Dt, Ot, Ft, and Ct. For technical purposes, Mt was
converted into a numerical variable, and Ct was log-transformed appropriately before
being used in the methods. To further examine the detailed forecast results, a time series
chart has been plotted comparing the forecasts from the proposed method and the several
best-performing benchmark methods against the actual values during the validation period.
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Table 5. Results of the comparison test between the proposed model and the eight existing methods.

Forecasting Methods MAE RMSE MAPE

Proposed Regression Model 921.4 1245.7 2.01%

Existing Methods

Holt–Winters 1588.2 1865.6 3.54%
SARIMA 2095.6 2451.6 4.64%
Prophet 1714.3 2107.0 3.81%

Random Forest 1713.01 2342.91 3.85%
XGBoost 1606.16 2113.06 3.62%

LightGBM 1579.28 1963.11 3.50%
RNN 1456.13 1863.89 3.28%
LSTM 1871.12 2335.57 4.20%

Figure 10 illustrates the comparison between actual monthly electricity consumption
(black solid line) and the forecasts from the proposed model (red dashed line) and three
selected benchmark methods: Holt–Winters (green solid line), LightGBM (purple dashed
line), and RNN (blue dotted line) for the validation period. As you can see from the table,
it is clear that the proposed regression model tracks the actual values more closely than the
benchmark methods. The proposed model shows consistent alignment with the actual data
across most of the months, demonstrating its robustness for mid-term load forecasting.
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Another reason for the lower performance of the machine learning methods lies in
the characteristics of the monthly load forecasting problem, where only a limited number
of data points are available for training. In cases with such limitations, complex machine
learning models are often disadvantaged due to their higher data requirements. This
limitation demonstrates the effectiveness of our proposed regression model, which is
carefully designed with well-selected variables and structured to perform effectively even
with a small data sample.

To enhance the predictive performance of the benchmark models, ensemble methods
were applied by averaging forecasts from pairs and groups of three forecasting methods. A
total of 28 combinations (8C2) and 56 combinations (8C3) were tested. While most combina-
tions did not surpass the best-performing individual models—Holt–Winters, LightGBM,
and RNN—a few combinations, specifically Holt–Winters + LightGBM, Holt–Winters +
RNN, and Holt–Winters + LightGBM + RNN, showed improved performance. The results
of these ensemble tests are summarized in the table below.

As seen in Table 6, although the ensemble methods improved the performance of the
individual existing methods, the proposed regression model continues to demonstrate
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significantly superior predictive accuracy. The selected ensemble combinations share a few
key characteristics: they combine univariate methods with machine learning approaches,
and the best-performing individual methods—Holt–Winters, LightGBM, and RNN—are
consistently part of the most effective combinations. This suggests that blending the
strengths of traditional time series forecasting methods with the adaptability of machine
learning models can result in enhanced predictive performance, but it is still not sufficient
to outperform the proposed regression model.

Table 6. Results of the comparison test between proposed model and the selected ensemble methods.

Forecasting Methods MAE RMSE MAPE

Proposed Regression Model 921.4 1245.7 2.01%

Selected Ensemble
Methods

Holt–Winters + LightGBM 1448.6 1767.4 3.24%
Holt–Winters + RNN 1420.7 1716.0 3.19%

Holt–Winters + LightGBM + RNN 1420.4 1733.8 3.19%

Several factors contribute to the superiority of the proposed regression model. First,
independent variables were selected based on a thorough data analysis, identifying factors
that have a direct influence on electricity consumption. Notably, variables reflecting South
Korea’s characteristics, particularly the significant electricity consumption by the manu-
facturing sector and the variable capturing the impact of COVID-19, played a significant
role in improving model accuracy. Another factor is the treatment of the month variable
as a categorical variable, which seems to have contributed to more precise predictions
by capturing seasonal patterns more effectively. Moreover, considering interaction terms
between the month variable and other factors, such as the number of registered factories,
allowed the model to account for two-dimensional relationships between these variables
and electricity consumption.

5. Conclusions

In this study, we proposed a regression-based forecasting method for mid-term elec-
tricity load forecasting in South Korea. The proposed model integrates both the temporal
characteristics of electricity consumption, such as seasonal patterns and trends, as well
as external variables, including weather, calendar data, and industrial activity. Through
comparative experiments, we demonstrated that the proposed model outperforms vari-
ous existing forecasting methods, including Holt–Winters, SARIMA, Prophet, and several
machine learning-based approaches such as XGBoost, Random Forest, LightGBM, RNN,
and LSTM, as well as ensemble methods of pairs or triplets of the existing methods. In
particular, the proposed model achieved the lowest MAE, RMSE, and MAPE, with MAPE
close to 2%, a result that none of the benchmark combinations were able to achieve.

One of the primary contributions of this study is the careful selection and inclusion
of external variables that have a direct impact on electricity consumption, such as the
number of registered factories and the impact of COVID-19. These factors, along with the
categorical treatment of the month variable and the consideration of interaction effects,
enhanced the model’s ability to capture the complex relationships between electricity
consumption and its influencing factors. This demonstrates the importance of considering
both external and temporal factors in load forecasting models, particularly in countries
like South Korea, where industrial electricity consumption is a major component of overall
demand. It is worth noting, however, that in the future, the relationship between factory
count and electricity consumption may weaken as self-reliant factories utilizing solar and
other renewable energy sources become more common. Therefore, caution should be
exercised when using this variable for long-term forecasts, as the increasing prevalence
of self-reliant energy practices could diminish the predictive power of factory count in
determining electricity demand.
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This study also showed that regression models remain highly effective for load fore-
casting. While regression models are often considered classical approaches, the results
confirm that they remain robust, flexible, and effective forecasting tools when suitable
independent variables are introduced. Another key advantage is that regression models
offer interpretability, a feature that distinguishes them from artificial neural network-
based methods. For simpler time series predictions, such as monthly demand forecasting
considered in this study, regression models may actually be more advantageous due to
their interpretability.

Despite the promising results, there are several avenues for future research. First,
further exploration into the use of additional external variables, such as economic indicators,
could provide further improvements in forecasting accuracy. Additionally, hybrid models
that combine the strengths of both statistical and machine learning approaches could
be developed to enhance model robustness and flexibility. Moreover, studies on proper
handling methods for predictor variables that require forecasting themselves, such as
weather data, are also needed. Finally, the application of adaptive learning algorithms
could further improve the model’s performance in dynamic environments where electricity
consumption patterns are subject to frequent changes.
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