
 
 

 

 
Energies 2024, 17, 5864. https://doi.org/10.3390/en17235864 www.mdpi.com/journal/energies 

Article 

Power System Transient Stability Assessment Based on  
Intelligent Enhanced Transient Energy Function Method 
Tianxiao Mo, Jun Liu *, Jiacheng Liu, Guangyao Wang, Yuting Li and Kaiwei Lin 

School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;  
motianxiao@stu.xjtu.edu.cn (T.M.); ljc9980227@stu.xjtu.edu.cn (J.L.); wgy357986532@stu.xjtu.edu.cn (G.W.); 
lyt1118@stu.xjtu.edu.cn (Y.L.); linkaiwei@stu.xjtu.edu.cn (K.L.) 
* Correspondence: eeliujun@mail.xjtu.edu.cn 

Abstract: The development of power systems puts forward higher requirements for transient 
stability evaluations of power systems. The accuracy and timeliness of transient stability assessment 
are of great significance to the safe and stable operation of power systems. Traditional mechanistic 
judgment methods and criteria have strong interpretability, but they also have great limitations. 
They are still difficult to apply to complex power systems and are in urgent need of improvement. 
Artificial intelligence methods have high accuracy in stability judgment, but they have problems 
such as poor interpretability, and their stability judgment results are often difficult to explain. Based 
on the transient stability judgment mechanism of the response-driven transient energy function, this 
paper proposes a transient energy function stability judgment method based on a two-machine 
equivalent model and enhanced by a convolutional neural network. Firstly, the ST-kmeans method 
is used to cluster the generator sets, and the S-transformation is performed on the power angle 
changes of the generator sets to extract features. Then, the principal component analysis method is 
used to reduce the dimension of the feature data. Based on the k-means clustering method, the IEEE-
39 node system generator synchronization units are grouped according to the power angle change 
trend of each generator after the fault. On the basis of the above methods, a two-machine equivalent 
model of the IEEE-39 node system is established, and the transient energy function of the two-
machine system is derived. Based on the convolutional neural network, the critical energy is 
enhanced, and the fixed critical energy threshold is replaced by the corrected critical energy. The 
example results show that the transient stability prediction framework proposed in this paper can 
improve the scope of the application of mechanism discrimination and enhance the interpretability 
of the results of the intelligent method. 

Keywords: transient stability assessment; transient energy function; ST-kmeans; intelligence  
augmentation; interpretability 
 

1. Introduction 
With the increasing popularity of renewable energy [1,2] and the application of 

power electronic devices [3], the structure and operation of transmission networks are 
becoming increasingly complex, posing unprecedented challenges to the stability of 
traditional power systems. In particular, due to the change of the operation mode and 
power flow distribution of traditional equipment, the rotor angle stability, voltage 
stability, frequency stability and other aspects have been affected. In addition, new 
stability problems, including electromechanical low-frequency oscillation and 
electromagnetic broadband oscillation, have gradually emerged [4]. The accuracy and 
reliability of transient stability assessment (TSA) [5] are crucial to the safe operation of the 
system and the best decision making after faults. 

Traditional methods for transient stability assessment of power systems mainly 
include the time domain simulation method [6] and direct method [7]. The time domain 
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simulation method obtains transient stability analysis results by formulating the 
instability criterion of the power system, solving the system differential equations and 
determining the curves of each state variable, and incorporating the dynamic model of the 
electrical components into the analysis. However, its solution process is extremely time-
consuming and requires high accuracy in modeling the power system, making it difficult 
to meet the needs of real-time decision making. Direct methods such as the extended equal 
area criterion [8,9] and the transient energy function method [10] have fast calculation 
speeds and are intuitive and clear in their stability judgment principles. They have good 
interpretability and can directly judge stability. However, for modern large-scale power 
systems, the grid structure is complex and modeling is difficult. The direct method is 
difficult to apply and has disadvantages such as poor adaptability and conservative 
results. The BCU method analyzes stability in the power system after disturbance by 
establishing a dynamic model and a state space representation, and evaluates whether the 
system can restore equilibrium by using the eigenvalue criterion [11,12]. By establishing a 
dynamic model of the system, the dominant unstable equilibrium point method analyzes 
the system response under specific disturbance conditions, identifies the dominant 
unstable equilibrium point, and evaluates its influence on the overall system stability, so 
as to determine whether the system can effectively recover to the equilibrium state after 
disturbance [13]. In [14], the author presents a singular fixed-point homotopy algorithm 
to solve the nearest unstable equilibrium point, and uses the singular fixed-point strategy 
to quickly determine an initial set of values converging to the type I unstable equilibrium 
point. This method can obtain multiple type I unstable equilibrium points on the stable 
boundary, but whether this method can be applied to nonlinear large-scale systems 
remains to be studied. Reference [15] defines a power system stability criterion by 
studying the voltage amplitude and phase dynamic information of branch nodes, that is, 
simplifying the transient transmission capacity of the branch, and by screening the key 
branches, calculating the transmission index, and comparing it with the judgment 
threshold, the stability judgment result can be obtained, but its accuracy is low. Reference 
[16] used EEAC to analyze the system and established a transient energy function model 
of the system, but its unit grouping principle and accuracy need to be further improved. 
References [17,18] used the Maximum Lyapunov Exponent (MLE) to determine stability. 
This method can accurately describe the dynamic behavior of the system, but its timeliness 
is poor. The analysis method of the transient stability limit condition is used to correct the 
transient energy function, the concept of a transient stability limit is defined, and the 
principle of transient energy function method is combined to identify the stability, but its 
accuracy needs to be strengthened urgently [19]. 

In recent years, the application of artificial intelligence in power systems has made 
great progress. By training a large number of system transient stability samples and 
mining the intrinsic relationship between electrical quantity data information and system 
stability, artificial intelligence methods can obtain a model that can be used to evaluate 
the transient stability of power systems. The main machine learning algorithms that have 
been applied to transient stability assessment include decision tree [20] (DT), deep belief 
network [21] (DBN), long short-term memory (LSTM) [22], convolutional neural network 
(CNN) [23,24], support vector machine [25] (SVM) and graph neural network [26] (GNN). 
In addition, reference [27] uses deep learning to enhance the transient stability analysis of 
power systems and improves the accuracy of stability judgment, but its interpretability 
needs to be enhanced. Reference [28] proposes a transient stability assessment method 
based on a convolutional neural network (CNN), which uses a CNN to learn and 
automatically extract the time series features of the transient process to achieve end-to-
end time series feature extraction and stability classification. An online evaluation method 
of transient stability of a power system driven by image data is proposed. Compared with 
text, an image can store more information, and the stability judgment result can be 
obtained by reading the image. Compared with other data-driven artificial intelligence 
methods, it has the advantages of simplicity and intuition [29]. Reference [30] proposed a 
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method for obtaining the optimal feature set by recursive feature removal based on cross-
validation. Reference [31] built a feature separation model based on the different degrees 
of correlation between different electrical features and transient stability, which has strong 
interpretability. References [32,33] extracted features from the time domain information 
of the power system and conducted transient stability assessment. Reference [34] 
proposed an imbalance correction method based on support vector machine (SVM) to 
solve the problem that unstable samples rarely appear in actual systems, which leads to 
sample imbalance. Reference [35] applied an artificial intelligence method based on sparse 
dictionary learning to transient stability assessment in order to evaluate the transient 
stability of power systems by improving classification accuracy. Reference [36] achieved 
data-driven effective transient stability prediction through a transient stability assessment 
method based on highly expressible and low-depth quantum circuits. In [37], bi-
directional long short-term memory (Bi-LSTM) was used to extract spatial information, 
and on this basis, a power system transient stability evaluation model is established. The 
above method uses electrical measurement data as the input to construct a power system 
stability evaluation model based on time characteristics, which has achieved certain 
effectiveness in stability evaluation [38]. Although the artificial intelligence method has a 
faster judgment speed than the time domain simulation method and a higher accuracy 
than the direct method, its judgment mechanism is usually difficult to describe, and the 
interpretability of its judgment results is difficult to reflect. 

Combining the direct method with artificial intelligence, taking advantage of the 
strong interpretability of the direct method, and on this basis performing data 
enhancement based on the artificial intelligence method, thereby making stability 
judgments on the power system to improve the judgment accuracy and interpretability of 
the judgment method, has become a research idea. This paper proposes a transient 
stability assessment framework based on the transient energy function method and 
intelligent enhancement. The ST-kmeans (S Transform-kmeans) clustering method is used 
to group the generator sets: first, the power angle data of the generator sets is S-
transformed [39] to extract feature data, and then the feature data are reduced in 
dimension using the principal component analysis method. Finally, the power system is 
grouped using the k-means clustering method [40] to obtain the two-machine equivalent 
model of the system, and on this basis, the transient energy and critical energy of the 
model are derived. The system is judged to be stable by comparing the two energies: if the 
transient energy is greater than the critical energy, the system is unstable; otherwise, it is 
not unstable. Considering that the accuracy of direct stability judgment using the transient 
energy function method is low, the actual transient stability of the power system obtained 
by time domain simulation is compared with the stability discrimination results obtained 
by comparing transient energy and critical energy under the equivalent model of two 
machines, to obtain the misjudged and missed samples. The critical energy and transient 
energy of the misjudged and missed samples are input, and the convolutional neural 
network is used to correct the critical energy of the system, and the corrected critical 
energy is output to meet the actual stability situation. The main innovative contributions 
of the method proposed in this paper are as follows: a method of using ST-kmeans to 
group the synchronous units is proposed, and a two-machine equivalent model of the 
multi-machine power system is obtained. On the basis of this model, the transient energy 
and critical energy calculation formulas of the system are derived; the critical energy 
correction model constructed by the convolutional neural network improves the accuracy 
of stability judgment of the transient energy function method. For convolutional neural 
network training, the input sample is 10,118 fault data generated by a transient process 
simulation in MATLAB toolbox PST3.0. The mean square error loss of the convolutional 
neural network converges to about 0.25. The batch size and training rounds in the training 
process are 64 and 200. 
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2. Materials and Methods 
2.1. Basic Principles of Transient Energy Function 

The transient energy function is simple in form and its physical meaning is clear and 
easy to understand. The stability of the system can be judged by simply comparing the 
transient energy and critical energy of the system after the fault. However, the modern 
power system is huge in scale and complex in structure. The energy function of a complex 
large power grid is difficult to model. Therefore, this paper will make the system equal to 
two machines and then construct the transient energy function. The two-machine equiv-
alent model of a multi-machine power system is shown in Figure 1. 

By extending the generator node inward, incorporating the generator transient im-
pedance into the network impedance, and connecting the load to the ground in parallel 
through the load node, the internal node augmented admittance matrix of the generator 

can be derived: 11 12
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Figure 1. Two-machine equivalence model. 

The rotor motion equation of the ith machine is [16] as follows: 

( ) , ,
2

2 1 2i
i mi ei

dM P P i
dt

= − =
δ

 (1)

where iM   represents the inertia time constant of the ith generator; miP  , eiP  , respec-
tively, represent the mechanical power and electromagnetic power of the ith generator; 
and iδ  represents the equivalent power angle of the ith generator. 

Further, we can obtain the following: 

δ δδ − −
= − = −

2 22
1 1 2 21 2

2 2 2
1 2

m e m eP P P Pd dd
M Mdt dt dt

 (2) 

where mP  is the mechanical power of the generator, eP  is the electromagnetic power of 

the generator, M is the system inertia time constant, and 1 2= −δ δ δ  is used to represent 

the relative rotor angle of the two machines. Assuming 1 2

1 2

=
+eq

M MM
M M

, we can obtain 

the following: 
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where iE′  is the equivalent transient potential of the ith generator. Assuming that 
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=
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, the rotor mo-

tion equation of the system is obtained: 
2

2 [ sin( )]′= − + −eq m e em
dδM P P P δ γ
dt

 (5) 

The stable equilibrium point of the system after the fault is set to S, the corresponding 
power angle is sδ  , the unstable equilibrium point is set to U, and the corresponding 

power angle is uδ . 3eP′  and 3emP  represent the power after the fault, then 
2

3 32 [ sin( )]′= − + −eq m e em
dδM P P P δ γ
dt

 (6) 

Let 3
′ ′= −m m eP P P , 

′ = −δ δ γ ; we obtain the following: 

′= +s sδ δ γ  (7) 

2′= + = − +u u sδ δ γ π δ γ  (8) 

The post-fault energy function and critical energy expression are obtained by inte-
gration: 

2
3 3

1
( , ) ( )( ) [cos( ) cos( )]

2
′= − − − − − − −eq m e s em sV δ ω M ω P P δ δ P δ γ δ γ  (9) 

3[2cos( ) ( 2 2 )sin( )]= − − − + −cr em s s sV P δ γ π δ γ δ γ  (10) 

where ω  represents the equivalent angular speed of the generator rotor. 
Through the transient energy and critical energy calculation formulas derived above, 

only the relevant electrical quantities after the system failure need to be obtained for cal-
culation. When the transient energy is greater than the critical energy, that is, crV V＞ , 
the system is unstable; otherwise, it is not unstable. 

Since the above energy function is derived under the premise of equal values of the 
two machines, it is necessary to perform synchronous grouping of the generator group 
first. 

2.2. Grouping of Synchronous Generating Units 
Synchronization is the similarity of the changes in each generator in the dynamic 

process, which reflects the correlation degree of the power angle of each generator set 
when it swings. After the system is disturbed, if the relative deviation of the power angle 
of two generators at any time is not greater than the given threshold, the two units are 
said to be synchronized during this period. If the generators in a group of units are syn-
chronized with each other, then this group of units is called a synchronized group. In 
essence, the grouping of synchronized units is to assign units with similar dynamic char-
acteristics to a group and distinguish units with obvious differences in dynamic charac-
teristics. This paper uses the ST-kmeans clustering method to cluster the generator sets. 
The process is as follows: first, the power angle data of the generator sets are processed 
and features are extracted through discrete S transform and principal component analysis, 
and clustered according to the swing curves of all units after disturbance through the k-
means clustering algorithm to determine the optimal two-machine equivalent result. 

  



Energies 2024, 17, 5864 6 of 16 
 

 

2.2.1. Data Processing of Unit Power Angle Variation Based on S-Transformation and 
Principal Component Analysis 

Considering the large number of generator sets in the system, the amount of data that 
needs to be processed for direct cluster analysis is very large. Clustering takes too long 
and is inefficient, and it cannot meet the accuracy and speed requirements of generator 
set grouping. Therefore, it is necessary to preprocess the data first, mine the key infor-
mation, and then quickly extract the characteristics of the generator swing curve before 
clustering analysis can be performed. 

The S-transform proposed by physicist R.G. Stockwell combines the advantages of 
Fourier transform and wavelet transform, and can analyze non-stationary signals through 
Gaussian window functions with adjustable width. 

The S-transform form of time series signal is as follows [39]: 
2( , ) ( ) ( , )

+∞ −

−∞
= − j πftS τ f x t ω τ t f e dt  (11) 

where ( , )S fτ  is the time-frequency spectrum matrix obtained by transformation, τ is 
the time in the domain, which is used to control the time position of the window function, 
f  is the frequency in the domain, which is used to control the width of the window 

function, and ( , )ωτ t f−  is the Gaussian window function. 
2 2

2
( )

2| |
( , )

2

−

− =
τ t f

af
ω τ t f e

a π
 (12) 

where a is the shape parameter of the Gaussian window function, the shape of the window 
function can be changed by a, and the resolution can be adjusted. 

After performing discrete S transformation on the collected unit power angle incre-
ment signal, the corresponding time-frequency feature modulus value matrix can be ob-
tained. The rows and columns of the matrix correspond to frequency and time, respec-
tively, and any element in the matrix represents the S transformation modulus value of 
the power angle increment information at the time and frequency. 

The time-frequency feature modulus value matrix obtained after S transformation 
contains a lot of redundant information. The matrix dimension is too high. If clustering is 
performed directly, the amount of calculation is very large. Therefore, the principal com-
ponent analysis method is considered for data processing to remove unimportant features 
and noise and improve the efficiency of feature extraction. The main idea of the principal 
component analysis method is to sequentially find a set of new mutually orthogonal co-
ordinate axes on the original coordinates and map the previous dimensional features to 
new dimensions. Since the direction that maximizes the data center variance is selected 
when selecting the coordinate axis, most of the variance is included in the selected coor-
dinate axes; that is, the dimensional features containing most of the variance are retained, 
thereby realizing the dimensionality reduction processing of the feature data. 

For a p-dimensional data set, 1 2 3{ , , , , }= ⋅⋅⋅ pX x x x x ; to reduce it to q-dimensions, we 
first need to decentralize it: 

1

1
=

= 
p

i
i

x x
p

 (13) 

For two different samples X and Y, their covariance is as follows: 
( , ) [( ( ))( ( ))]= − −C ov X Y E X E X Y E Y  

(14) 

Dividing the covariance matrix by ( )p−1  gives the scatter matrix, which measures 
the dispersion of the samples: 

1
( )( )

=

= − − =
p

T T
i i

i
x x x x XXS  (15) 
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Then, we can find the eigenvalues and eigenvectors of the covariance matrix, sort the 
eigenvalues from large to small, select the first q largest eigenvalues and use their corre-
sponding q eigenvectors as row vectors to form the eigenvector matrix P, and transform 
the data to the new coordinates: 

′ =X XP  (16) 

2.2.2. Generator Clustering Analysis Based on K-Means Clustering Algorithm 
After obtaining the data with dimensionality reduction, cluster analysis can be per-

formed to group the generator sets with similar power angle characteristics into the same 
subsystem and determine the results of the coherent generator set clustering. This paper 
uses the k-means clustering method to cluster the generator sets. 

The main process of the k-means clustering analysis method can be summarized into 
the following 4 steps. 

Step 1: Select initial cluster centers. 
Step 2: For the remaining data samples, calculate their distances from the cluster cen-

ters and assign the obtained distances to the class where the cluster center with the small-
est distance is located. The distance calculation formula is as follows: 

2 2 2
1 1 2 2( , ) ( ) ( ) ... ( )= − + − + + −i j i j i j in jnd x μ x μ x μ x μ  (17) 

where ix  represents the ith data sample, and jμ  represents the ith cluster center. 
Step 3: Update the cluster center. Update the cluster center position by taking the average 

value. For the jth cluster, the kth dimension data of the updated cluster center is as follows: 

,1∈
= ≤ ≤


i j
ikx S

jnewk

x
μ k p

n
 (18) 

where jS  represents the set consisting of all data samples ix  assigned to cluster j, n 

represents n data samples in this cluster, and ikx  is the K-dimensional data value of data 
sample m. 

Step 4: Iterate the second and third steps. If the updated cluster center is consistent 
with the last cluster center or has only a small movement (less than the set threshold), the 
iteration is considered to have converged, clustering is completed, and the results of each 
group of clusters can be output. 

In the process of the k-means clustering algorithm, it can be seen that a value needs 
to be given as the number of initial cluster centers. For the two-machine equivalent model, 
it only needs to be divided into two groups, so k = 2 can be set. 

The power angle difference is used to measure the effect of this method on the grouping 
of synchronous units. The power angle difference is an effective indicator for measuring the 
similarity between units. Based on this indicator, the degree of synchronization of units in the 
same group can be quantified. Considering the correlation between the power angles of the 
generator sets, the synchronization criterion of the generator set is defined as follows: 

2

0
min( ( ( ) ( )) )= Δ − Δ

T

ij i s jS δ t K δ t dt  (19) 

where Δδi(t) and Δδj(t) are the power angle changes of generator i  and generator j, re-
spectively, T is the observation time, Ks is the proportional coefficient, and the calculation 
formula of sK  is as follows: 

0

2

0

( ) ( )

( ( ))

T

i j
s T

i

δ t δ t dt
K

δ t dt
= 


 (20) 
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where δi(t) and δj(t) are the power angles of generator i  and generator j, respectively. 
After completing the grouping of synchronous units, the multi-machine power sys-

tem can be modeled with two machines as an equivalent, and the transient energy and 
critical energy expressions of the model can be obtained. 

2.3. Critical Energy Correction Based on Neural Network 
Considering that the transient energy function of the two-machine equivalent model 

has a low accuracy rate in judging the stability of the power system, it is necessary to 
enhance it. By analyzing the stability judgment principle of the transient energy function 
method and considering its critical energy as the threshold for judging stability, the en-
hancement idea of this paper is to use a convolutional neural network to correct the critical 
energy, correct the critical energy of the missed cases to be lower than the transient energy, 
and correct the critical energy of the misjudged cases to be higher than the critical energy. 
The critical energy of the misjudged missed samples and the transient energy are input 
and the corrected critical energy is output to meet the actual stability situation, thereby 
improving the accuracy of the transient energy function stability judgment. 

2.3.1. Convolutional Neural Network Construction 
This paper uses convolutional neural network to learn the obtained data set in order 

to achieve the correction and enhancement of critical energy. 
The convolutional neural network is a special neural network that is mainly used to 

process sequence data, including the convolution layer, pooling layer, and fully connected 
layer. Its structure is shown in Figure 2. 

Time 
Dimen
-sion

Input Layer Convolutional 
Layer Pooling Layer Convolution

al layer & 
Pooling layer

Fully 
connected 

layer  
Figure 2. The structure of a convolutional neural network. 

X = [x1, x2,…, xt,…, xs] is transmitted to the input layer as the model input, where X∈
Rs*d and s are the time series and time series length, respectively, and d is the number of 
eigenvalues. xt represents the eigenvalue vector at time t. After the convolution operation, 
the input layer is mapped to the convolution layer. The pooling layer is used to extract the 
most characteristic information of the convolution layer sequence. The pooling operation 
is usually the maximum pooling, which can halve the sequence length. The last pooling 
operation uses the global maximum pooling to mine the most characteristic global time 
series information, and the sequence length is reduced to 1. The fully connected layer has 
the same structure as the traditional neural network and contains multiple hidden layers. 
It can further mine and combine the global time series features. Its output is as follows: 

,( )= +c
f τ p last fca f a W b  (21) 

where Wfc is the weight matrix of the fully connected layer, b is the bias vector, and the 
activation function fτ is Relu. The output result of the fully connected layer is as follows: 
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= +fcz W x b  (22) 

The final output is the predicted result y = z. 
Considering that the initial features should be able to effectively reflect the transient pro-

cess of the system, and real-time data collection is feasible, the power angle of the system gen-
erator after the fault is selected as the initial feature input. First, the constructed neural network 
is trained offline to establish a training sample set. For a sample set with a sample capacity of 
N, each sample X(i) has a feature vector 1, , ,[ ,..., ,..., , , ]δ δ δ=t t i t n t crx V V  at time t, where i is 
the generator number, δ is the power angle change of the ith generator to characterize the 
stability of the system power angle, and V and Vcr are the transient energy and critical energy 
of the system, respectively. The network structure of three convolutional layers and pooling 
layers can fully extract the characteristics of stable and unstable conditions without making 
the network structure redundant. The power angle data in the input feature vector is used to 
judge whether the system is truly stable. The transient energy and critical energy are used to 
judge whether the stability judgment result of the transient energy function method without 
correcting the critical energy is correct or not. The output of the network is the critical energy 
after enhancement. 

2.3.2. Intelligent Enhanced Temporary Stability Assessment Model Framework 
The transient stability assessment framework of the power system based on the tran-

sient energy function enhanced by neural network intelligence proposed in this paper is 
shown in Figure 3. 

Its process is mainly divided into the following steps: (1) In the simulation software, ad-
just the load level to form a variety of operating modes, set different fault locations and dura-
tions, generate a large number of transient stability assessment samples, and mark the samples 
as stable and unstable according to the power angle changes obtained by simulation. (2) Per-
form S transformation and principal component analysis on the original fault trajectory to ex-
tract features and reduce the dimension of the power angle data of the generator set, and use 
the k-means clustering method to group the units; calculate the transient energy and critical 
energy of the system after the two machines are equal. (3) Compare the actual stability judg-
ment situation with the stability judgment result using the transient energy function method 
to obtain missed samples and misjudged samples. (4) Use the convolutional neural network 
to learn the missed and misjudged samples and correct the critical energy. The actual applica-
tion mode of this model is shown in Figure 4. Based on offline training, this process realizes 
the real-time updating and online application of the model through real-time PMU measure-
ment and new simulation data generation. 

 
Figure 3. Intelligent enhanced transient stability evaluation schematic. 
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Figure 4. Practical application of transient stability evaluation model. 

3. Results 
This paper uses the IEEE-39 node system to verify the effectiveness of the proposed 

method. The system consists of 10 generators, 39 nodes and 46 lines. Its topology diagram 
is shown in Figure 5. 

 
Figure 5. IEEE-39 node standard test case topology. 
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3.1. Data Set Generation 
The transient process simulation was carried out in MATLAB toolbox PST3.0 to gen-

erate the required data set. The most serious three-phase short-circuit fault was set on all 
46 lines. The fault occurred at 0.1 s, and the duration fluctuated from 0.03 s to 0.20 s with 
a step size of 0.01 s. The occurrence position was 10% away from the left node of each line. 
The node system load fluctuated randomly from 80% to 120% under the benchmark load, 
with a total of 11 operating modes. The simulation time was 10 s, with a step size of 0.01 
s. The stability of the sample was marked according to whether the maximum power angle 
difference of the generator exceeded 360°. Based on the above faults, a total of 10,118 sam-
ples were generated, including 2586 unstable samples and 7532 stable samples. 90% of the 
samples were extracted as training samples for the convolutional neural network, and the 
remaining samples were used to verify the training results. 

3.2. Generator Clustering Analysis Based on sT-Kmeans Clustering Algorithm 
The ST-kmeans clustering method is used to cluster generator sets. By applying dif-

ferent faults, the generator power angle is used as the main reference electrical quantity 
for cluster analysis, and the clustering results under different faults are obtained. The 
change in the generator power angle after a large number of faults is analyzed. The power 
angle change trend of the G1 and G10 generators is often the same. Therefore, the gener-
ator grouping result is G1 and G10 as one group; the rest of the generators are another 
group. The criterion of synchronous generator set is selected as the index to measure the 
result of unit grouping and the calculated result is 0.8753ijS = . Figure 6 is the power 
angle change curve of the line 3–18 three-phase short circuit fault. The generator grouping 
results are shown in Table 1. 

Table 1. The result of the generator clustering. 

Generator Group A Generator Group B 
G2, G3, G4, G5, G6, G7, G8, G9 G1, G10 

 
Figure 6. Curves of generator power angle variation. 

3.3. Analysis of Convolutional Neural Network Corrected Critical Energy Example 
In order to improve the accuracy of transient energy function transient stability as-

sessment, based on the transient energy and critical energy obtained by a time domain 
simulation, combined with the actual stability of the system, the convolutional neural net-
work is used to regress and predict the critical energy and enhance the critical energy of 
the system. The training principle is that when the system is unstable, the critical energy 
output value of the neural network must be lower than the transient energy of the system, 
and the critical energy must be higher than the transient energy when stable. The batch 

0 50 100 150 200 250 300 350 400
Duration after failure is applied/ms

-60

-40

-20

0

20

40

60

G1
G2
G3
G4
G5
G6
G7
G8
G9
G10



Energies 2024, 17, 5864 12 of 16 
 

 

size and training rounds in the training process are 64 and 200. Figure 7 shows the change 
in the loss function during the training process. 

 
Figure 7. Demonstration of CNN training process. 

After correcting the critical energy, a sample with actual power angle instability was 
selected; according to the power angle change curve, it is easy to know that the system 
power angle is unstable. The transient energy method without correcting the critical en-
ergy was used to judge the stability. The calculated critical energy was 2.1152 p.u., which 
is greater than the transient energy 2.0513 p.u., and since the critical energy is greater than 
the transient energy, the system power angle was judged to be stable, resulting in missed 
judgment; the critical energy obtained after correction by the neural network is 2.0451 p.u., 
which is less than the transient energy, so it could be correctly judged as the system power 
angle instability. 

100 misidentified samples from the remaining samples were selected to verify the 
effectiveness of neural network enhancement. The uncorrected critical energy of the 
missed samples is higher than the transient energy. After neural network enhancement, 
as shown in Figure 8, the corrected critical energy of 96 samples was lower than the tran-
sient energy, and they were correctly judged as unstable. For comparison, the 100 error-
discriminated samples were also used as inputs, but the machine learning algorithm used 
was decision tree, and its training mode is consistent with that of a convolutional neural 
network. The corrected critical energy, transient energy and initial critical energy of its 
output are shown in Figure 9. It can be seen that the corrected critical energy of 13 samples 
is still lower than the transient energy, and these 13 samples will still be wrongly judged. 

The results of the transient energy function enhanced by the convolutional neural 
network are shown in Table 2. The three evaluation indicators of accuracy rate (ACC), 
false positive rate (FAR) and missed positive rate (MAR) were used to measure the dis-
crimination accuracy of the intelligent enhancement framework, and the results are 
shown in Table 3. 

It can be seen from Table 3 that the proposed method of generator clustering and con-
volutional neural network enhancement of critical energy can greatly improve the accu-
racy of stability judgment and reduce the false positive rate and missed positive rate. 
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Figure 8. Enhanced energy function curve based on convolutional neural network. 

 
Figure 9. Enhanced energy function curve based on decision tree. 

Table 2. Confusion matrix of stable results. 

 
Intelligent Enhanced Transient Energy Function Method for  

Determining Stability Results 
Stable Unstable 

Actual stability judgment results 
Stable 827 60 

Unstable 7 106 

Table 3. Evaluation index of transient stability evaluation. 

Evaluation Indica-
tors 

Intelligent Enhanced 
Discrimination 

Transient Energy Function Method for 
Generator Clustering Only 

Transient Energy Function Method 
Without Enhancement 

Intelligence Model 
Using DT Instead of 

CNN 
ACC/% 93.3 88.1 81 90.1 
FAR/% 6.76 10.78 11.79 8.71 
MAR/% 6.19 11.85 12.35 9.43 

4. Conclusions 
This paper proposes a method for judging the stability of the power system through 

the transient energy function method. Firstly, S-transformation is performed on the power 
angle data of generating units to extract characteristic data, and then the principal com-
ponent analysis method is used to reduce the dimension of characteristic data. Finally, the 
k-means clustering method is used to group the power system to obtain the two-machine 
equivalent model of the system. The convolutional neural network is used to modify the 
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critical energy of the system, and the corrected critical energy is output to make it meet 
the actual stability requirement to improve the accuracy of stability discrimination. The 
specific research content and contributions of this paper are summarized as follows: 
(1) By analyzing the trend in power angle changes of generators after faults using the 

sT-kmeans clustering method, the generators were clustered and the optimal cluster-
ing results were obtained. Based on this, a two-machine equivalent model was estab-
lished, and a transient energy function model was derived from it. The formulas for 
calculating transient energy and critical energy were given, and the instability crite-
rion was derived. 

(2) The critical energy of the system was corrected by using a convolutional neural net-
work. The corrected critical energy can better improve the accuracy of the transient 
energy method. The enhanced model’s stability judgment accuracy increased from 
81% to 93.3%. 
Currently, the transient stability assessment model proposed in the paper is designed 

to cater to both offline and online application scenarios grounded in simulation-based 
analysis. By significantly reducing model training time while enhancing evaluation accu-
racy, this approach offers a substantial advantage for electric utilities and power system 
operators. It enables expedited and reliable stability assessments with a relatively low 
computational burden, thereby addressing critical operational needs in power system 
management. 

Future research directions will include, but are not limited to, the selection of direct 
methods for the stability discrimination of other power systems and the selection of more 
advanced neural networks for enhancement. 
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