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Abstract: This paper presents a novel machine learning framework useful for optimizing en-
ergy consumption in households. Home appliances have a great potential to optimize electricity
consumption by mitigating peaks in the grid load or peaks in renewable energy generation. However,
such functionality of home appliances requires their users to change their behavior regarding energy
consumption. One of the criteria that could encourage electricity users to change their behavior is
the cost of energy. The introduction of dynamic energy prices can significantly increase energy costs
for unsuspecting consumers. In order to be able to make the right decisions about the process of
electricity use in households, an algorithm based on machine learning is proposed. The presented
proposal for optimizing electricity consumption takes into account dynamic changes in energy prices,
energy production from renewable energy sources, and home appliances that can participate in
the energy optimization process. The proposed model uses data from smart meters and dynamic
price information to generate personalized recommendations tailored to individual households.
The algorithm, based on machine learning and historical household behavior data, calculates a metric
to determine whether to send a notification (message) to the user. This notification may suggest in-
creasing or decreasing energy consumption at a specific time, or may inform the user about potential
cost fluctuations in the upcoming hours. This will allow energy users to use energy more consciously
or to set priorities in home energy management systems (HEMS). This is a different approach than
in previous publications, where the main goal of optimizing energy consumption was to optimize
the operation of the power system while taking into account the profits of energy suppliers. The
proposed algorithms can be implemented either in HEMS or smart energy meters. In this work,
simulations of the application of machine learning with different characteristics were carried out
in the MATLAB program. An analysis of machine learning algorithms for different input data and
amounts of data and the characteristic features of models is presented.

Keywords: machine learning; home energy management systems; smart appliances; household
energy consumption profiles; elastic energy management

1. Introduction

The electricity market is currently facing challenges resulting from significant legal and
technical modifications implied by both regulators and market participants [1]. These chal-
lenges create a real opportunity for the effective implementation of mechanisms enabling
the stimulation of electricity consumption management systems or shaping energy con-
sumption through conscious behavior of recipients [2,3]. One of the tools enabling the
implementation of this goal is dynamic electricity tariffs. This is a demand-side manage-
ment technique that can reduce the peak load of electricity networks by setting different
prices for electricity at different times depending on its supply and demand [4]. Peaks in
the load profiles of the electricity system are the result of unregulated demand, resulting
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mainly from the habits of electricity consumers, and a huge volume of generating capacity
or other energy flexibility services is required to cover the peak load [5]. Often, this peak
capacity of sources remains unused during off-peak periods, which results in a loss of
profits and reduces the efficiency of the entire system. Additional services enabling the
provision of capacity are also quite expensive and affect the prices of electricity. Dynamic
pricing can influence electricity consumer behavior and shift energy consumption from
peak to off-peak system load conditions.

In the classic structures of charging for electricity consumption in retail markets, flat
prices (with fixed values) or block prices (the rate per unit of electricity either increases
or decreases with the increase in the number of blocks of electricity consumption) were
usually offered [6]. With flat fees, prices remained constant regardless of demand and
energy production costs. This method of billing meant that the consumer of electricity
was not interested in saving it, which resulted in the fact that the costs of generating
electricity to meet peak demand were high compared to the costs outside the peak demand
and did not reflect the actual costs of energy production and distribution. Block prices
had a negligible effect on electricity consumption. The situation in the electricity market
has changed significantly with the increase in the number of renewable energy source
(RES) installations, energy storage facilities, and the emergence of prosumers. In addition,
many countries are introducing laws requiring significant reductions in greenhouse gas
emissions in various areas of life, including the transition to a low-emission energy system.
Changes leading to a carbon-neutral energy system and the introduction of additional
mechanisms for differentiating electricity prices will have a significant impact on consumer
behavior. Consumer behavior should be supported by home energy management systems
(HEMSs). The functionality of the HEMS should automatically plan the management
of energy consumption by smart household appliances based on received signals about
electricity production from RES, as well as signals about current dynamically changing
energy prices. Changing the electricity consumption profile driven by energy prices for
individual households is seen as a demand energy response service with great potential
to reduce peaks in electricity demand. In addition to reducing peak demand, dynamic
electricity tariffs also provide each consumer with the opportunity to reduce their electricity
bill at a constant level of consumption by changing their energy consumption pattern
(load shifting).

With the introduction of dynamic electricity tariffs, the operation of the HEMS will be
determined mainly by price signals, and customers will react to oversupply or undersupply
of energy in the electricity grid by changing their electricity consumption, thus supporting
the stability of the grid. The costs of participation of households, including the loss of
comfort of using electricity, changing habits, and financial costs, must be taken into account
when building an HEMS [7–9]. Without the construction of a user-friendly HEMS system
that is effective in reducing electricity bills, households may have significant barriers to
accepting dynamic tariffs and participating in the creation of a friendly low-emission
energy system. In the scientific literature, there are various review and research articles
describing the impact of dynamic tariffs on consumer behavior or improving the stability
of the power system. In [10], a systematic review of the literature on dynamic electricity
pricing was conducted in order to understand the evolution of research in this area. Six
main thematic areas of research on dynamic electricity pricing were presented: pricing
scheme and modeling, price impact, user demand response, consumption scheduling
and load scheduling technologies, cybersecurity threats, and fairness issues. In [11], the
authors proposed three dynamic electricity tariffs. Then, using a demand response model of
households with different annual electricity demands, different load-shifting capacities, and
with or without the presence of a heat pump, the possible gross cost savings of households
and CO2 emission reductions were assessed. In [12], the benefits for different types of
households resulting from increased automation, the choice of different electricity pricing
options (dynamic tariffs), and the use of the possibility of participating in demand response
programs were investigated. The results show that automated households with HEMSs
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have lower electricity bills. The literature on household energy management, as presented
in [13], highlights the significance of optimizing energy consumption in residential settings.
For instance [13], delves into the intricate problem of optimizing the operation of a multi-
energy building microgrid under various uncertainties.

In paper [14], the problem of dynamic pricing and scheduling of energy consumption
in a microgrid is investigated, where the service provider acts as an intermediary between
the utility company and the customers, buying electricity from the utility company and
selling it to the customers. The service provider uses dynamic pricing to manage the
microgrid. The authors propose a reinforcement learning algorithm that allows each service
provider and customer to learn about their energy management strategy, including costs.
The proposed energy scheduling algorithm enables them to reduce system costs due to the
learning ability of both the provider and each customer. The proposed approach considers
the specific problem of intermediating energy consumption by the service provider that
also involves the customer, but does not take into account renewable energy sources also
owned by the energy consumers. The article does not take into account HEMS control
on the consumer side. An online reinforcement learning approach for specific recipients
such as electric vehicle charging stations was proposed in the article [15]. The large share
of electric vehicles as energy recipients is related to the rapid increase in demand for
electricity causing load peaks in the power grid. Establishing an online pricing strategy is
one way to solve the problem of increased energy consumption resulting from the use of
EVs. The algorithm provides information on energy prices for a specific group of recipients,
optimizing the operation of the network and the profits of a given electric vehicle charging
station. This is not an algorithm for optimizing customer profits.

The use of the flexibility potential of the residential sector to modify electricity con-
sumption patterns using appropriate pricing policies and HEMSs was the subject of, among
others, the paper [16]. This paper presents a reinforcement learning (RL) approach to a
price-based demand response (DR) program, where heating electrical appliances (EC) were
the main controlled device. The results show the effectiveness of the proposed DR program,
maximizing the aggregator’s profits and satisfying the HEMS needs, while maintaining the
system constraints. This algorithm primarily optimizes the energy seller’s profits, taking
into account the system constraints, and only indirectly affects the financial burden on
electricity consumers. In the next article [17], the application of a smart meter with IoT
technology and machine learning techniques is presented. The implemented machine
learning algorithms are proposed to monitor and predict energy consumption. In this study,
the authors estimate the electricity consumption of household appliances in an apartment
using machine learning techniques, which are then used in demand management algo-
rithms. Additionally, the proposed IoT system allows the consumer to remotely view the
individual energy consumption indicator and possible prediction of energy consumption.
The article does not link the management algorithm with dynamic prices. A case study
of an HEMS for a two-story detached house in Japan with a dynamic pricing model is
presented in the paper [18]. The next-day energy consumption forecast is developed based
on historical data using a particle swarm optimization regression vector machine algo-
rithm. Additionally, a dynamic pricing model is developed to guide the users’ electricity
consumption behavior and consider the power grid constraints. Three pricing schemes
are proposed to optimize energy prices and consumer behavior. The proposed approach
does not continuously determine the energy cost information but presents general pricing
scenarios and their benefits. In [19], a deep-learning-based adaptive dynamic programming
algorithm (ADPA) was presented to integrate real-time pricing with demand-side energy
management optimization for microgrids. Machine learning methods are increasingly
employed in short-term load forecasting for distribution transformer supply zones, particu-
larly in the context of growing data privacy concerns. The research presented in [20] serves
as an excellent example.

The presented brief review of previous research works indicates that the common
goal of the works was to manage energy in such a way as to reduce the load on the
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power grid and also to optimize its operation in the context of operating costs. The
indicated publications also indicate the optimization of energy distributors’ profits as the
main goal, taking into account the limitations of the power grid. Information on energy
costs on the consumer side is indirect information, which is intended to force changes in
consumer behavior. The literature review shows a gap in knowledge, indicating the lack of
publications clearly indicating electricity consumers as the main beneficiaries of the applied
machine learning techniques, which are intended to optimize the incurred costs for energy
in dynamically changing energy prices. Additionally, the algorithms proposed in our article
are intended to support the increase in self-consumption of energy from renewable energy
sources and support the operation of the power system through additional information
transmitted to HEMSs. The proposed machine learning techniques do not yet take into
account the use of battery energy storage.

The primary objective of this paper is to introduce a novel energy management solu-
tion, leveraging machine learning techniques, to empower users to minimize electricity
costs. By providing timely recommendations, the HEMS aims to help users reduce energy
consumption during peak hours and increase it during off-peak periods, especially when
RESs are available. This approach benefits both users and distribution system operators
(DSOs) by optimizing energy consumption patterns and reducing peak demand. Our re-
search addresses a critical knowledge gap by developing an algorithm that prioritizes
cost minimization for electricity consumers. This algorithm operates under dynamic en-
ergy pricing conditions, taking into account both historical user behavior and real-time
renewable energy generation. While the primary focus is on reducing energy costs, this ap-
proach indirectly contributes to a more sustainable energy system by promoting increased
self-consumption of renewable energy and reducing peak load demand on the power
grid. By raising user awareness of energy consumption patterns and providing actionable
insights, this solution can help foster a low-carbon future. The results presented in the
paper indicated that the proposed approach achieved a dynamic balance between electricity
supply and demand considering peak shaving and valley filling problems, and improved
the rationality of the energy management strategy, thus ensuring the stable operation of
the microgrid.

This paper is organized as follows: Section 2 provides a detailed description of the
research problem, including a thorough examination of the research question, its theoretical
foundations, and context. Section 3 justifies the choice of a specific machine learning model
or algorithm and describes the data preparation process. This chapter also presents a
detailed description of the model implementation, including the selection of libraries, tools,
and programming environment. Section 4 describes the conducted simulations, including
detailed descriptions of the simulation experiments, presentation of the results, and analysis
of the results. The final chapter summarizes the most important findings and proposes
directions for future research.

2. Description of the Research Problem

There are various ECs in an HEMS. These include conventional EC and smart appli-
ances (SA). In the case of SAs, these appliances are characterized by the ability to adjust
their power consumption level PSA through control functions. This refers to the conscious
actions of the user, e.g., by turning them on or off. It is also possible to change PSA by
changing the way the SA operates. This functionality can be used, for example, in an air
heater, where there is more than one heating element. Air conditioners and heat pumps are
other excellent examples [21]. The change in PSA can also occur as a result of a change
in the operating mode of the SA itself. Currently, eco modes are very often used in SAs,
which reduce energy consumption. Additionally, SA manufacturers develop dedicated
applications that allow for the management of individual ECs. In an HEMS, there are also
a large number of ECs that do not have SA functionality. The lack of measurement and
control functions means that the user himself is responsible for ensuring balanced energy
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consumption. Such actions can be supported by the use of energy cost meters, which often
include a remote control control function.

Despite the technological possibilities for the remote control of various ECs, users are
reluctant to use such solutions. The problem is not the need to purchase additional ECs,
but the fear of novelty and the need for education on new software and hardware solutions.
For this group of users, the article will propose a solution that will aim to provide sim-
plified messages. The messages will inform the user whether they should reduce energy
consumption in the HEMS at a given moment (message = ‘reduce consumption’) or, on
the contrary, increase energy consumption (message = ‘increase consumption’). It will
also be proposed to leave the energy consumption at an unchanged level (message = ‘do
not modify consumption’). Based on individual messages, the user will be able to con-
sciously decide to start additional energy-intensive appliances or turn them off. Individual
messages will be generated by the machine learning [22] algorithm presented in the article.
In this case, the current price of electricity cost read from DSO, profiles of individual SA
receivers, and conventional ECs connected to the electrical network using energy cost
meters will be taken into account. The upper power threshold (PHEMSH ) and the lower
power threshold (PHEMSL ) in the HEMS are also considered. The threshold value PHEMSH
means the maximum power value that can be drawn by all ECs in an HEMS. In an HEMS,
the power value drawn by all EC below the PHEMSL threshold may indicate a situation
where energy from RES is available. In the absence of energy storage, this energy should
first be used for the HEMS’s own needs. The proposed approach can be classified as a
solution for elastic energy management (EEM) [23]. The user will be supported by machine
learning to manage energy flexibly, taking into account the cost and power threshold for
excessive or insufficient energy consumption. The wider application of such an approach in
many HEMSs can also have a positive impact on DSOs due to the possibility of balancing
the peak demand phenomenon [24] in power grids.

To verify the concept of applying machine learning to EEM, it was necessary to obtain
data on real electricity consumption profiles in a sample HEMS. The structure of the data
acquisition system is presented in Figure 1.

Home electrical grid

Smart appliance

washing 
mashine

fridge

lighting

air conditioner

electric car 
with charger

Tuya Cloud

data in 
JSON 

format

DSO

Stock 
market

SEM8500 6-Socket 
Wi-Fi Energy 
Consumption 

Meter

STATUSSTATUS

€ 
COST 

Weather 
conditions

EEM 
algorithm

Figure 1. A system for collecting real-time energy consumption data from ECs within an HEMS.

Power consumption profiles of thirteen appliances were acquired using an Energy
Consumption Meter SEM8500 6-Socket Wi-Fi [25] and transmitted to the Tuya Cloud [26]
in JSON format [27]. The resulting data are presented in Figure 2.

The profiles presented in Figure 2 exhibit a wide range of energy consumption levels.
The TV set consumed relatively low power over an extended period of approximately two
hours. In contrast, the kettle drew a high power level only for the short duration required to
boil water. The remaining appliances’ energy consumption patterns were associated with
everyday activities such as cooking, laundry, and cleaning. Individual power consumption
profiles PSA were determined based on a dataset collected over a 30-day period. This
allowed for the characterization of energy consumption profiles of a typical user in a single
HEMS. Figure 1 also presents additional control signals that influence the cost. These
include the electricity price for a given tariff, control signals from the DSO resulting from
the need to counteract peak demand, and weather conditions. Weather conditions are
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particularly significant due to their unpredictable nature and ability to directly impact the
power grid infrastructure during natural disasters. For simulation purposes, example time
intervals were assumed to reflect the cost of a given electricity tariff (Figure 3). The three
adopted cost levels represent situations where the electricity price is: ‘cheap’, ‘normal’,
or ‘expensive’.

Figure 2. Power consumption profile PSA of thirteen ECs.

Figure 3. Temporal distribution of cost.
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The cost distribution depicted in Figure 3 is designed to reflect the typical daily
electricity consumption pattern. Peak demand typically occurs between noon and late
evening, primarily due to increased user activity during these hours. To incentivize users
to shift their consumption, the electricity price is increased during peak demand periods.

The proposed supervised machine learning algorithm (Algorithm 1) outlines the
planned machine learning functionality for generating messages that will assist users in
making decisions about their energy consumption behavior.

Algorithm 1 Supervised machine learning algorithm for providing users with personalized
recommendations on selecting one of the suggested energy consumption modes.

1: User Message Declaration (message): ‘increase consumption’, ‘reduce
consumption’, ‘do not modify consumption’

2: Definition of electricity cost (cost): ‘cheap’, ‘standard’, ‘expensive’
3: Read off the lower power threshold in the HEMS (PHEMSL )
4: Read off the upper power threshold in the HEMS (PHEMSH )
5: repeat
6: Read off the power consumed by the SAs (∑ PSA)
7: if ∑ PSA≥ PHEMSH then
8: return message ▷ ‘reduce consumption’
9: else if ∑ PSA≤ PHEMSL then

10: return message ▷ ‘increase consumption’
11: else
12: if cost is ‘expensive’ then
13: return message ▷ ‘reduce consumption’
14: else if cost is ‘standard’ then
15: return message ▷ ‘do not modify consumption’
16: else if cost is ‘cheap’ then
17: return message ▷ ‘increase consumption’
18: end if
19: end if
20: until ∞

Algorithm 1 begins by initializing a set of user messages and defining thresholds
PHEMSL and PHEMSH . Throughout its operation, the algorithm continuously monitors the
total power consumption (∑ PSA) of all active ECs. This monitoring is essential to detect
excessive power draw, which could potentially damage the electrical installation in the
HEMS. If RESs are available, the algorithm will prompt the user to increase their energy
consumption to avoid feeding excess power back into the grid. To reduce electricity bills,
when the cost is ‘expensive’, the algorithm will encourage the user to decrease their
power consumption. Conversely, when the cost is ‘cheap’, the user will be prompted to
activate additional appliances. For time periods when the cost is ‘standard’, the user
will not need to take any additional actions to adjust the power settings of their appliances.

3. Description of Supervised Machine Learning Implementation

In the following sections of this paper, we will present the details of the supervised
machine learning implementation used to determine the user message. All operations
involving training models to classify data were conducted under the assumption of a
known set of input data (observations or examples) and known responses to the data
(labels or classes). Simulation studies were carried out in MATLAB R2024b. A set of input
data, along with its description, is presented in Table 1.

For input data conforming to the assumptions outlined in Table 1, cross-validation
was performed with five folds to mitigate overfitting. Five-fold cross-validation [28] was
chosen for its ability to balance model accuracy and computational cost. Dividing the
data into five folds allows for a sufficient number of iterations to obtain a reliable model
evaluation, while avoiding excessive computational time. Additionally, five-fold cross-
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validation minimizes the risk of overfitting, as each subset of data is used for both training
and testing. Supervised machine learning using various classifiers to categorize the input
data from Table 1 was conducted for the machine learning models (ml) presented in Table 2.

Table 1. Input data and target variable specification for machine learning model.

Predictor Name Description

time Input data (observation) indicating the time at which the event occurred

kitchen hood, microwave oven, etc. Input data (observation) indicating the power consumption values of an
individual EC as shown in Figure 1

power sum
Input data (calculation) representing the total power consumption of all ECs at the

time specified by time

energy price
Input data (calculation) allowing for the determination of the cost at the time

specified by time based on the data presented in Figure 3
message Response for input data considering Algorithm 1

Table 2. Machine learning models and their characteristics.

Machine Training Models Description

ml1 Fine tree
ml2 Efficient logistic regression
ml3 Kernel naive Bayes
ml4 Linear support vector machine (SVM)
ml5 SVM kernel—a Gaussian kernel classifier for nonlinear classification of data
ml6 Boosted trees

ml7
Narrow neural network—a neural network classifier with one fully connected

layer of size 10

The fine tree (ml1) model was selected due to its ability to handle both numerical and
categorical data, its interpretability, and its capability to handle missing values. The efficient
logistic regression (ml2) model was chosen for its speed and efficiency, especially with
large datasets; its probabilistic outputs; and its interpretable coefficients. The kernel naive
Bayes (ml3) model was selected for its ability to handle both continuous and categorical
data, its relative simplicity and efficiency, and its capability to handle missing values.
The linear support vector machine (SVM) (ml4) model was chosen for its effectiveness
in high-dimensional spaces, its ability to handle complex decision boundaries, and its
robustness to outliers. The SVM kernel–Gaussian kernel classifier (ml5) model was selected
for its ability to handle non-linearly separable data, its effectiveness in high-dimensional
spaces, and its robustness to outliers. The boosted trees (ml6) model was chosen for its
high accuracy, robustness, ability to handle complex relationships between features and
the target variable, and its capability to handle missing values. The narrow neural network
(ml7) model was chosen for its ability to learn complex patterns, its high flexibility, and its
capability to handle large datasets.

To preserve the original characteristics of the data, no data cleaning was performed,
except for handling missing values using mean imputation. A new feature, power sum, was
introduced to capture the total power consumption of all ECs (Table 1). All features were
normalized using min-max scaling to improve model convergence. This approach allowed
us to maintain the authenticity of the data while enhancing the performance of the models.

For model ml1, a classification tree was constructed using the MATLAB function
fitctree. The Gini diversity index was employed as the splitting criterion, with the maxi-
mum number of splits set to 100. Surrogate splits were disabled. To build the ml2 model, a
decision tree classification algorithm implemented in MATLAB’s fitctree function was
employed. A templateLinear template was used to create a base model, defining a lo-
gistic regression classifier with automatic tuning of the regularization parameter lambda.
Additionally, a beta change tolerance of 0.0001 was set. The final multi-class classifier,
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classificationLinear, was trained on the training set using a one-versus-one strategy
and predefined classes. A naive Bayes classification model (ml3) was constructed using
MATLAB’s fitcnb function. A normal kernel was selected, assuming a normal conditional
distribution for features within each class. The Support parameter was set to Unbounded,
allowing features to take on any value. Data standardization was applied to eliminate dif-
ferences in scales between features. For the ml4 model in MATLAB, a linear SVM classifier
was employed using the fitcecoc function. The SVM was configured with a linear kernel,
automatic kernel scale, and a box constraint of 1. Data standardization was applied prior to
training. A one-vs-one SVM classifier, implemented using MATLAB’s fitcecoc function,
was employed for the ml5 model. The SVM kernel was automatically selected, and the
model was trained with a maximum of 1000 iterations. For the ml6 model, we employed
MATLAB’s fitcensemble function to train an AdaBoost ensemble classifier. The ensemble
consisted of 30 decision trees, each with a maximum of 20 splits. The learning rate was
set to 0.1. For the construction of the neural network model ml7 in MATLAB, the fitcnet
function was employed with the following settings: the network had one hidden layer
consisting of 10 neurons with a ReLU activation function; the training process was carried
out using the stochastic gradient descent algorithm with an L2 regularization coefficient
of 0; and the maximum number of iterations was set to 1000. Prior to training, the input
data were standardized.

4. Results of Simulation Studies

The initial machine training of models (ml) to classify input data (Table 1) was con-
ducted under the assumption of limiting the input dataset to a single day, instead of the
full 30-day period for which HEMS data was collected (Figure 1). Moreover, in these
experiments, no explicit data partitioning was performed to reserve a portion for testing.
A comparison of the resulting classification accuracy for the message generated by the ml
listed in Table 2 is presented in Figure 4.

The highest classification accuracy for the message was achieved by ml3 (Table 2). The
remaining six ml exhibited similar classification accuracy levels. To further analyze the
best-performing model, ml3, a validation confusion matrix was generated (Figure 5).

Based on the data presented in Figure 5, it can be observed that the currently se-
lected classifier misclassified messages in each class. The most significant misclassification
occurred when the true class was ‘reduce consumption’ but the predicted class was
‘increase consumption’.

To investigate the impact of reserving a percentage of the data for testing on the
classification accuracy of the message, the simulation experiments were repeated. A 10%
portion of the input data was set aside for testing. The results of the validation confusion
matrix for ml3 with 10% of the data reserved for testing are presented in Figure 6.

Allocating an additional 10% of the data for testing resulted in a degradation of the
classification performance for message between the true class and the predicted class. This
outcome is attributed to an insufficient amount of training data for ml. In subsequent
simulation studies, the size of the training dataset was increased to encompass the full
30 days of data collected from the selected HEMS (Figure 1). The assumptions for these
subsequent simulation studies are described in the test scenarios (sc) outlined in Table 3.

For comparative purposes, Table 3 includes additional sc for a single day without (sc1)
and with a test set (sc2). Scenarios sc3 to sc6 were designed to determine the minimum
number of days required for each ml to achieve satisfactory classification accuracy for the
message. The results of the accuracy experiments demonstrating the relationship between
sc and ml are presented in Figure 7.
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Accuracy [%]

Figure 4. Comparison of message classification accuracy for one day: without a test set of data
reserved for testing.
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Figure 5. Validation confusion matrix for ml3 for a single day without a reserved test set.
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Figure 6. Validation confusion matrix for ml3 using a single day of data with a 10% test set.

Figure 7. Simulation results for ml models, showing accuracy for different scenarios (sc).

Table 3. Test scenario parameters for model evaluation.

sc 10% of the Known Set of Input Data for
Training

Number of Days for Which the Known
Set of Input Data Was Defined

sc1 ✗ 1
sc2 ✓ 1
sc3 ✓ 3
sc4 ✓ 7
sc5 ✓ 14
sc6 ✓ 30
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Based on the accuracy results presented in Figure 7, ml6 exhibited the lowest classifi-
cation accuracy for the message. Increasing the size of the training dataset in subsequent
scenarios did not improve the accuracy for ml6. ml2 showed slightly better performance,
with an accuracy of around 70%. In contrast, ml3 achieved the highest accuracy for the
smallest training dataset size (sc1 and sc2). However, increasing the training dataset size
for ml3 led to an average improvement in accuracy of 5.8% in subsequent scenarios. For
ml1, ml4, ml5, and ml7, an accuracy of approximately 100% was achieved as early as sc3. In
summary, for small training datasets, ml3 is the best choice for maximizing the classification
accuracy of the message. For larger training datasets, ml1, ml4, ml5, or ml7 are preferable.

To conduct a more comprehensive analysis of the individual ml, further investigations
were carried out for test scenario sc6. Test scenario sc6 was selected due to its having the largest
input data size. For this purpose, the criteria of prediction speed (Figure 8), machine learning
model size (Figure 9), and training time (Figure 10) were used for comparative analysis.

Prediction speed enabled the determination of the prediction speed in observations
per second, a measure of the predictive model’s efficiency. It indicates the number of
observations a model can analyze and classify (or predict) in one second. Models ml3 and
ml5 exhibited the lowest comparable prediction speed values (Figure 9). In contrast, model
ml1 had a significantly higher prediction speed.

Prediction Speed (obs/sec)

Figure 8. Dependence of prediction speed on model architecture in scenario sc6.

Machine learning model size allowed us to determine the size of a given model,
specifically the number of parameters the model must learn during training. Models ml6,
ml1, ml2, ml4, and ml7 had comparably smaller machine learning model sizes (Figure 9).
Model ml3 had a significantly larger machine learning model size.

The training time parameter indicates the time it takes to train a machine learning
model. It is a key performance indicator, especially for large and complex models. Models
ml1, ml6, and ml2 had the lowest training time (Figure 10). Model ml5 had a significantly
higher training time.
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Model Size (bytes)

Figure 9. Relationship between model size and computational performance.

Training Time (sec)

Figure 10. Time required to train individual machine learning models.

To evaluate model performance, additional metrics were employed: precision, re-
call, and F1-score. Weighted averages were calculated for each metric, presented in
Figures 11–13, respectively. The choice of weighted averages was motivated by the need to
account for class imbalances in the dataset. This allowed for a more objective evaluation of
the model, particularly in cases of significant class imbalance.
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Weighted Precision %

Figure 11. Weighted precision of the classifier for sc6.

Weighted Recall %

Figure 12. Weighted recall of the classifier for sc6.
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Weighted F1 Score %

Figure 13. Weighted F1-score of the classifier for sc6.

For models ml1, ml5, ml7, ml4, and ml3, a weighted precision value above 90% indicates
a very high-quality model (Figure 11). This means that the model is highly effective in
identifying true positive instances, even in datasets with imbalanced class distributions.
In contrast, models ml2 and ml6 achieved a weighted precision of approximately 20%,
meaning that only about 20% of the instances classified as positive were actually positive.
The remaining cases were false positives, incorrectly classified as positive.

A weighted recall above 90% for machine learning models ml1, ml5, ml7, ml4, and ml3
signifies that these models are highly effective in identifying all actual positive cases within
the dataset (Figure 12). Models ml1, ml5, ml7, ml4, and ml3 rarely miss positive instances.
This implies that if a positive instance exists in the dataset, there is a very high probability
that models ml1, ml5, ml7, ml4, and ml3 will detect it. Since this is a weighted recall, models
ml1, ml5, ml7, ml4, and ml3 account for the weight of each class in the dataset. This means
they are effective in identifying both frequent and rare positive classes. These models
rarely misclassify positive instances as negative. A weighted recall value of 70% indicates
that model ml2 is fairly good at detecting actual positive cases. Model ml2 less frequently
overlooks instances that should be classified as positive. Model ml6, on the other hand,
misses many instances that should have been classified as positive. In other words, the
model has a high number of false negatives. Model ml6 is unable to effectively detect the
majority of cases belonging to the positive class.

Models ml1, ml5, ml7, ml4, and ml3 (Figure 13) effectively identify true positive cases
(high precision) while minimizing the number of false negatives (high recall). The F1-score,
being the harmonic mean of precision and recall, indicates a good balance between these
two metrics when its value is high. A high weighted F1-score suggests that models ml1,
ml5, ml7, ml4, and ml3 perform well on both frequent and rare classes, as it considers the
weight of each class in the calculations. In contrast, a weighted F1-score of 60% indicates
moderate performance for model ml2. A low weighted F1-score means that model ml6
is unable to classify instances effectively. Model ml6 frequently misclassifies instances as
positive (false positives) and misses many cases that should have been classified as positive
(false negatives).
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According to the evaluation metrics of precision, recall, and F1-score, models ml1,
ml5, ml7, and ml4 are the most suitable for test scenario sc6. These models achieved high
precision, recall, and F1-score, indicating a strong ability to accurately classify instances
and balance between precision and recall.

Based on the comparative analysis of previously presented data, machine learning
model ml1 was selected due to its superior performance among the evaluated algorithms.
A comprehensive case study was conducted on ml1. The case study was conducted based
on the results of implementing the ml1 within the MATLAB environment. The function
ml1.predictFcn was utilized to generate predictions. The case study involved a domestic
setting where various energy-consuming SAs operated according to the schedule depicted
in Figure 14. The schedule outlined the operation of energy-consuming SAs for household
tasks such as cleaning and cooking. Additionally, a low, periodic energy consumption
was assumed for appliances like refrigerators. Activities such as ironing and using the
stove resulted in short-term spikes in energy demand. For the energy consumption profile
illustrated in Figure 14, a case study was performed following the algorithm presented in
Algorithm 1. Moreover, the analysis incorporated energy prices corresponding to the costs
outlined in Figure 3.

Figure 14. Household energy consumption schedule for a case study.

Figure 15 illustrates the total power demand of all electrical SAs (∑ PSA) at any given
moment in time (t). The figure also highlights the specific time intervals during which the
machine learning algorithm ml1 will deliver notifications messages to the user.

An analysis of the notifications messages generated (Figure 15) demonstrates a clear
correlation with the energy costs presented in Figure 3. The machine learning algorithm
ml1 leverages these cost data to provide the user with recommendations for appliance
usage during off-peak hours, when electricity rates are lower. As outlined in the algorithm
depicted in Algorithm 1, the content of these notifications messages varies at approximately
6:00, 8:00, and 16:00. During these time periods, the user is alerted to the possibility
of exceeding the predefined power threshold (PHEMSH ) and is advised to reduce energy
consumption accordingly.
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Figure 15. Prediction of message indications for a user based on the ml1.

5. Conclusions

This paper presents a novel approach to HEMS energy management based on super-
vised machine learning. Instead of automatically activating or deactivating appliances, the
system provides suggestions in the form of notifications (message). Users are not required
to analyze power consumption levels of individual appliances, current electricity prices, or
the status of the power grid. Simulations were conducted to evaluate various mls. Input
data were collected from electrical appliances in a sample household to create diverse sc.
The mls were assessed based on the accuracy of their predictions and model complexity.
The research also considered the impact of the machine learning model size, expressed in
terms of the number of parameters, on its deployability on ECs with limited computational
resources. For the selected ml, an analysis of of notifications (message) for specific events
was conducted.

The main objectives of this work were: to optimize the multi-source power supply
in the microgrid (increase the self-consumption of energy from local sources); to adapt
flexible power sources in the microgrid (e.g. energy storage) in order to reduce the overall
operating costs; and to achieve the goals of developing a sustainable energy network. This
work does not consider the optimization of energy costs on the consumer side but only
considers the optimization of the power system operation.

The proposed method of supporting the decision-making processes of electricity
consumers in the article, taking into account the current load profiles and current generation
of energy from renewable energy sources and information on dynamic prices, has a limited
impact in the form of information on the possibilities of reducing electricity costs through
its appropriate use. In the future, research is planned on including barrage energy storage
in the decision-making process, as well as signals with information on short-term prediction
of energy prices and prediction of generation from renewable energy sources. Additionally,
research is planned to include the proposed machine learning algorithms in automated
HEMSs. The last research proposal is behavioral studies of electricity consumers with
algorithms taking into account the approach of notification of energy prices with automated
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algorithms. This research should provide information on whether a permanent change in
the behavior of electricity consumers will not be a better solution than the most advanced
energy management algorithm.
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Abbreviations
The following abbreviations are used in this manuscript:
ADPA adaptive dynamic programming algorithm
‘cheap’, ‘normal’,
‘expensive’

levels representing situations what the electricity price is

cost includes the electricity price for a given tariff, control signals from
the DSO resulting from the need to counteract peak demand, and
weather conditions

DR demand response
DSO distribution network operators
EC electrical appliance
EEM elastic energy management
energy price input data (calculation) allowing for the determination of the cost at

the time specified by time based on the data presented in Figure 3
HEMS home energy management system
‘increase consumption’,
‘reduce consumption’,
‘do not modify
consumption’

defined messages that will be presented to the user to help them
decide on modifying the EC operation

JSON JavaScript Object Notation
kitchen hood, microwave
oven, etc.

input data (observation) indicating the power consumption values
of individual EC

message response for input data considering Algorithm 1
ml machine learning models
PHEMSH the upper power threshold
PHEMSL the lower power threshold
power sum input data (calculation) representing the total power consumption of

all EC at the time specified by time
PSA power consumption of smart appliance
RES renewable energy sources
RL reinforcement learning
SA smart appliances
sc test scenario
SVM support vector machine
time input data (observation) indicating the time at which the

event occurred
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