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Abstract

:

This paper presents a novel framework that integrates Conditional Generative Adversarial Networks (CGANs) and TimeGAN to generate synthetic Building-Integrated Photovoltaic (BIPV) power data, addressing the challenge of data scarcity in this domain. By incorporating time-related attributes as conditioning information, our method ensures the preservation of chronological order and enhances data fidelity. A tailored learning scheme is implemented to capture the unique characteristics of solar power generation, particularly during sunrise and sunset. Comprehensive evaluations demonstrate the framework’s effectiveness in generating high-quality synthetic data, evidenced by a 79.58% improvement in the discriminative score and a 13.46% improvement in the predictive score compared to TimeGAN. Moreover, integrating the synthetic data into forecasting models resulted in up to 23.56% improvement in mean absolute error (MAE) for BIPV power generation predictions. These results highlight the potential of our framework to enhance prediction accuracy and optimize data utilization in renewable energy applications.
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1. Introduction


The building sector significantly impacts the environment, responsible for approximately 34% of global energy consumption and 37% of CO2 emissions in 2021 [1]. In response to this concern, there has been an increase in the introduction of net-zero-energy buildings, which aim to meet their energy needs through on-site renewable resources while prioritizing energy efficiency [2]. Building-Integrated Photovoltaic (BIPV) represents a contemporary architectural approach towards achieving net-zero-energy buildings by integrating photovoltaic (PV) systems into building exteriors, substituting conventional materials with PV modules [3]. Despite the benefits of BIPV, the practical implementation and optimization of BIPV systems require the accurate forecasting of power generation outputs [4]. However, forecasting BIPV power generation is inherently challenging due to the dynamic interplay of factors such as weather variations, building characteristics, and environmental influences [5,6].



To address these forecasting challenges, several approaches have been developed, broadly categorized into physics-based, simulator-based, and data-driven methods [7,8]. Physics-based methods calculate solar power generation using mathematical equations based on the characteristics of PV modules and environmental factors [9]. Simulator-based methods rely on specialized tools and databases, such as PVGIS, PVSyst, and PV*SOL, to estimate solar irradiance and power generation based on geographical and meteorological data [8]. While these approaches provide useful insights into long-term trends [10], they often struggle to handle the intermittent and localized variability of solar power generation, especially in BIPV systems [11].



Moreover, simulation tools and databases, while valuable for PV performance estimation and general irradiance data, lack the granularity and specificity needed for individual BIPV systems. BIPV installations are influenced by unique factors such as building orientation, local shading, and specific installation conditions [12]. Since BIPV systems are integrated into the building envelope, their performance is highly dependent on architectural features that general databases cannot capture. This limitation means that these tools may not accurately reflect the real-world performance of specific BIPV installations [11]. This gap highlights the need for more adaptable forecasting methods tailored to the unique characteristics of BIPV systems. Generating synthetic data tailored to specific BIPV systems not only can overcome data scarcity but also capture the nuanced patterns and variations that traditional simulation tools miss, thereby improving forecasting accuracy.



Machine learning has emerged as an innovative tool for prediction tasks, leveraging historical data to improve forecasting accuracy [11]. Unlike physics- or simulator-based approaches, machine learning-based data-driven methods exhibit resilience to variations in hardware parameters and environmental input and robustness to partially missing data [13]. While simulator-based tools provide robust forecasts for planning, data-driven methods offer real-time adaptability, essential for dynamic conditions in BIPV systems [12]. Nonetheless, the scarcity of historical generation data, primarily due to inadequate data storage in most BIPV systems, presents a significant obstacle in BIPV forecasting [12,14].



The growing interest in BIPV forecasting emphasizes the critical need for solutions to the data scarcity issue, which hinders the development of robust prediction models [15]. To address this, transfer learning emerges as a promising solution. Transfer learning involves transferring a pre-trained model from a source domain to a target domain [16]. While the effectiveness of transfer learning in prediction problems has been demonstrated in several studies [15,17,18], implementing it in practical applications can present significant challenges. Its effectiveness depends on the availability of high-quality pre-training data [19], and the similarity between source and target domains [20].



Considering these challenges, we explore a data augmentation approach via Generative Adversarial Networks (GANs) to address the data scarcity challenge in BIPV forecasting. GAN is a framework for training generative models where two components, the generator and the discriminator, compete with each other to produce realistic data samples [21]. GAN enables the generation of synthetic data tailored specifically to the characteristics of the original dataset, mitigating the reliance on pre-existing labeled data [22]. While traditional GAN-based approaches have demonstrated effectiveness in static data-like images, generating high-quality time-series data remains challenging [23]. Advanced methodologies for time-series data, such as TimeGAN [24], have proven successful in generating time-series data; however, their applicability to BIPV power data remains limited due to BIPV data’s inherent complexities. The intermittent nature of solar power generation and its susceptibility to temporal external factors [25] present significant challenges in accurate data synthesis using conventional time-series data generation methods.



Hence, our work aims to address the challenges inherent in BIPV power forecasting by developing a tailored GAN-based data generation framework. The proposed framework captures the temporal dynamics of BIPV data, integrating seasonal, monthly, and hourly patterns. It utilizes the TimeGAN architecture, specifically adapted to reflect the intermittency and variability in solar power generation, providing a robust solution to data scarcity challenges.



1.1. Related Works


The accurate forecasting of PV power generation has been pursued using various machine learning (ML) techniques. Al-Dahidi et al. [26] developed an adaptive K-Nearest Neighbors (K-NN) model to dynamically estimate solar PV performance by identifying similar historical patterns and adjusting neighbor weights based on real-time conditions. Similarly, Qu et al. [27] proposed a hybrid attention-based CNN-LSTM architecture to enhance day-ahead forecasting by capturing both short-term and long-term temporal patterns. These approaches have shown promise in traditional PV systems, but they require large and high-quality datasets, posing limitations for data-scarce BIPV systems. This underscores the need for data augmentation techniques to overcome data scarcity, which is a central focus of our research. This challenge necessitates the development of data augmentation techniques—precisely the focus of our work.



In recent years, GANs have emerged as a powerful tool to generate synthetic data across various domains, such as image generation, natural language processing, and time-series forecasting [28,29]. Techniques such as Wasserstein GAN [30], CycleGAN [31], and StyleGAN [32] have further refined the generative process, addressing issues like mode collapse and improving the stability of training. These advancements have expanded the potential use cases of GANs, enabling them to produce high-quality, diverse, and contextually relevant data across different domains.



In the renewable energy sector, SolarGAN [33] stands out by generating stochastic solar irradiance time series for urban building facades through deep generative networks. SolarGAN emphasizes image-based inputs for irradiance prediction and focuses on urban energy planning scenarios. However, our framework differs fundamentally by targeting BIPV power generation forecasting. Unlike SolarGAN, which centers on irradiance from visual data, we focus on modeling temporal dependencies and variability critical to solar power generation data, such as seasonality and intermittency.



Our GAN-based framework is not a generic forecasting tool but is tailored to address the unique characteristics of BIPV systems. It integrates temporal conditions into the TimeGAN architecture to generate synthetic BIPV power generation data, ensuring accurate forecasting even with limited historical data. The generated data serve to enhance the performance of multiple forecasting models, demonstrating how our approach meets the specific challenges of BIPV forecasting by addressing data scarcity while accounting for the inherent variability of solar power systems.




1.2. Contributions


In this paper, we propose a novel GAN-based framework aimed at enhancing BIPV data generation by capturing complex temporal dependencies. Our framework leverages an extended TimeGAN architecture, incorporating key temporal elements like season, month, and hour, and is fine-tuned to accommodate the fluctuating nature of solar energy systems. This approach ensures that the synthesized data closely align with real-world conditions, fostering more accurate and reliable predictive models.



Our main contributions include the following:




	
Enhanced Data Generation: Our framework innovates data generation by integrating temporal conditions, enabling the synthesis of realistic BIPV power generation. This advancement addresses the crucial need for accurate and diverse datasets in the renewable energy domain.



	
Tailored Learning Scheme: We propose a novel approach that integrates additional adaptations with TimeGAN to effectively capture the intricate characteristics inherent in solar energy systems. This tailored learning scheme enhances both the feed-forward process and loss calculation stages, resulting in synthesized data that closely resemble real-world data.



	
Comprehensive Evaluation: To ensure the quality and reliability of the synthesized data, we introduce a set of evaluation metrics. These metrics enable a thorough assessment by quantitatively and qualitatively comparing the synthetic data against the original real-world dataset.



	
Improved Prediction Performance: The synthesized data from our framework enhance prediction accuracy across diverse prediction models. These models encompass traditional machine learning-based approaches and advanced deep reinforcement learning-based techniques.










2. Background


2.1. Generative Adversarial Networks


GANs [21] have revolutionized the field of generative modeling by introducing a novel approach based on adversarial training. Operating on the principle of a min-max game, GANs involve two key components: a generator G and a discriminator D. In this adversarial setting, the generator aims to produce realistic samples from input noise vector z sampled from the prior distribution, while the discriminator learns to differentiate between real samples from the data distribution and fake samples generated by the generator. The objective function of GAN is represented as:


   min G   max D  V  ( D , G )  =   E  x ∼  p data   ( x )     [ log D  ( x )  ]  +  E  z ∼  p z   ( z )     [ log  ( 1 − D  ( G  ( z )  )  )  ]   











Here,    p data   ( x )    represents the real data distribution,    p z   ( z )    denotes the prior distribution of noise input z,   G ( z )   represents the generated data from the generator given z, and   D ( x )   is the output of the discriminator indicating the probability that x comes from the real data distribution. By balancing these two competing objectives, the GAN framework achieves a dynamic equilibrium where the generator learns to produce increasingly realistic samples while the discriminator becomes more adept at distinguishing real from fake samples.




2.2. Conditional GANs


Conditional GANs (CGANs) [34] extend the vanilla GAN framework to generate data conditioned on additional information, introducing remarkable flexibility in generating diverse and contextually relevant samples. In CGANs, both the generator G and discriminator D receive additional conditioning information, denoted as c, alongside the noise input z during training. The objective function for CGANs is expressed as:


   min G   max D  V  ( D , G )  =  E  x ∼  p data   ( x )     [ log D  ( x | c )  ]  +  E  z ∼  p z   ( z )     [ log  ( 1 − D  ( G  ( z | c )  )  )  ]   











The core idea behind CGANs lies in modifying the objective function to include the conditional information c, thus enabling the generator to produce samples that match the desired conditions. This modification allows CGANs to generate data that are not only realistic but also contextually relevant, making them particularly useful for applications where specific attributes or conditions need to be met.





3. Methodology


We present a novel framework for generating BIPV power data by integrating Conditional GAN and TimeGAN. This integration seeks to harness the respective strengths of both methodologies, utilizing conditional information and temporal dependencies to produce realistic and contextually relevant time-series data. Additionally, we incorporate a tailored learning scheme into our GAN framework to effectively capture the unique characteristics of solar power generation data. The overarching goal of this fusion is to mitigate the dearth of BIPV power generation data, a pivotal obstacle within the renewable energy sector.



3.1. TimeGAN


TimeGAN [24] endeavors to capture the complexities inherent in the temporal dynamics of time-series data. Within vector spaces  S  for static features and  X  for temporal features, we denote the static and temporal vectors as   S ∈ S   and   X ∈ X  . These can be instantiated with specific values  s  and  x , respectively. TimeGAN utilizes tuples   ( S ,  X  1 : T   )   with a joint distribution p. The objective of TimeGAN is to learn a density    p ^   ( S ,  X  1 : T   )    that closely approximates the true distribution   p ( S ,  X  1 : T   )   from a training dataset   D =   (  s n  ,  s  1 : T  n  )   n = 1  N   . This learning task is simplified by exploiting the autoregressive decomposition of the joint distribution   p  ( S ,  X  1 : T   )  = p  ( S )   ∏ t  p  (  X t  | S ,  X  1 : t − 1   )   , resulting in the division of the learning objective into a global and a local objective.


   min  p ^   D  p  ( S ,  X  1 : T   )   | |   p ^   ( S ,  X  1 : T   )    



(1)






   min  p ^   D  p  (  X t  | S ,  X  1 : t − 1   )   | |   p ^   (  X t  | S ,  X  1 : t − 1   )    



(2)







Here,  D  measures the distance between distributions. The global objective (Equation (1)) aims to minimize the distance between the real and learned probability distributions. The local objective (Equation (2)) evaluates the approximation of the learned density through maximum-likelihood training on the original data.



TimeGAN’s architecture includes four main components: generator, discriminator, embedder, and recovery. This setup integrates autoencoding elements (embedder and recovery) with the adversarial elements (generator and discriminator) found in standard GANs to effectively learn temporal dynamics through lower-dimensional representations.



The embedding function   e : S ×  ∏ t  X →  H S  ×  ∏ t   H X    maps static features  s  and temporal features   x  1 : T    to latent codes    h S  ,  h  1 : T   = e  ( s ,  x  1 : T   )    in lower-dimensional latent spaces   H S   and   H X  . The recovery function   r :  H S  ×  ∏ t   H X  → S ×  ∏ t  X   performs the inverse operation, mapping these latent codes back to their approximate representations    s ˜  ,   x ˜   1 : T   = r  (  h S  ,  h  1 : T   )   . These functions can use various architectures, provided they maintain causal ordering and are autoregressive, with recurrent neural networks being a common choice [35].



The generator function   g :  Z S  ×  ∏ t   Z X  →  H S  ×  ∏ t   H X    converts static and temporal random vectors   (  z S  ,  z  1 : T   )   into synthetic latent codes    h ^  S  ,     h ^   1 : T   = g  (  z S  ,  z  1 : T   )    in the embedded space. The random vectors   z S  ,   z  1 : T    are sampled from random vector spaces   Z S  ,   Z X   defined from a known distribution (e.g., Gaussian and uniform distribution). The discriminator function   d :  H S  ×  ∏ t   H X  →  [ 0 , 1 ]  ×  ∏ t   [ 0 , 1 ]    processes the static and temporal codes within the embedded space, returning classifications     y ˜  S  ,   y ˜   1 : T    = d (    h ˜  S   ,     h ˜   1 : T    )   . The notation    y ˜  *   indicates classifications of either real or synthetic data (y or   y ^  );    h ˜  *   represents either real or synthetic latent code ( h  or   h ^  ). Note, similarly, that network architecture has no constraints other than the generator being autoregressive.




3.2. Proposed Framework


Our proposed framework integrates the strengths of Conditional GAN and TimeGAN. Comprising four components akin to TimeGAN, our framework aims to enhance the generation process by enabling both conditioning and continuity across sequences. By meticulously tracking data blending before training and implementing sequence conditioning based on static and temporal features, our framework endeavors to capture intricate patterns within time-series data more effectively.



As depicted in Figure 1, the framework integrates components such as the embedder, generator, recovery, and discriminator. These components interact through carefully designed loss functions, which guide the generation process toward producing high-quality synthetic data.



Furthermore, we introduce a tailored learning scheme designed to mirror the nuanced characteristics of renewable energy power generation data. Specifically, considering the significant influence of solar power generation on power output concerning sunrise and sunset, our learning scheme is adept at accurately estimating power generation levels corresponding to solar activity. Additionally, our framework includes provisions for seamlessly converting generated data into formats compatible with existing raw datasets, thereby ensuring practical usability.



Through these approaches, our framework represents a comprehensive approach to generating realistic and contextually relevant time-series data, particularly in the domain of renewable energy.



3.2.1. Condition Setup


Our proposed framework incorporates the condition features to enhance the generation process of time-series data. As illustrated in Figure 1, the condition features are utilized for the generator and discriminator networks. This design ensures that the generated sequences align with both temporal and structural patterns in the original data. These condition features encompass temporal attributes [’Season’, ’Month’, ’Day’, and ’Hour’] extracted from historical data sequences and ’Cluster’ information from the original dataset clustered via a specific algorithm.



To facilitate the utilization of condition features, which is a categorical variable, each attribute undergoes processing through an embedding layer, thereby making them suitable for neural network application. Subsequently, an embedded condition tensor is constructed by concatenating these transformed condition features. This embedded condition tensor is then incorporated into the input vectors S and X of each network within the GAN framework, allowing for the conditioning of sequence generation based on specific temporal attributes. To process condition information, the function of each component is enhanced as follows:




	
  g :  Z S  ×  ∏ t   Z X  × C →  H S  ×  ∏ t   H X   



	
  d :  H S  ×  ∏ t   H X  × C →  [ 0 , 1 ]  ×  ∏ t   [ 0 , 1 ]   








where  C  denotes the vector space for condition features. The significance of each condition feature can be adjusted by manipulating the output dimension of the embedding layer, providing flexibility in the modeling process. Moreover, our framework allows for the customization of condition combinations, enabling the selection of pertinent attributes to guide the synthesis process effectively.



To address the limitations of existing methodologies, such as TimeGAN, where sequence time information is often overlooked and the restoration of chronological structure of synthetic data is disrupted by random shuffling to satisfy the independent and identically distributed (i.i.d.) assumption, we propose an effective approach. By incorporating time-related attributes as conditioning features—specifically, the generation time zone (e.g., season, month, day, and hour)—our framework preserves the chronological order within data sequences. This enables the generation of synthetic data that more accurately reflect real-world time series dynamics. This approach not only maintains the required i.i.d. property but also serves as a key indicator for restoring the original chronological structure of synthetic data.



In contrast to TimeGAN, which incorporates static features solely as input data without directly affecting the data generation process, our framework leverages static features (e.g., categorical variables of timestamp) to enhance the process of synthetic data generation. By integrating these specific time conditions into the generation process, our framework aims to produce synthetic data that are not only more realistic but also closely aligned with the dynamics of the original dataset. This approach allows our model to capture the temporal patterns present in the data, thereby enhancing its fidelity and relevance to real-world scenarios.




3.2.2. Training Process


The training process of our proposed framework, which fundamentally follows the training mechanism of TimeGAN, comprises the optimization of three key loss functions to refine the model. As depicted in Figure 2, the key idea is that the autoencoding components (embedder and recovery) are trained jointly with the adversarial components (generator and discriminator). Specifically, the solid arrows in the diagram represent the forward pass of data through the components, while the dotted arrows indicate the gradient flows used for backpropagation during the optimization of the loss functions. As a result, the proposed framework simultaneously learns to encode feature vectors, generate latent representations, and iterate across time with a tailored learning mechanism for solar power generation.



Reconstruction Loss


First, we train the embedder and recovery network for accurate reversible mapping between feature and latent spaces through the reconstruction loss. As shown in the upper part of Figure 2, this loss function plays a crucial role in guiding the flow between the latent and feature spaces, ensuring that the network learns meaningful patterns. The embedding and recovery functions aim to accurately reconstruct feature vectors   s ˜   and    x ˜   1 : T    of the original data  s  and   x  1 : T    from their latent codes   h S   and   h  1 : T   . The reconstruction loss of our framework is:


         L R  =  E  s ,  x  1 : T   ∼ p     | | s  −  s ˜    | |  2  +  ∑ t   | |   x t  −   x ˜  t    | |  2  + λ  L off            where    L off  =  ∑ t  off  ( t )  ·  | |   x t  −   x ˜  t    | |  2      



(3)







The last term in the reconstruction loss (Equation (3)) is to effectively capture the periodic nature of solar power generation. The loss calculation incorporates weighted losses based on the on–off cycles of the generation system. Specifically, this involves assigning additional weight to the difference between the synthetic and original data when the generation system is in the off state (e.g., when the input value of historical power or solar irradiation data is 0), making the training model more responsive to such scenarios. In detail, this additional weighted loss term, denoted as   L off  , is designed to capture the disparity between the synthetic and original data during off-state periods. In Equation (3),  λ  represents the weight or importance assigned to   L off  , which adjusts the impact of off-state scenarios on the training model.   off ( t )   is a binary indicator that equals 1 when the generation system is in the off state at time t, and 0 otherwise. The equation for the reconstruction loss   L R   is modified to include the additional term   λ  L off    alongside the original loss terms, thereby enhancing the model’s ability to capture the periodic behavior of solar power generation.




Unsupervised Loss


Following the reconstruction loss phase, the autoregressive generator utilizes its own preceding outputs (i.e., synthetic embeddings     h ^  S  ,   h ^   1 : t − 1    ) to generate the subsequent synthetic vector    h ^  t  . As shown in the lower part of Figure 2, the unsupervised loss ensures effective interaction between the generator and discriminator networks, guiding them throughout the adversarial training process. This mechanism enables the generation of synthetic data points with temporal dependencies similar to original time-series data.



The gradients for both networks are computed based on the unsupervised loss. This methodology adheres to standard GAN training, where the discriminator aims to maximize the likelihood of correct classification y and   y ^   for both real and synthetic data, while the generator seeks to minimize the likelihood of its synthetic outputs being classified as fake by the discriminator. The unsupervised loss function is:


   L U  =  E  s ,  x  1 : T   ∼ p    log  y S  +  ∑ t  log  y t   +  E  s ,  x  1 : T   ∼  p ^     log  ( 1 −   y ^  S  )  +  ∑ t  log  ( 1 −   y ^  t  )    



(4)







Our framework implements the foundational principle of GANs, which is the adversarial interplay between the generator and discriminator driving the generation of realistic synthetic samples. At the same time, it refines the generator to generate synthetic data that closely resemble the true data distribution while capturing complex temporal patterns by conditional extension to the generator and discriminator.




Supervised Loss


In addition to adversarial feedback, a supervised loss is utilized to guide the learning process of the generator. This supervised loss serves to capture the distributional discrepancies between real and synthetic data, denoted as   p (  H t  |  H S  ,  H  1 : t − 1   )   and    p ^   (  H t  |  H S  ,  H  1 : t − 1   )    respectively, where   H ∈ H  . This aspect is highlighted in the central flow of Figure 2, showing how the supervised loss integrates with the other components to ensure smooth transitions in the latent space. The supervised loss function is:


      L S  =  E  s ,  x  1 : T   ∼ p     ∑ t   | |   h t  −  g X   (  h S  ,  h  t − 1   ,  z t  ,  c t  )    | |  2       



(5)




where    h S  =  g S   ( s )   , and    g S  ,  g X    are the generator functions for static and temporal spaces implemented by a recurrent network. Here,    g X   (  h S  ,  h  t − 1   ,  z t  ,  c t  )    is approximated to the    E   z t  ∼ N     p ^   (  H t  |  H S  ,  H  1 : t − 1   )     with one sample   z t   by stochastic gradient descent. At any step of training, our framework reduces the discrepancy between the actual next-step latent code    h t  =  e X   (  e S   ( s )  ,  h  t − 1   ,  x t  )    and synthetic next-step latent code     h ^  t  =  g X   (  g S   (  z S  )  ,   h ^   t − 1   ,  z t  ,  c t  )   . Similarly,    e S  ,  e X    are the static and temporal embedding functions implemented by a recurrent network.



Note that, in our framework, condition features do not constitute a separate latent space, but rather the embedder network focuses on faithfully encoding the input features. The condition information at time t (i.e.,   c t  ), when the corresponding latent vector is encoded, is provided to the generator. This allows the generator to generate more suitable synthetic latent vectors based on this condition information.



By addressing potential limitations in capturing stepwise conditional distributions solely through adversarial training, the supervised loss complements the discriminator’s feedback. In sum, the supervised loss function ensures that the generator accurately captures stepwise conditional distributions in the data, improving the robustness and fidelity of the generated sequences.





3.2.3. Optimization


The optimization of our framework involves minimizing and balancing the three key loss functions: reconstruction loss, unsupervised loss, and supervised loss. As illustrated in Figure 2, these loss functions play distinct roles across different components of the network, with the flow of gradients ensuring that each component is optimized effectively.



	
Reconstruction Loss:   L R   aims to ensure the accurate reconstruction of the latent codes to the feature space, guiding the embedder and recovery network to produce outputs that closely match the original input sequences.



	
Unsupervised Loss:   L U   drives the generator to create realistic sequences that the discriminator finds difficult to distinguish from real data, thereby improving the generator’s ability to produce plausible and high-quality synthetic data.



	
Supervised Loss:   L S   focuses on refining the generator’s ability to produce precise stepwise transitions, ensuring that the generated sequences exhibit smooth and realistic temporal dynamics.






The embedder, recovery, generator, and discriminator networks are parameterized by    θ e  ,  θ r  ,  θ g  ,  θ d   , respectively. The embedder and recovery networks are optimized to minimize the reconstruction loss and supervised loss via


   min   θ e  ,  θ r     ( γ  L S  +  L R  )   



(6)




where   γ ≥ 0   is a hyperparameter for weighting two losses. The reason   L S   is involved in the optimization of the embedder and recovery network is that the role of the embedding process is not only to reduce the dimensionality of the adversarial learning space, but also to provide an accurate encoding of the temporal relationships in the input data to facilitate learning by the generator.



Next, we utilize the unsupervised loss and supervised loss for the generator and discriminator as follows:


   min  θ g    ( η  L S  +  max  θ d    L U  )   



(7)




where   η ≥ 0   is another weighting hyperparameter. The unsupervised loss optimizes the adversarial min-max game, and the supervised loss is minimized for the additional training of the generator. By integrating these loss functions, our framework effectively balances the reconstruction accuracy, the realism of generated sequences, and the smoothness of temporal transitions, leading to robust and high-quality time-series data generation.



These optimization strategies highlight the dynamic interaction between the framework’s components and the loss functions. The integration of these loss functions ensures a balance between reconstruction accuracy, temporal smoothness, and adversarial robustness, ultimately resulting in high-quality synthetic time-series data generation.




3.2.4. Temporal Dynamics-Aware Learning Scheme


In addition to traditional GAN training objectives, our framework incorporates a novel learning scheme tailored to capture the temporal dynamics of solar power generation data. As depicted in the upper-right section of Figure 2, this scheme integrates with the recovery network to ensure smooth reconstruction of   S ˜   and   X ˜   during the learning process. This scheme focuses on accurately modeling the variations in power generation at sunrise and sunset times by leveraging the temporal dependencies in the encoded condition information. Through this process, the framework ensures that the generated data reflect realistic power generation patterns aligned with solar activity.



Due to the nature of solar energy, power generation is zero when the sun is not up. Consequently, many instances of such data appear in the raw solar power time-series dataset, which can mislead the training model and lead to overfitting. Moreover, typical models without temporal information struggle to accurately capture the patterns of sunrise and sunset times. To address these challenges, we introduce an additional learning mechanism that adjusts the network’s output during training to account for these periods.



In detail, this mechanism is introduced in the process of mapping the latent space to the feature space    H S  ×  ∏ t   H X  → S ×  ∏ t  X   (i.e., the construction of    S ˜  ,  X ˜   ). Let  P  be the target variable for this mechanism and   Z  m  P   be a set of time zones with the zero value of  P  in a given month m. At time step t, if the value of  P  is zero at hour h in all data of month m, then h is the element of   Z  m  P  . For example, if all the data in January have zero power generation at 13:00, then 13 is an element of   Z  m   P  p o w e r    . This approach is applied to all other variables in the dataset, such as power generation and solar irradiation. During the forward pass for training, if    c t  h o u r   ∈  Z  m  P   , the particular value of the reconstruction vectors    s ˜  ,   x ˜  t    corresponding to the target variable  P  is adjusted to zero. Here,   c t  h o u r    is the hour condition value at time t. The adjusted reconstruction vectors are then used in subsequent computations within the framework.



This learning scheme ensures that the temporal characteristics inherent to solar power generation are preserved in the synthetic data, enhancing the reliability of the generated sequences for practical applications.




3.2.5. Data Restoration


Our framework provides a process for restoring synthetic data into a dataset that is as usable as the original dataset. In the case of existing TimeGAN, the temporal information of the data (e.g., the time of generation) is not considered, and the input data sequence is randomly shuffled to satisfy the independent and identically distributed (i.i.d.) assumption. As a result, the time frame of the synthetic data sequences generated by TimeGAN cannot be identified, making it difficult to restore the original dataset form. Consequently, it is challenging to directly apply the generated synthetic data to practical real-world problems, such as forecasting, which is a primary application of time-series data.



As shown in Figure 1, our framework addresses this limitation by incorporating condition information to guide the data generation process. This design ensures that the generated sequences align with the temporal structure of the original dataset, making it possible to restore the original chronological order of the synthetic data.



We create sequence chunks of length l for the input variables and condition variables with a window sliding of one step. We randomly shuffle these sequence chunks to satisfy the i.i.d. assumption, which is the basic assumption of TimeGAN. Then, a minibatch of size   n  m b    is created and used for training. The data in these minibatches are distributed identically between each sequence chunk, and, at the same time, each row within the sequence chunk maintains a temporal relationship.



In the case of the original TimeGAN, the output format of the generated synthetic data is the same as the sequence chunks. Like the input sequence chunks, the output sequence chunks maintain a temporal relationship within the chunks, but there is no temporal relationship between chunks. Our framework also retains this generation format but uses condition information (e.g., the time of generation) as a key indicator for restoring the original chronological structure of the synthetic data. Thus, it is possible to restore a dataset that can be used for practical applications (e.g., as input to a generation forecasting model) while remaining faithful to the basic assumptions of TimeGAN.



In more detail, in the process of generating synthetic data by injecting random vectors into the trained framework, it is possible to generate synthetic data for the desired time period by injecting temporal condition sequence chunks of the desired time period (generally the same as the chronological structure of the original data). The resulting synthetic sequence chunks reflect the temporal information of the conditions injected for generation and can be reconstructed into raw time-series data based on the corresponding condition sequences. To ensure temporal continuity, the output sequence chunks are stacked in their entirety, rather than row by row. In this way, we can build a synthetic dataset that closely resembles the original raw data.






4. Evaluation


4.1. Assessment of Data Quality


The evaluation of synthetic data quality is crucial to assess the effectiveness of the proposed framework in generating realistic time-series data. To comprehensively evaluate the quality of generated data, we consider multiple aspects:




	(1)

	
Visualization: Visualization techniques such as t-SNE and PCA are employed to assess the diversity of generated data and their similarity to real data distributions. By analyzing the original and synthetic datasets in a two-dimensional space, we qualitatively assess the extent to which the distribution of generated samples reflects that of the original data.




	(2)

	
Discriminative Score: The quantitative evaluation of the fidelity of generated data is conducted using a discriminative score. We measure the classification error for both generated and real data by training a post hoc model for time series classification. This approach treats a standard two-class supervised classification problem. This allows for a direct comparison between synthetic and real data in terms of their classification accuracy.




	(3)

	
Predictive Score: The functionality of the generated data is evaluated through a ’Train-on-Synthetic, Test-on-Original’ (TSTO) approach. We train a post hoc predictive model using synthetic data to predict temporal vectors for the next step over each input sequence. Subsequently, the trained model is evaluated using real data based on mean absolute error (MAE), providing insights into the effectiveness of the generated data for predictive tasks.









To benchmark our proposed framework against existing methodologies, we leverage the evaluation indicators employed to assess TimeGAN’s time series generation ability. Utilizing these metrics enables us to quantitatively compare the performance enhancements achieved by our framework relative to TimeGAN. Moreover, this approach facilitates indirect comparisons with other benchmark models.




4.2. Assessment of Forecasting Performance


In assessing the forecasting performance facilitated by our proposed framework, we delve into its impact on predictive modeling across various algorithms. By leveraging the generated synthetic data, we evaluate their effectiveness across a spectrum of prediction models, encompassing traditional machine learning, deep learning, and reinforcement learning-based hybrid models. This approach allows us to ascertain the versatility of the synthetic data generated within our framework, demonstrating their applicability across diverse modeling methodologies.



To ensure robust comparisons, all models train until convergence under the same experimental conditions, including consistent input variables and data split. A detailed description of the benchmark forecasting models utilized in our experiments is provided in Table 1.



For the evaluation of forecasting performance, we employ three key metrics: mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Lower MAE and RMSE values, coupled with higher R2 values, signify superior forecasting accuracy. These metrics are computed using the following equations:


  MAE =   1 n    ∑  i = 1  n    y i  −   y ^  i    



(8)






  RMSE =     1 n    ∑  i = 1  n     y i  −   y ^  i   2     



(9)






   R 2   ( % )  =  1 −      1 n   ∑  i = 1  n     y i  −   y ^  i   2       1 n   ∑  i = 1  n     y i  −   y ¯  i   2       × 100  



(10)









5. Experimental Setup


5.1. Datasets


Our experiments utilize one year’s worth of hourly power generation data from office buildings equipped with a BIPV system, supplemented by meteorological data obtained from the Solcast API [40] (Solcast, URL: https://www.solcast.com 30 August 2024). These meteorological parameters aid in characterizing the environmental conditions at each building’s location. Further detailed information on the BIPV building and its datasets is available in [41].




5.2. Data Preparation


Subsequently, our data preprocessing procedures handle outliers and missing values within the power generation and meteorological datasets. Fatal system errors are removed and linear interpolation is used for the remaining gaps. To ensure consistent measurement units, data normalization is performed. Our approach accounts for the entire 24-h range to accommodate the timing uncertainty of solar power generation due to weather and seasonal variations, accurately capturing the periodicity of the power generation system’s on–off state in response to sunrise and sunset.



To identify the most relevant meteorological variables for forecasting, we employ ridge regression [42]. Ridge regression is particularly suitable as it effectively handles multicollinearity among meteorological variables [43]. The coefficients obtained from the regression model reflect the relative importance of each variable. Based on these coefficients, we select the two variables with the highest score: global horizontal irradiance (GHI, G) and beam horizontal irradiance (EBH, E). Along with power data (P), these variables form the three key inputs for the forecasting models and serve as targets for generating synthetic data.




5.3. Data Sequence


Each row in our dataset comprises two main components: a data sequence and a condition sequence. The data sequence contains both temporal data (e.g., power generation and meteorological variables) and static data (e.g., building attributes). During our experiments, we prioritize temporal variables over static ones due to their real-time series nature and their significance in capturing dynamic system behavior.



To facilitate the conditioning of our proposed framework, we create a condition sequence aligned with the data sequence. This sequence serves as input for conditioning the models and acts as a time identifier for the data sequence. Importantly, the condition sequence remains unchanged during data generation, ensuring its consistency. It is important to note that the condition sequence is distinct from the data sequence and is not subject to data generation within our framework. Synthetic data generated by our framework only include features from the data sequence and do not modify the condition sequence. This ensures that the condition sequence remains consistent and accurately reflects the time points corresponding to the data sequence.



Furthermore, to augment our training data, we apply a sliding window technique with a lag of one time step during the sequencing step. This approach enables the creation of additional data points for training by shifting the window along the time-series data, effectively increasing the dataset size and improving the robustness of our models.




5.4. Setup for Forecasting Models


To establish a fair comparison among benchmark forecasting models, each model undergoes training using a standardized input data format. The input data comprise real-world data representing variables P, G, and E, alongside synthetic data generated by GAN models, encompassing both the proposed framework and TimeGAN.



To prepare the dataset for forecasting model training, each row consists of length-l sequences representing each variable. Here, the sequence length l is set to three, aligning with the requirement of forecasting models that utilize three hours of data for BIPV power generation prediction. Consequently, the dataset is reformatted to include sequences of [  P  t − 2   ,  P  t − 1   ,  P t  ,  G  t − 2   ,  G  t − 1   ,  G t  ,  E  t − 2   ,  E  t − 1   ,  E t  ].



Our default data split protocol allocates 80% of the dataset for training, 15% for testing, and the remaining portion for validation purposes. This partitioning strategy ensures that the models are trained on a substantial portion of the dataset while retaining adequate subsets for evaluation and validation.



In addition to the standard data splitting procedure, we implement a strategy to ensure dataset diversity and minimize the impact of repeated time periods. Specifically, we adopt a random date selection approach for each season, thereby mitigating potential biases introduced by repetitive time intervals in the dataset. This strategy guarantees that the dataset used for training and evaluation encompasses a representative spectrum of seasonal variations, enhancing the robustness and generalizability of the forecasting models.




5.5. Computing Infrastructure


The experiments are conducted on a server equipped with an Intel XEON CPU E5-2697a V4 @2.60 GHz and NVIDIA V100 GPUs, ensuring the consistent utilization of cores and threads for accurate time comparisons. For models utilizing clustering, parallel multiprocessing is employed across clusters to expedite computations. Model implementations are executed using Python 3.8 and the PyTorch.





6. Results


This section presents a comprehensive evaluation of the proposed GAN framework, which integrates Conditional GAN into TimeGAN with an additional learning scheme. Through a series of experiments, we assessed the performance and effectiveness of various components within the framework to generate synthetic BIPV power generation data that closely resemble real data distributions.



6.1. Validation of Proposed Framework


Our proposed framework showcases exceptional proficiency in generating synthetic BIPV power data, outperforming existing methods such as TimeGAN. To substantiate this claim, we conducted a comprehensive comparative analysis focusing on the quality of the generated data (i.e., diversity, fidelity, and usefulness) and the application for BIPV forecasting models. For this evaluation, we adopted the best combination of condition features, showing the best results, for the framework components as a default.



6.1.1. Quality of Synthetic Data


Initially, we compared the quality of synthetic data generated by our framework against TimeGAN using both qualitative and quantitative metrics in the perspective of the three aspects.



Diversity of Data


To assess the distribution fidelity of the generated data, we employed t-SNE and PCA visualization techniques. These visualizations allowed us to evaluate whether the distribution of the generated data accurately reflects that of real data. In Figure 3, the red dots represent the original data, and the blue dots represent the synthetic data. We can observe that the data generated by the proposed framework better overlap with the original data and spread to match the distribution of the original data compared to the figures of TimeGAN. This indicated that data generated from our proposed framework exhibit a closer resemblance to the original data compared to data generated from TimeGAN.




Fidelity of Data


A quantitative evaluation of the fidelity of generated data was conducted using the discriminative score (D score). A lower D score indicates better fidelity to real data. Our findings from five repetitions of experiments, presented in Table 2, demonstrate that the generated data from our framework achieve a significantly lower D score (0.0870 ± 0.0205) compared to TimeGAN (0.4260 ± 0.0230), indicating superior fidelity with an improvement rate of 79.58%.




Functionality of Data


To ascertain the effectiveness of generated data, we calculated the predictive score (P score) using the ’Train-on-Synthetic, Test-on-Original’ (TSTO) approach. The P score serves as a measure of data usefulness, with lower values indicating higher effectiveness. As depicted in Table 2, our framework yielded a lower P score (0.0450 ± 0.0007) compared to TimeGAN (0.0520 ± 0.0005), showing an improvement of 13.46%, indicating the greater usefulness of the generated data.





6.1.2. Verification with Benchmark Forecasting Models


We further validated the performance of our proposed framework by applying the generated data to benchmark forecasting models for predicting BIPV power generation. Our evaluation revealed significant enhancements in prediction accuracy achieved by leveraging synthetic data into actual prediction models for BIPV power forecasting. As presented in Figure 4, the application of synthetic data to the actual BIPV forecasting model significantly contributed to the improvement of the forecast accuracy across all metrics (MAE, RMSE, and   R 2  ). Especially in MAE metrics, we can see that the prediction accuracy improves up to 23.56% (MAE of Xgboost) and at least 5.58% (MAE of CL-PPO-TL model). This result confirms that the scarcity issue of BIPV generation data can be mitigated by our proposed GAN framework.





6.2. Condition Integration


The integration of conditions within GAN framework significantly enhances the generation ability. We explore the optimal combination of condition features and assess the impact of applying conditions in the GAN framework on synthetic data and the BIPV forecasting problem.



6.2.1. Optimal Combination of Condition Features


Our framework enhances the generation of high-quality synthetic data by incorporating condition information into traditional TimeGAN. Rather than relying on a single variable, conditions within our framework encompass multiple variables, allowing for a more comprehensive consideration of contextual factors. The condition features considered in this experiment include temporal variables (’Season,’ ’Month,’ ’Day,’ and ’Hour’) and cluster information (‘Cluster’). Prior to integration into the GAN framework, ’Cluster’ is derived from clustering data sequences based on Power, GHI, and EBH utilizing the Dynamic Time Warping Self-Organizing Map (DTWSOM) algorithm [44]. We collected temporal variables [’Season’, ’Month’, and ’Hour’], having the periodicity with PV power output, as baseline condition sets, and then prepared a range of condition sets by combining the baseline sets and the remaining features, ’Day’ and ’Condition’. These condition sets were then incorporated into the data generation process to produce synthetic data reflective of the specified conditions. Subsequently, we evaluated the quality of the synthesized data and their utility in real-world prediction models by condition set.



Based on the comprehensive analysis of the results presented in Figure 5, it is evident that the condition set [Season, Month, Day, Hour] yields the highest P score (0.0445 ± 0.0008), indicating superior performance in predictive tasks. However, the condition set [Season, Month, Day, Hour, Cluster] shows the best D score (0.0870 ± 0.0205), indicating better fidelity to the real data distribution. Although the [Season, Month, Day, Hour] condition set achieves a slightly better P score, the [Season, Month, Day, Hour, Cluster] condition set strikes a good balance between discriminative and predictive scores. This set consistently outperforms other condition sets in maintaining data quality and enhancing predictive accuracy, making it the optimal choice for synthetic data generation in this context.



Furthermore, as illustrated in Figure 6, the [Season, Month, Day, Hour, Cluster] (SMDHC) condition set demonstrates the best forecasting accuracy across all benchmark models except for TSSOM-LGB, in all metrics. This further confirms the robustness and effectiveness of incorporating multiple condition features in enhancing predictive performance. By incorporating multiple condition features, our framework can generate synthetic data that are not only diverse and realistic but also highly useful for improving predictive performance in BIPV forecasting applications.




6.2.2. Effect of Conditions


We investigated the impact of integrating conditions into the GAN framework on BIPV synthetic data generation. Specifically, we focused on a predefined combination of conditions, namely, [Season, Month, Day, Hour, Cluster], as determined in the preceding experiment. A comparative analysis was conducted between the proposed framework incorporating conditions and the baseline TimeGAN model. This comparison allowed us to evaluate the performance enhancement achieved through the introduction of conditions to TimeGAN.



In addition to the visualizations and quantitative metrics provided in Figure 3 and Table 2, the experiments comparing BIPV prediction accuracy further support the significant contribution of condition information to the performance of the GAN framework.



As shown in Figure 7, our proposed framework outperforms TimeGAN and models without GAN across all benchmark models and all metrics. For instance, the proposed framework achieves a lower MAE of 0.0237 with CL-PPO-TL compared to 0.0292 with TimeGAN and 0.0251 without GAN. Similarly, the proposed framework achieves a higher   R 2   of 0.9654 with CL-PPO-TL compared to 0.9476 with TimeGAN and 0.9619 without GAN. In terms of RMSE, the proposed framework also demonstrates superior performance with a value of 0.0512 compared to 0.0627 with TimeGAN and 0.0543 without GAN. In sum, the incorporation of condition information significantly enhances the accuracy of BIPV prediction across all prediction models. Our proposed GAN framework, which leverages condition information, demonstrates superior performance in addressing real prediction challenges compared to TimeGAN.



On the other hand, despite TimeGAN’s established capability in generating time-series data, the findings presented in Figure 7 suggest that its effectiveness in generating synthetic data for predicting BIPV power generation may be limited, especially in the case of advanced predictive models such as CL-PPO-TL and PPO. These results underscore the significance of appropriately leveraging time information in datasets with high temporal dependence, such as BIPV power generation, to enhance the predictive accuracy of generated synthetic data.



Furthermore, Figure 8 illustrates a comparison of data distributions by month and season between the proposed framework and TimeGAN. These graphs underscore the stark contrast in capturing the periodicity and temporal trends of PV power generation between the two methods. While the data from TimeGAN fail to capture the periodicity adequately, our framework demonstrates a superior ability to capture such patterns, attributed to the inclusion of condition information.



Through these analyses, we demonstrate the significant positive effect of condition integration on improving the fidelity and relevance of synthesized BIPV power data, thus enhancing their utility for power forecasting applications.





6.3. Effect of Weighted Loss


The introduction of weighted loss   L off   aims to accurately capture the inherent periodicity of solar power generation, which is fundamental to BIPV systems. This loss term is designed to emphasize the significance of specific time zones corresponding to sunrise and sunset, thus enhancing the fidelity of generated data.



To evaluate the impact of weighted loss on data quality and predictive performance, we conducted comprehensive analyses. Figure 9 present the quantitative results, indicating notable improvements in data fidelity upon the introduction of the loss term. Specifically, the D score represented an approximate 62.19% enhancement, highlighting a significant improvement in data fidelity. Considering that the P score of the original data is 0.0431 ± 0.0006, it is noteworthy that the ’w.o   L off  ’ already achieves a sufficiently high P score (0.0452 ± 0.0007). This indicates that even without the weighted loss term, the model is capable of generating useful synthetic data. However, the inclusion of the   L off   term further refines the data quality, especially in terms of fidelity, without compromising predictive ability.



Furthermore, it is evident that the prediction accuracy for BIPV power has notably improved, as demonstrated in Figure 10. Through comparisons with TimeGAN, our proposed framework consistently generates synthetic data that closely approximate real data and proves to be more effective in BIPV prediction, even without the   L off   term. However, the introduction of the   L off   term leads to further enhancements in BIPV prediction performance across all benchmark models, with improvements in MAE, RMSE, and   R 2   scores.



Additionally, Figure 11 illustrates that the introduction of weighted loss leads to the generation of data closely aligned with the original power generation data, particularly in the on–off boundary time zones of the BIPV system.



These results underscore the efficacy of weighted loss in enhancing the quality and relevance of synthesized BIPV power data, thereby contributing to improved predictive modeling accuracy for BIPV systems. While the P score remains relatively stable, the significant enhancement in the D score highlights the effectiveness of the weighted loss term in capturing the essential characteristics of the original data, thereby improving the overall data quality.




6.4. Effect of Learning Scheme


To enhance our framework’s capabilities using condition information, we introduced a learning scheme designed to optimize the training process. This scheme leverages available condition information to improve the overall performance of the framework. We conducted experiments to compare the framework’s performance with and without the learning scheme.



Comprehensive analyses indicated that the learning scheme significantly improves data quality. As shown in Figure 12, the learning scheme led to a substantial enhancement in the D score by approximately 62.77%, indicating marked improvement in data fidelity. The predictive capability, which was already robust without the learning scheme, saw a modest improvement of 1.10% (P score), demonstrating that the learning scheme can further refine the functionality of the generated data.



Further evidence of the learning scheme’s impact on BIPV prediction accuracy is provided in Figure 13. Comparisons between the proposed framework with and without the learning scheme, as well as with TimeGAN, demonstrated that the learning scheme enhances prediction performance. For instance, with the learning scheme, the proposed framework achieved an MAE of 0.0237 for the CL-PPO-TL model compared to 0.0252 without the learning scheme (5.96% improvement) and 0.0292 with TimeGAN (18.84% improvement). Similarly, the RMSE improved to 0.0512 with the learning scheme compared to 0.0533 without it (3.94% improvement) and 0.0627 with TimeGAN (18.34% improvement). The   R 2   score also showed improvement, reaching 0.9654 with the learning scheme compared to 0.9609 without it and 0.9476 with TimeGAN.



These results highlight the learning scheme’s role in improving data quality and predictive accuracy, thereby boosting the overall effectiveness of the synthetic data generation framework for BIPV power forecasting applications.




6.5. Additional Case Studies


We provide additional case studies to further understand the capabilities and performance of the proposed GAN framework. These case studies explore the impact of varying amounts of original input data and the ratio of synthetic data used for forecasting.



6.5.1. Case Study 1: Comparison of Synthetic Data by Original Input Data Amount


This case study investigates how varying the amount of original data used for data generation affects the quality of the synthetic data. We analyzed the discriminative (D) and predictive (P) scores of synthetic data generated using different ratios of the original input data: 10%, 50%, 90%, and 100%.



As shown in Table 3, the D score improves significantly as the ratio of original input data increases. The proposed method, which uses 100% of the original data, achieves the best D score of 0.0870. This indicates that using a higher ratio of original input data enhances the fidelity of the generated data, making them more representative of the real data distribution.



On the other hand, the P score remains relatively stable across different ratios of original input data, with minor fluctuations. Considering that the P score of the original data is 0.0431, this suggests that the predictive capability of the synthetic data is robust, even with smaller amounts of original input data.



These results imply that while the framework can generate high-functionality synthetic data even with reduced original input data, using the full dataset significantly enhances the fidelity of the generated data without compromising their predictive power.




6.5.2. Case Study 2: Comparison of Forecasting Accuracy by Synthetic Data Ratio


In this case study, we examine the impact of varying the ratio of synthetic data used for training predictive models on the forecasting accuracy of BIPV power generation. The synthetic data ratio refers to the proportion of synthetic data integrated with the complete original dataset. For example, a 100% ratio indicates that the amount of synthetic data is equivalent to the original data, whereas a 50% ratio means that the synthetic data comprise half the amount of the original data.



Table 4 shows that increasing the proportion of synthetic data generally enhances forecasting performance across multiple models and metrics. For example, there is an improvement in RMSE ranging from 5.71% (CL-PPO-TL) to 14.02% (XgBoost) when using 100% synthetic data compared to using only original data. This demonstrates that the generated synthetic data effectively support forecasting tasks, enhancing the performance of various predictive models rather than being limited to a specific model type. The results also highlight the generalizability of the synthetic data, with improvements observed across different algorithms and evaluation metrics, such as MAE, RMSE, and   R 2  . This suggests that the synthetic data generated by our framework comprehensively enhance predictive quality.



Interestingly, although the overall performance improves with a higher ratio of synthetic data, the relationship is not strictly linear. For instance, the TSSOM-LGB model shows a slight decline in accuracy at the 90% synthetic data ratio, followed by a recovery at 100%. This observation suggests that the optimal ratio of synthetic data may vary based on the forecasting model and its sensitivity to data composition.



These findings validate the utility and robustness of our proposed framework, demonstrating that it generates high-quality synthetic data that complement the original data and enhance forecasting outcomes. Our framework offers practical solutions to data scarcity challenges while supporting reliable forecasting in real-world scenarios.



By examining the effects of original input data amounts and synthetic data ratios, we demonstrate the practical benefits and potential trade-offs in using synthetic data for BIPV power forecasting. The insights gained from these studies can guide the optimal use of synthetic data in various applications, ensuring both high data fidelity and predictive accuracy.






7. Conclusions


This study introduces a novel framework that integrates Conditional GAN and TimeGAN to generate realistic BIPV power data. By leveraging conditional information and temporal dependencies, this framework produces high-quality time-series data. The experimental results demonstrate that the framework significantly improves data fidelity and predictive performance. Specifically, the discriminative score was reduced by 79.58% compared to TimeGAN, indicating a better capture of the real data distribution. The predictive score improved by 13.46%, demonstrating the enhanced functionality of the generated data. The introduction of a weighted loss term and a tailored learning scheme further enhanced the discriminative score by 62.77%, effectively capturing the periodic nature of solar power generation. When applied to practical BIPV forecasting, the synthesized data improved prediction accuracy across various models, with MAE improvements ranging from 5.58% to 23.56%.



In conclusion, the proposed framework addresses the data scarcity challenge in the renewable energy sector, supporting more effective and reliable forecasting for BIPV power generation. For future research, this framework could be extended to incorporate additional environmental factors, such as cloud cover and air quality, and handle other data types, such as imagery, to further improve prediction accuracy. Moreover, exploring hybrid models that combine GANs with reinforcement learning could unlock new possibilities for adaptive energy management in real-time applications.
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Figure 1. Block diagram of the components and loss functions in the proposed framework. 
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Figure 2. Learning flow of the proposed framework. 
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Figure 3. PCA and t-SNE visualization of the original and synthetic data. 
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Figure 4. Comparison of BIPV forecasting accuracy using synthetic data and original data. 
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Figure 5. Discriminative score and predictive score by condition set. 
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Figure 6. BIPV forecasting accuracy by condition set. 
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Figure 7. Comparison of BIPV forecasting accuracy with TimeGAN. 
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Figure 8. Comparison of power data generated by GAN framework with original data. 
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Figure 9. Discriminative and predictive score of the synthetic data with and without   L off  . 
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Figure 10. Forecasting accuracy with and without   L off  . 
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Figure 11. The effect of   L off   on the synthetic power data. 
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Figure 12. Discriminative and predictive score of the synthetic data with and without learning scheme. 
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Figure 13. Forecasting accuracy with and without learning scheme. 
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Table 1. The description of benchmark models.
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	Benchmark Model
	Description





	TSSOM-LGBM
	A predictive model that merges the Tree-Structured Self-Organizing Map (TSSOM) with the Light Gradient Boosting Machine (LGBM). This hybrid model is tailored for forecasting PV output, particularly in settings with limited computational resources [36].



	XGBoost
	Short for eXtreme Gradient Boosting, a tree-based ensemble algorithm renowned for its versatile capabilities in forecasting, regression, and classification tasks [37].



	PPO
	Proximal Policy Optimization (PPO) algorithm [38] is a reinforcement learning (RL) technique renowned for its efficacy in predictive tasks, highlighted by [39].



	CL-PPO-TL
	A forecasting framework integrating clustering (CL) and transfer learning (TL) techniques with the PPO algorithm. This innovative approach has demonstrated remarkable effectiveness in forecasting BIPV power generation, addressing data scarcity issues.










 





Table 2. Discriminative and predictive score of synthetic data.
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	Discriminative Score
	Predictive Score





	Proposed
	0.0870 ± 0.0205
	0.0450 ± 0.0007



	TimeGAN
	0.4260 ± 0.0230
	0.0520 ± 0.0005



	Improvement Rate * (%)
	79.58%
	13.46%







* Improvement Rate = (TimeGAN − Proposed)/TimeGAN.













 





Table 3. Discriminative and predictive score of the synthetic data by the ratio of original input data.
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	Original Data Ratio *
	Discriminative Score
	Predictive Score





	10%
	0.2335 ± 0.0815
	0.0447 ± 0.0005



	50%
	0.2232 ± 0.0239
	0.0483 ± 0.0005



	90%
	0.1128 ± 0.0080
	0.0444 ± 0.0006



	100% (Proposed)
	0.0870 ± 0.0205
	0.0450 ± 0.0007







* The ratio of original data that are applied as input during the process of synthetic data generation.













 





Table 4. Comparison of BIPV forecasting accuracy by the ratio of synthetic data.
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Synthetic Ratio *

	
CL-PPO-TL

	
PPO

	
TSSOM-LGB

	
Xgboost






	
MAE

	
Only Original Data (0%)

	
0.0251

	
0.0262

	
0.0276

	
0.0334




	
10%

	
0.0252

	
0.0262

	
0.0276

	
0.0334




	
(Lower is

	
50%

	
0.0250

	
0.0256

	
0.0280

	
0.0303




	
Better)

	
90%

	
0.0250

	
0.0253

	
0.0287

	
0.0319




	

	
100% **

	
0.0237

	
0.0243

	
0.0264

	
0.0253




	
RMSE

	
Only Original Data (0%)

	
0.0543

	
0.0599

	
0.0617

	
0.0637




	
10%

	
0.0548

	
0.0553

	
0.0583

	
0.0599




	
(Lower is

	
50%

	
0.0540

	
0.0551

	
0.0581

	
0.0587




	
Better)

	
90%

	
0.0544

	
0.0547

	
0.0592

	
0.0593




	

	
100% **

	
0.0512

	
0.0515

	
0.0564

	
0.0542




	
   R 2   

	
Only Original Data (0%)

	
0.9619

	
0.9520

	
0.9470

	
0.9418




	
10%

	
0.9600

	
0.9597

	
0.9529

	
0.9477




	
(Higher is

	
50%

	
0.9617

	
0.9599

	
0.9534

	
0.9486




	
Better)

	
90%

	
0.9612

	
0.9604

	
0.9514

	
0.9493




	

	
100% **

	
0.9654

	
0.9652

	
0.9561

	
0.9599








* The ratio of synthetic data used for forecasting models alongside the entire original data. All synthetic data used in this comparison are generated by the proposed framework. ** Uses the same amount of synthetic data as the original data. Note: Models trained with increasing proportions of synthetic data achieve better accuracy across multiple metrics.
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