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Abstract: This study seeks to improve the accuracy of air conditioning load forecasting to address the
challenges of load management in power systems during high-temperature periods in the summer.
Given the limitations of traditional forecasting models in capturing different frequency components
and noise within complex load sequences, this paper proposes a multi-level decomposition forecast-
ing model using complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN), sample entropy (SE), variational mode decomposition (VMD), and long short-term memory
(LSTM). First, CEEMDAN is used for the preliminary decomposition of the raw air-conditioning
load series, with modal components aggregated by sample entropy to generate high-, medium-, and
low-frequency subsequences. VMD then performs a secondary decomposition on the high-frequency
subsequence to reduce its complexity, while LSTM is applied to each subsequence for prediction. The
final prediction result of the air-conditioning load is obtained through reconstruction. To validate
model performance, this paper uses air-conditioning load data from Nanchong City and Sichuan
Province, for experimental analysis. Results show that the proposed method significantly outper-
forms the LSTM model without decomposition and other benchmark models in prediction accuracy,
with the Root Mean Square Error (RMSE) reductions ranging from 40.26% to 74.18% and the Modified
Mean Absolute Percentage Error (MMAPE) reductions from 37.75% to 73.41%. By employing the
SHAP (Shapley additive explanations) method for both global and local interpretability, the model
reveals the influence of key factors, such as historical load and temperature, on load forecasting. The
decomposition and aggregation approach introduced in this paper substantially enhances forecasting
accuracy, providing a scientific foundation for power system load management and dispatch.

Keywords: air conditioning; load forecasting; fully adaptive noise empirical mode decomposition; varia-
tional mode decomposition; long short-term memory network; sample entropy; SHAP interpretability

1. Introduction

With the intensification of global warming and the increasing frequency of extreme
weather events, the usage frequency and intensity of residential air conditioning has signifi-
cantly risen [1]. This change directly impacts the load curve of the power system, especially
during high temperatures in the summer, where air conditioning loads often constitute
a substantial portion of the total electricity load, resulting in a sharp increase in the load
over a short period. This poses a significant challenge to the safe and stable operation of
the power grid [2]. Therefore, accurately forecasting residential air conditioning loads is
crucial, as it helps power authorities to develop proactive measures to ensure the safe and
stable operation of the grid during peak electricity usage.

Air conditioning load forecasting methods can be primarily divided into physical
model-driven and data-driven approaches. The physical model-driven methods simulate
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and predict air conditioning loads by establishing equipment operation models and user
behavior models, effectively capturing the dynamic characteristics of the system and the
interactions between devices. However, these methods often rely on complex data and
a large number of physical parameters, requiring specialized software tools (e.g., Energy
Plus [3], TRNSYS [4]) for in-depth analysis. The main limitation lies in the high complexity
of model construction and the long simulation time required, while the high uncertainty of
user behavior and environmental conditions makes the accurate construction of physical
models particularly challenging.

Unlike physical model-driven methods, data-driven approaches predict loads by ana-
lyzing historical load data and environmental variables. These methods offer advantages
such as low cost, model simplicity, and high computational efficiency, without the need
for in-depth knowledge of the physical domain. In terms of statistical methods, improved
exponential smoothing [5], autoregressive models combined with weather forecasts [6],
and multivariate linear regression [7] have all been applied to air conditioning load fore-
casting for various types of buildings, such as residential and commercial spaces. However,
these methods face limitations in capturing complex nonlinear relationships and long-
term dependencies, which are crucial in scenarios with highly variable loads and diverse
environmental influences [8].

To address these limitations, machine learning techniques have become popular in
data-driven air conditioning load forecasting models. For example, Gao et al. [9] proposed
a hybrid method for cooling load forecasting in large commercial buildings, integrating
an Extreme Learning Machine (ELM) with Random Forest (RF) and an Improved Parallel
Whale Optimization Algorithm (IPWOA). This model addresses the demand fluctuations
in commercial spaces with high accuracy, achieving Mean Absolute Percentage Error
(MAPE) reductions of up to 95.79% and making it suitable for real-time applications in
energy management systems. Zhou et al. [10] developed a hybrid ISSA-LSTM model
combining an Improved Sparrow Search Algorithm (ISSA) with LSTM to predict building
air conditioning heat load. Tested on a university laboratory dataset, the model achieved a
high value R2 of 0.9971 and a significant reduction in RMSE, showing potential for reducing
operational costs and energy usage in building energy management. Wang et al. [11]
applied a Wavelet Neural Network (WNN) to forecast short-term cooling, heating, and
electrical loads in typical buildings, including hotels, hospitals, shopping malls, offices, and
residential complexes. With a maximum MAPE of 1.8%, this method demonstrated high
accuracy and proved effective for rapid, reliable load forecasting across various building
types. Wang et al. [12] proposed a dynamic forecasting model for building cooling loads,
combining an Artificial Neural Network (ANN) with an ensemble approach that integrated
data-driven methods and physical laws to capture the complex nonlinear relationships
within HVAC system cooling loads. This hybrid approach significantly improved accuracy,
achieving an R2 of 0.96, providing a more precise load forecasting solution for HVAC
systems compared to traditional models.

Recent studies have shown that, beyond improving model architectures, data decom-
position techniques such as Empirical Mode Decomposition (EMD), Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), and Variational Mode
Decomposition (VMD) can further enhance prediction accuracy by extracting underlying
patterns and trends in the data [13,14]. For instance, Huang et al. [15] developed an EMD-
LSTM-Markov model for cooling load forecasting in commercial office buildings. This
hybrid approach addressed nonlinear, seasonal load variations and achieved significant ac-
curacy improvements, with RMSE reductions of 40–94% and MAPE reductions of 70–96%,
providing an effective solution for real-time HVAC load forecasting. Karijadi and Chou [16]
proposed a hybrid RF-LSTM model with CEEMDAN for improved building energy con-
sumption forecasting. Applied to various building types, including dormitories and offices,
this model reduced MAPE by over 40% compared to the standard models, effectively
handling non-stationary, nonlinear data for enhanced energy management. Li et al. [17]
proposed a hybrid short-term load forecasting model combining the VMD and LSTM
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networks, optimized using Bayesian Optimization. Designed for power load prediction
in regions like Hubei Province, the model accounts for complex, nonlinear factors such as
temperature and the time of day. Compared to LSTM alone, this approach improved RMSE
prediction performance across four seasons by 63.8% to 79.7%.

Although existing methods have improved the accuracy of air conditioning load fore-
casting to some extent through better model structures or decomposition techniques, the
following issues remain: (1) the high-frequency fluctuation characteristics of air condition-
ing loads have not been effectively addressed, as single decomposition methods cannot
fully utilize the hidden information in the data; (2) decomposition methods break down
the raw data into multiple Intrinsic Mode Functions (IMFs), requiring each component to
be predicted separately, which increases computational burden; (3) existing forecasting
models, while improving accuracy, often lack sufficient interpretability, which is crucial for
ensuring operational transparency and decision credibility in power grid operations.

To address these issues, this paper proposes an explainable forecasting framework
based on CEEMDAN-SE-VMD-LSTM with SHAP (Shapley additive explanations). This
framework first employed CEEMDAN to decompose air conditioning load data, evaluating
the complexity of modal components using sample entropy to reorganize them into high-,
mid-, and low-frequency subsequences. The high-frequency subsequence then underwent
secondary decomposition with VMD to simplify its complexity and improve its predictabil-
ity. Each subsequence was independently forecasted using LSTM, and the final prediction
results were integrated. SHAP is used to explain the prediction outcomes, revealing key
influencing factors and enhancing the forecast credibility.

The remainder of this paper is organized as follows: Section 2 provides a detailed
description of the methods used in this study. Section 3 presents the case study analysis,
including forecasting and interpretability assessments. Finally, Section 4 summarizes the
main findings and introduces directions for future research.

2. Materials and Methods

This section introduces the various methods used in the proposed prediction framework,
including CEEMDAN decomposition, sample entropy, VMD, LSTM neural networks, and
SHAP explainability methods. The overall prediction framework is illustrated in Figure 1.
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2.1. CEEMDAN

CEEMDAN is an improvement based on EMD, adaptively decomposing nonlinear and
non-stationary time series into multiple IMFs of different frequencies [18]. By incorporating
adaptive white noise alongside ensemble averaging, CEEMDAN effectively eliminates
mode mixing while enhancing the stability and reliability of the decomposition. The steps
are as follows:

(1) Add white noise to the original sequence x(t) to generate a new sequence xi(t):

xi(t) = x(t) + ε0ωi(t), i = 1, 2, . . . n (1)
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where ε0 represents the noise coefficient, which controls the amplitude of the added
white noise; and ωi(t) denotes the white noise sequence added during the i-th iteration.

(2) Decompose each xi(t) using EMD to obtain the first intrinsic mode function IMF1(t)
and the first residual component r1(t):

IMF1(t) =
1
n

n

∑
i=1

IMFi
1(t) =

1
n

EMD1(xi(t)) (2)

r1(t) = x(t)− IMF1(t) (3)

(3) Continue adding white noise to the sequence to construct a new sequence for calculating
the second intrinsic mode function IMF2(t) and the second residual component r2(t):

IMF2(t) =
1
n

n

∑
i=1

EMD1(r1(t) + ε1EMD1(ω
i(t))) (4)

r2(t) = r1(t)− IMF2(t) (5)

(4) Repeat the above steps until the residual does not exceed two extrema, at which point
no further decomposition is possible:

IMFk(t) =
1
n

n

∑
i=1

EMD1(rk−1(t) + εk−1EMDk−1(ω
i(t))) (6)

rk(t) = rk−1(t)− IMFk(t) (7)

(5) Complete the decomposition. At this point, the relationship between the original
sequence and the modal components R(t) and the final residual component is given
by the following:

x(t) =
K

∑
k=1

IMFk(t) + R(t) (8)

2.2. Sample Entropy

Sample entropy is an improvement over approximate entropy, used to more accurately
assess the complexity of time series data [19]. It measures the randomness and unpredictability
of the data by calculating the probability of similar patterns, thereby avoiding the biases and
sample size dependence associated with approximate entropy. A larger sample entropy
reflects greater complexity with more irregular changes in the data. Given a time series of
length n, [x(1), x(2), . . . x(n)], the calculation steps for sample entropy are as follows:

(1) Construct a comparison sequence of length m:

xm(i) = [x(i), x(i + 1), . . . x(i + m − 1)], i = 1, 2, . . . n − m + 1 (9)

(2) For each vector xm(i) and xm(j), calculate the distance d between the vectors:

d[xm(i), xm(j)] = max[xm(i + k)− xm(j + k)], 0 ≤ k ≤ m − 1 (10)

(3) Calculate the similarity probability:

Am(r) =
1

n − m

n−m

∑
i=1

vm(i)
n − m + 1

(11)

Bm(r) =
1

n − m

n−m

∑
i=1

ωm+1(i)
n − m + 1

(12)

where r is the acceptance threshold for considering two sequences as similar; vm is
the number of counts where d[xm(i), xm(j)] ≤ r; ωm+1 is the number of counts
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where d[xm+1(i), xm+1(j)] ≤ r; Am(r) is the probability that the two sequences match
in m dimensions; Bm(r) is the probability that the two sequences match when the
dimensions are increased to m + 1.

(4) Finally, the calculation of sample entropy is defined as follows:

SE(m, r, n) = −In
Bm(r)
Am(r)

(13)

2.3. VMD

VMD is a time-frequency decomposition method [20] that decomposes a signal into
several modal components with specific center frequencies through a variational model.
The objective of VMD is to minimize the bandwidth of each modal function, thereby
adaptively decomposing the various modes. For a given sequence x(t), the specific steps of
VMD are as follows:

(1) Formulate the variational problem. VMD decomposes x(t) into K modal components
uk(t) by solving this variational problem:

min
{uk},{ωk}

 K

∑
k=1

∥∥∥∥∂t

[(
δ(t) + j

1
π

)
∗ uk(t)]

]
e−jωkt

∥∥∥∥2

2

 (14)

where ∂t represents the partial derivative with respect to t; uk(t) is the k-th modal
component; ωk is the center frequency of the k-th modal component; δ(t) is the Dirac
delta function; ∗ denotes the convolution operation; j is the imaginary unit. The goal
of this variational problem is to minimize the bandwidth of each modal function,
that is, by adjusting the modal function and its corresponding center frequency, to
minimize the spectral bandwidth of each modal function.

(2) To ensure that the sum of all the modal components equals the original sequence, a
constraint is introduced:

s.t.
K

∑
k=1

uk(t) = x(t) (15)

(3) Substitute the constraint into the objective function to construct the Lagrange function:

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∥∂t

[(
δ(t) + j

1
π

)
∗ uk(t)]

]
e−jωkt

∥∥∥∥2

2
+

∥∥∥∥ f (t)− ∑
k

uk(t)
∥∥∥∥2

2
+ < λ(t), f (t)− ∑

k
uk(t) >

(16)

where λ(t) is the Lagrange multiplier; α is the second-order penalty factor; f (t) is the
original input signal to be decomposed; ∗ is the convolution operation.

(4) Use the Alternating Direction Method of Multipliers (ADMM) to solve the above
optimization problem:

ûn+1
k (ω) =

f̂ (ω)− ∑i ̸=k ûi(ω) + λ̂(ω)/2

1 + 2α(ω − ωk)
2 ,

ω̂n+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

,

λ̂n+1(ω) = λ̂n(ω) +

(
f̂ (ω)− ∑

k
ûn+1

k (ω)

)
(17)

where τ is the tolerance for noise; and ûn+1
k (ω), ûi(ω), f̂ (ω), λ̂(ω) represents the

corresponding Fourier transform of un+1
k (t), ui(t), f (t), λ(t). Repeat the above steps

to iteratively optimize uk, ωk and λ, until the convergence condition is met, thus
decomposing the original sequence x(t) into K modal components.
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2.4. LSTM

The LSTM model is a variant of the recurrent neural network (RNN) that can effectively
capture long-term dependencies when processing time series data [21]. Its structure is
shown in Figure 2. By introducing memory cells and gating mechanisms, LSTM effectively
addresses the gradient vanishing and exploding problems commonly encountered by
traditional RNNs when handling long sequences.
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LSTM consists of multiple LSTM cells, each of which mainly includes a forget gate, an
input gate, and an output gate:

(1) Forget gate: the forget gate f determines which information from the previous time
step’s memory cell should be retained or discarded.

ft = σ(W f · [ht−1, xt] + b f ) (18)

σ(x) =
1

1 + e−x (19)

where σ(x) is the sigmoid activation function; W f is the weight matrix for the forget
gate; b f is the bias vector for the forget gate; ht−1 represents the hidden state from the
previous time step, containing information from past inputs in the sequence; xt is the
input at the current time step t.

(2) Input gate: the input gate i controls how information is added to the memory cell,
including two steps: selecting the information to be updated and generating the
new information.
Selection of the information to be updated:

it = σ(Wi · [ht−1, xt] + bi) (20)

Generation of candidate information:

c̃t = tanh(Wc · [ht−1, xt] + bc) (21)

tanh =
ex − e−x

ex + e−x (22)

where tanh is the hyperbolic tangent function; c̃t is the candidate cell state, represent-
ing the new information; Wc is the weight matrix for the cell state; bc is the bias vector
for the cell state.

(3) Cell state update: The cell state ct is updated through the forget gate and input gate.
First, the previous time step’s cell state ct−1 is multiplied by the output of the forget
gate, and then the candidate information selected by the input gate is added.

ct = ft · ct−1 + it · c̃t (23)
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(4) Output gate: The output gate o determines which part of the cell state ct will be
output, and the hidden state ht is also generated from this gate.

ot = σ(Wo · [ht−1, xt] + bo) (24)

ht = ot · tanh(ot) (25)

where Wo is the weight matrix for the output gate; bo is the bias vector for the
output gate.

2.5. SHAP Explainable Method

SHAP is a game theory-based explanation method that provides global and local
interpretations by calculating feature contributions to model predictions [22]. Applicable
to any type of machine learning model, it serves as a model-agnostic explanation tool.

SHAP calculations are based on Shapley values, which are a method in game theory
for fairly distributing gains. In machine learning, features are viewed as “participants”, and
the prediction outcome is the “gain”. Shapley values measure the marginal contribution
of each feature to the prediction outcome, determining its importance. The formula for
calculating SHAP values is as follows:

ϕi = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [ f (S ∪ {i})− f (S)] (26)

where ϕi represents the SHAP value for the i-th feature; S is the subset of the features that
does not include the i-th feature; N is the set of all the features; and f (S) is the output of
the model trained using only the feature subset S. Each term in the formula represents
the change in the model output before and after including the i-th feature. By taking a
weighted average over all the possible subsets of the features, the SHAP values can fairly
allocate each feature’s contribution to the final prediction.

The relationship between the SHAP values and the model prediction results can be
expressed as follows:

f (x) = ϕ0 + ∑
i

ϕi (27)

where f (x) is the prediction function of the trained machine learning model; x is the input
feature vector; ϕ0 is the baseline output of the model, which is typically the mean of the
target variable across all the samples, which is a fixed value; and ∑

i
ϕi represents the model’s

basic prediction level when no features are considered. This represents the contribution of
each feature to the model’s prediction, indicating how each feature shifts the prediction
result from the baseline output ϕ0.

The SHAP explanation method has the advantage of enabling each stage of the
model’s predictions to be linked to specific feature contributions, thereby enhancing
the model’s interpretability. Users can understand how each feature influences the pre-
diction results through SHAP values, thereby gaining deeper insights into the model’s
decision-making process.

3. Case Study
3.1. Data Source

In recent years, extremely high temperatures during the summer have frequently
occurred in Sichuan, placing immense pressure on the power system and leading to a tense
supply–demand situation. Therefore, this study analyzed the 15 min interval total load data
(MWh) from the main electricity meter of a residential community in Nanchong, Sichuan,
in 2023, to investigate air conditioning load patterns under high summer temperatures in
this region.

With the assistance of smart meters, it becomes possible to understand the load
consumption patterns of individual household appliances [23]. However, due to the
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incomplete deployment of smart meters in China, obtaining user-level air conditioning
load data remains challenging. As a result, an indirect method was required to estimate
the air conditioning load. The electric load was categorized into the baseline load and
temperature-sensitive load, with the air conditioning load significantly influenced by
temperature. Based on historical data, the loads in March and April in Sichuan typically
excluded the air conditioning load, making them representative of the baseline load. By
subtracting this baseline from the loads in July and August, the summer air conditioning
load curve was derived, resulting in a total of 5952 data points, as shown in Figure 3.
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As shown in Figure 3, the air conditioning load curve exhibited rapid changes and
significant high-frequency fluctuations, demonstrating obvious randomness and volatility.
These characteristics complicated the task of load forecasting.

3.2. Evaluation Metrics

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Per-
centage Error (MAPE), and R-squared (R2) are commonly used evaluation metrics in load
forecasting. MAE measures the average deviation between the predicted and actual values,
with smaller values indicating higher model accuracy; RMSE emphasizes the impact of
large errors, with smaller values reflecting better control over significant deviations; MAPE
presents errors in percentage form, with smaller values indicating higher prediction accu-
racy; R2 represents the model’s ability to explain variations in the data, with values closer
to 1 indicating better fit. Together, these four metrics provided a comprehensive assessment
of the model’s forecasting performance. The calculation formulas are as follows:
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where N is the number of samples in the test set; yi is the actual value of the i-th sample in
the test set; ŷi is the predicted value of the i-th sample in the test set; and y is the average
value of the samples in the test set.

Due to the presence of zero values in the test set samples of the air conditioning
load series, this can lead to very large values for MAPE, which do not accurately reflect
the model’s prediction accuracy. Therefore, this paper used the Modified Mean Absolute
Percentage Error (MMAPE) [24] to replace MAPE, addressing the issue of a zero denomi-
nator in MAPE. The calculation formula for MMAPE is as follows:

MMAPE =
1
N

N

∑
i=1

|yi − ŷi|
y

× 100% (32)

3.3. Air Conditioning Load Data Decomposition
3.3.1. CEEMDAN Decomposition and Sample Entropy Integration

Based on the theory in Section 2, this study employed CEEMDAN to conduct a
preliminary decomposition of the original air conditioning load series, with the results
shown in Figure 4. Figure 4 illustrates that the high-frequency subsequences exhibited
complex variations with unclear trends, while the low-frequency subsequences showed
simpler variations with evident trends.
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Figure 4. CEEMDAN decomposition results.

To enhance prediction efficiency, the sample entropy was calculated for the subse-
quences obtained from the CEEMDAN decomposition to assess their complexity. Sample
entropy is influenced by two key parameters: m, which represents the length of subse-
quences used to construct similarity patterns, and r, the threshold for defining similarity
between subsequences. Specifically, m controls the length of the patterns being compared;
larger values capture more detailed information from the time series but may lead to
fewer matches, especially in shorter sequences. The parameter r determines the tolerance
level for similarity; smaller values enforce stricter similarity criteria, which may result in
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lower entropy values, while larger values provide a more relaxed criterion, yielding higher
entropy values.

In this study, subsequences with similar complexities, as indicated by sample en-
tropy, were grouped into high-frequency, medium-frequency, and low-frequency categories.
Figure 5 displays the sample entropy results under different m and r settings. Notably,
IMF1 and IMF2 consistently showed higher sample entropy values across the different
parameters, indicating that they are more complex and difficult to predict. In contrast, IMF7
and IMF8 exhibited lower sample entropy values, suggesting more regular and predictable
patterns. Based on these observations, IMF1 and IMF2 were combined into Co-IMF1;
IMF3 to IMF6 into Co-IMF2; IMF7 and IMF8 into Co-IMF3, representing high-frequency,
medium-frequency, and low-frequency subsequences, respectively.

Energies 2024, 17, 5881 11 of 20 
 

 

In this study, subsequences with similar complexities, as indicated by sample en-
tropy, were grouped into high-frequency, medium-frequency, and low-frequency catego-
ries. Figure 5 displays the sample entropy results under different m and r settings. Nota-
bly, IMF1 and IMF2 consistently showed higher sample entropy values across the differ-
ent parameters, indicating that they are more complex and difficult to predict. In contrast, 
IMF7 and IMF8 exhibited lower sample entropy values, suggesting more regular and pre-
dictable patterns. Based on these observations, IMF1 and IMF2 were combined into Co-
IMF1; IMF3 to IMF6 into Co-IMF2; IMF7 and IMF8 into Co-IMF3, representing high-fre-
quency, medium-frequency, and low-frequency subsequences, respectively. 

 
Figure 5. Sample entropy results. 

3.3.2. VMD Secondary Decomposition 
Figure 6 shows that the high-frequency subsequence Co-IMF1, after the preliminary 

decomposition using CEEMDAN and integration based on sample entropy, still exhibited 
high complexity. To reduce its complexity and enhance predictability, this study per-
formed a second decomposition of Co-IMF1 using VMD. The results of the second VMD 
second are presented in Figure 7. 

 
Figure 6. Sample entropy integration results. 

Figure 5. Sample entropy results.

3.3.2. VMD Secondary Decomposition

Figure 6 shows that the high-frequency subsequence Co-IMF1, after the preliminary
decomposition using CEEMDAN and integration based on sample entropy, still exhibited
high complexity. To reduce its complexity and enhance predictability, this study performed
a second decomposition of Co-IMF1 using VMD. The results of the second VMD second
are presented in Figure 7.
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3.4. Air Conditioning Load Prediction Model

This study used LSTM to establish the prediction model, with the hyperparameters
optimized using the Optuna library. Optuna is an efficient and flexible hyperparameter
optimization tool that can automatically search for the best parameter combinations to
enhance model performance. The dataset was divided into training, validation, and test
sets in a 7:1:2 ratio. The final hyperparameters determined through Optuna’s global
optimization and adaptive sampling methods are shown in Table 1, ensuring the optimal
performance of the LSTM model in prediction tasks.

Table 1. Hyperparameters of LSTM.

Description Value

Input Dimension 8
Hidden Layer Size 64

Input Sequence Length 3
Output Sequence Length 1
Number of LSTM Layers 2

Dropout Probability 0.2
Batch Size 32

Learning Rate 0.001
Number of Epochs 100

Optimizer Adam
Loss Function MSE Loss

Additionally, since LSTM is sensitive to the scale of input data, the data underwent
min–max normalization before being input into the model. This normalization eliminated
the dimensional differences between the features, improving the training efficiency and
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the stability of the model. After the prediction was completed, to facilitate evaluation and
visualization, the predicted values were reverse normalized to restore them to the original
data scale, ensuring the accuracy and interpretability of the results.

To accurately capture the multidimensional factors affecting air conditioning load
variation, this study incorporated eight features into the LSTM model, including historical
load (MWh), temperature (◦C), humidity (%), precipitation (mm), wind speed (m/s), wind
direction (◦), hour (h), and quarter (15 min), as shown in Table 2. This comprehensive selec-
tion of the features enabled a thorough consideration of the environmental and temporal
influences on air conditioning load, significantly enhancing the accuracy and adaptability
of the predictions.

Table 2. Input feature list.

Feature Name

Historical load (MWh)
Temperature (◦C)

Humidity (%)
Precipitation (mm)
Wind speed (m/s)
Wind direction (◦)

Hour (h)
Quarter (15 min)

3.5. Prediction Results

To validate the effectiveness of the proposed prediction framework, the following
models were selected for comparison:

(1) LSTM: no decomposition was performed; predictions were made directly using the
original features;

(2) EMD-LSTM: The original air conditioning load sequence was decomposed using
EMD, and LSTM was used to predict each component separately. The final prediction
result was obtained by summing these predictions;

(3) CEEMDAN-LSTM: The original air conditioning load sequence was decomposed
using CEEMDAN, and LSTM was used to predict each component separately. The
final prediction result was obtained by summing these predictions;

(4) VMD-LSTM: The original air conditioning load sequence was decomposed using
VMD, and LSTM was used to predict each component separately. The final prediction
result was obtained by summing these predictions;

(5) CEEMDAN-SE-LSTM: The original air conditioning load sequence was decomposed
using CEEMDAN, and then aggregated based on sample entropy to obtain high-
frequency, mid-frequency, and low-frequency subsequences. LSTM was then used to
predict each of these subsequences separately;

The prediction results are shown in Table 3, and Figure 8 displays the prediction
results for 24 randomly selected time steps.

Table 3. Comparison of prediction results.

Model MAE/(MWh) RMSE/(MWh) MMAPE (%) R2

LSTM 0.0498 0.0713 18.4275 0.8660
EMD-LSTM 0.0313 0.0487 11.5679 0.9375
CEEMDAN-

LSTM 0.0292 0.0464 10.8118 0.9431

VMD-LSTM 0.0213 0.0308 7.8690 0.9750
CEEMDAN-SE-

LSTM 0.0331 0.0520 12.2601 0.9286

Proposed 0.0132 0.0184 4.8984 0.9910



Energies 2024, 17, 5881 13 of 18

Energies 2024, 17, 5881 14 of 20 
 

 

EMD-LSTM 0.0313 0.0487 11.5679 0.9375 
CEEMDAN-LSTM 0.0292 0.0464 10.8118 0.9431 

VMD-LSTM 0.0213 0.0308 7.8690 0.9750 
CEEMDAN-SE-LSTM 0.0331 0.0520 12.2601 0.9286 

Proposed 0.0132 0.0184 4.8984 0.9910 

 
Figure 8. Comparison of prediction results. 

From Table 3 and Figure 8, it can be seen that the CEEMDAN-SE-VMD-LSTM 
method outperformed the LSTM model in terms of prediction accuracy, with improve-
ments of 73.4940%, 74.1935%, 73.4180%, and 14.4342% in the MAE, RMSE, MMAPE, and 
R2 metrics, respectively. Compared to VMD-LSTM, these metrics improved by 38.0282%, 
40.2597%, 37.7507%, and 1.6410%. This indicates that the multi-level decomposition and 
aggregation approach effectively utilized the characteristics of the different frequency 
components, reducing the complexity of the air conditioning load series and significantly 
decreasing prediction errors. In contrast, the LSTM model without decomposition had the 
lowest prediction accuracy due to the interference of frequency components and noise in 
the original data. 

Among the combined decomposition prediction methods, CEEMDAN-SE-LSTM had 
the lowest prediction accuracy. Although sample entropy aggregation simplified the in-
put structure of the model, the complexity of the high-frequency subsequence increased, 
leading to greater prediction difficulty. On the other hand, VMD-LSTM demonstrated bet-
ter prediction accuracy than CEEMDAN-LSTM and EMD-LSTM, indicating that VMD 
was more effective in signal decomposition and better at extracting frequency components 
that aid in prediction. 

Additionally, to provide a more comprehensive visualization of the prediction re-
sults, Figure 9 illustrates the predictions for the entire test dataset, along with a zoomed-
in view of a selected portion. From the figure, it can be observed that the proposed method 
(in red) aligned more closely with the actual load curve (in black) across most time steps, 
particularly excelling in capturing detailed fluctuations. The zoomed-in view highlights 
that even in regions with more pronounced load fluctuations, the proposed method effec-
tively captured the high-frequency variations in the load curve, demonstrating its superi-
ority in forecasting short-term load dynamics. 

Figure 8. Comparison of prediction results.

From Table 3 and Figure 8, it can be seen that the CEEMDAN-SE-VMD-LSTM method
outperformed the LSTM model in terms of prediction accuracy, with improvements of
73.4940%, 74.1935%, 73.4180%, and 14.4342% in the MAE, RMSE, MMAPE, and R2 metrics,
respectively. Compared to VMD-LSTM, these metrics improved by 38.0282%, 40.2597%,
37.7507%, and 1.6410%. This indicates that the multi-level decomposition and aggregation
approach effectively utilized the characteristics of the different frequency components,
reducing the complexity of the air conditioning load series and significantly decreasing
prediction errors. In contrast, the LSTM model without decomposition had the lowest
prediction accuracy due to the interference of frequency components and noise in the
original data.

Among the combined decomposition prediction methods, CEEMDAN-SE-LSTM had
the lowest prediction accuracy. Although sample entropy aggregation simplified the
input structure of the model, the complexity of the high-frequency subsequence increased,
leading to greater prediction difficulty. On the other hand, VMD-LSTM demonstrated
better prediction accuracy than CEEMDAN-LSTM and EMD-LSTM, indicating that VMD
was more effective in signal decomposition and better at extracting frequency components
that aid in prediction.

Additionally, to provide a more comprehensive visualization of the prediction results,
Figure 9 illustrates the predictions for the entire test dataset, along with a zoomed-in
view of a selected portion. From the figure, it can be observed that the proposed method
(in red) aligned more closely with the actual load curve (in black) across most time steps,
particularly excelling in capturing detailed fluctuations. The zoomed-in view highlights that
even in regions with more pronounced load fluctuations, the proposed method effectively
captured the high-frequency variations in the load curve, demonstrating its superiority in
forecasting short-term load dynamics.

This study adopted the strategy of using CEEMDAN for initial decomposition, fol-
lowed by VMD for secondary decomposition of the high-frequency subsequence. This
combination leveraged the strengths of both the decomposition methods, avoiding the
potential complexity and performance decline that may arise from directly applying two
rounds of VMD. The combination of CEEMDAN and VMD effectively enhanced the pre-
diction accuracy of the model.
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3.6. Effect of Sample Entropy Parameter Selection

In this section, we discuss the impact of sample entropy parameter selection on the
prediction accuracy.

As shown in Figure 5, the sample entropy results varied significantly with the different
parameter selections. The embedding dimension m and tolerance threshold r had a direct
impact on the calculated entropy values across the IMFs. This variability indicates that
parameter selection is crucial for accurately assessing the complexity of different frequency
components, influencing the subsequent prediction accuracy. Appropriate selection of
the parameters m and r enabled a more reliable classification of the high-, medium-, and
low-frequency components based on their entropy characteristics, thereby improving the
prediction accuracy.

With all the other settings remaining constant, the prediction results with only the
parameters m and r adjusted are shown in Table 4.

Table 4. Effect of parameter m and r selection on prediction results.

Parameter MAE/(MWh) RMSE/(MWh) MMAPE (%) R2

m = 1, r = 0.1 0.0306 0.0412 11.3380 0.9551
m = 1, r = 0.2 0.0149 0.0201 5.5168 0.9894
m = 2, r = 0.1 0.0132 0.0184 4.8984 0.9910
m = 2, r = 0.2 0.0232 0.0323 8.5882 0.9726

As shown in Table 4, when m = 2 and r = 0.1, the model achieved the best predic-
tion performance, with MAE, RMSE, and MMAPE reaching 0.0132, 0.0184, and 4.8984,
respectively, and R2 reaching 0.9910. This indicates that, under this parameter setting, the
classification of the frequency components and complexity were more reasonable, thereby
improving the prediction accuracy of the model. The next best combination was m = 1 and
r = 0.2, where MAE, RMSE, and MMAPE reached 0.0149, 0.0201, and 5.5168, respectively,
and R2 reached 0.9894, which is slightly lower than the case of m = 2 and r = 0.1. In the
cases of m = 1, r = 0.1, and m = 2, r = 0.2, the errors were relatively larger, indicating that
these two combinations did not balance complexity and stability well in the sample entropy
calculation, resulting in reduced prediction accuracy.

From the perspective of m and r, this result can be analyzed as follows: the embedding
dimension m represents the length of the subsequences compared in the calculation of
sample entropy. A smaller m (e.g., m = 1) can capture finer details and more complex
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content but increases sensitivity to noise. In contrast, a larger m (e.g., m = 2) captures more
representative patterns, resulting in smoother entropy values.

The tolerance threshold r controls the similarity criterion. A smaller r (e.g., r = 0.1)
applies a stricter criterion, capturing finer variations but also amplifying noise, which may
affect stability. A larger r (e.g., r = 0.2) provides a more relaxed criterion, effectively filtering
high-frequency noise and helping to identify overall trends in the data, although it may
miss some detailed features.

Overall, the combination of m = 2 and r = 0.1 performed best, likely because this
setting achieved a good balance between capturing the overall structure and fine details of
the frequency components. The larger embedding dimension (m = 2) helped to filter out
some high-frequency noise, while the smaller tolerance threshold (r = 0.1) preserved the
subtle variations in the frequency components, enabling a more effective classification of
the high-, medium-, and low-frequency components and ultimately improving the model’s
prediction accuracy.

3.7. Predictive Results Interpretability
3.7.1. Global Interpretability

Global interpretability aims to provide a comprehensive understanding of the overall
impact of various features on the predictive output of a model, rather than just the influence
of individual predictions. Since the subsequences obtained from the decomposition algo-
rithms did not fully represent the true air conditioning load levels, this study employed the
LSTM model for direct prediction and utilized the SHAP method for model interpretation.

Figure 10 illustrates the global interpretation of features. Each row represents a feature,
with the horizontal axis showing the SHAP values, indicating the contribution of that
feature to the model output. The colors indicate the magnitude of the feature values,
with blue representing lower values and red representing higher values. The distribution
range of points reflects the extent of the feature’s impact on the prediction results; a wider
range indicates a greater influence. The red points on the positive axis signify that higher
feature values had a positive impact on the prediction, meaning that, as the feature value
increased, the prediction result also increased; conversely, the red points on the negative
axis indicate that higher feature values had a negative impact, implying that as the feature
value increased, the prediction result decreased.
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From Figure 10, it is evident that the primary feature influencing air conditioning
load predictions was historical load. The SHAP values indicate that when the historical
load was high, the model’s predicted values also significantly increased, demonstrating
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the clear positive impact of historical load on predictions; conversely, when the historical
load was low, the predicted values were correspondingly lower. Additionally, temperature
had a notable positive influence on the model output, with higher temperatures leading to
increased predicted load values, while lower temperatures resulted in decreased predictions.
Humidity ranked as the third most important feature, as high humidity typically leads
to an increase in the model’s predicted values, while low humidity tends to reduce them.
The impact of precipitation was minimal, with the SHAP values close to zero, likely due
to the limited rainfall during July and August, which restricted its effect on the model
output. Other features such as wind speed, wind direction, hour, and quarter showed a
minor influence on the air conditioning load predictions, with the SHAP values clustered
closely together, indicating that these features did not significantly contribute to the model’s
predictive results.

3.7.2. Local Interpretability

Local interpretability aims to explain the results of individual prediction samples
by showing how each feature contributes to the prediction for a specific sample. In our
air conditioning load forecasting model, SHAP was used to calculate the contribution of
features such as temperature, historical load, and humidity for each time step, allowing us
to understand which features had the most significant impact on that specific prediction.
This approach enhanced the model’s transparency and helped us interpret its behavior
under various conditions.

Figure 11 shows the local interpretability of a randomly selected prediction sample.
Each row represents a feature along with its specific value for this sample (normalized
result). At the bottom, the model’s expected prediction value is displayed, representing
the average predicted output in the absence of any feature inputs. At the top is the
model’s actual predicted value for this sample, derived from the contributions of each
feature interacting together. From Figure 11, it can be seen that the historical load feature
contributed +0.06 to the predicted value, and the temperature feature contributed +0.02,
while the humidity feature contributed −0.01. This indicates that the historical load had a
positive impact on the prediction result for this sample, while the humidity feature had a
negative effect on the prediction.
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quencies based on sample entropy. The high-frequency component underwent further
decomposition with VMD, and each subsequence was predicted using LSTM to ultimately
reconstruct the load prediction results. The SHAP method was then employed to explain
the prediction results and reveal the impact of the key features.

The proposed multi-level decomposition strategy, integrating CEEMDAN, sample
entropy (SE), and VMD, effectively reduced the data complexity, mitigated the high-
frequency noise, and improved the predictive accuracy. Experimental results show that
the CEEMDAN-SE-VMD-LSTM model achieves notable gains over LSTM, with reduc-
tions of 73.49%, 74.19%, and 73.42% in MAE, RMSE, and MMAPE, and a 14.43% increase
in R2. Compared to VMD-LSTM, these metrics improved by 38.03%, 40.26%, 37.75%,
and 1.64%, respectively, underscoring the effectiveness of the decomposition strategy. By
leveraging the strengths of both CEEMDAN and VMD, this two-step approach captured es-
sential frequency components, mitigated high-frequency noise interference, and enhanced
prediction accuracy.

The SHAP method further strengthened this framework by providing both global and
local interpretability of the prediction results. By quantifying the impact of features such
as historical load, temperature, and humidity, SHAP offered dual-layer interpretability.
Globally, SHAP revealed the overall importance and influence of key features across the
entire dataset, offering insights into how various factors generally affect model predictions.
Locally, it allows us to understand and trust the specific factors driving individual predic-
tions, enhancing transparency for particular instances. This comprehensive interpretability
is crucial for decision-making in energy management, as it enables stakeholders to grasp
both broader feature trends and the specific drivers behind predictions.

Although the proposed method performed well in this case study, the dataset was
limited to summer air conditioning load data from a single residential area. In real-world
applications, air conditioning loads are more diverse, with significant regional and seasonal
variations. Future work will therefore expand the dataset to cover multiple seasons and
geographic regions, enabling validation of the method’s adaptability across varied climatic
conditions. Additionally, considering substantial load variations, future research could
apply optimization algorithms to fine-tune the parameters within both the decomposition
and forecasting stages, enhancing the model’s adaptability and ensuring robust accuracy
for broader applications.
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