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Abstract: With accelerating climate change and rising global energy consumption, the application of
artificial intelligence (AI) and machine learning (ML) has emerged as a crucial tool for enhancing
energy efficiency and mitigating the impacts of climate change. However, their implementation has
a dual character: on one hand, AI facilitates sustainable solutions, including energy optimization,
renewable energy integration and carbon reduction; on the other hand, the training and operation
of large language models (LLMs) entail significant energy consumption, potentially undermining
carbon neutrality efforts. Key findings include an analysis of 237 scientific publications from 2010 to
2024, which highlights significant advancements and obstacles to AI adoption across sectors, such
as construction, transportation, industry, energy and households. The review showed that interest
in the use of AI and ML in energy efficiency has grown significantly: over 60% of the documents
have been published in the last two years, with the topics of sustainable construction and climate
change forecasting attracting the most interest. Most of the articles are published by researchers
from China, India, the UK and the USA, (28–33 articles). This is more than twice the number of
publications from researchers around the rest of the world; 58% of research is concentrated in three
areas: engineering, computer science and energy. In conclusion, the review also identifies areas for
further research aimed at minimizing the negative impacts of AI and maximizing its contribution to
sustainable development, including the development of more energy-efficient AI architectures and
new methods of energy management.

Keywords: artificial intelligence; energy consumption; climate change; socially responsible business;
sustainability

1. Introduction

Climate change and rising energy consumption are among the most pressing chal-
lenges facing the modern society. The rapid growth in energy consumption, driven by
economic expansion and technological development, contributes to increased greenhouse
gas emissions and accelerates global climate change. In this context, the urgency of find-
ing innovative solutions to enhance energy efficiency is becoming increasingly apparent.
Artificial intelligence (AI) and machine learning (ML) have advanced rapidly in recent
years, showing significant potential to solve complex environmental challenges, such as
enhancing energy efficiency and reducing carbon emissions [1,2]. However, their impact
on energy consumption and climate change remains ambiguous.

On the one hand, AI holds significant potential to address global challenges outlined
by the UN [3], including climate change and other complex environmental and social issues,
which includes the following:
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- By predicting energy consumption, optimizing energy systems and integrating re-
newable energy sources, AI has the potential to become a key tool in the fight against
climate change [4,5].

- Improving the energy efficiency of buildings and industrial infrastructure, optimizing
the operation of energy systems in real time helps reduce overall energy consumption
and minimize the impact on the environment [6–9].

- Machine learning (ML) is used to predict climate change and its impact on energy
systems. Machine learning models allow us to build scenarios of future energy
consumption and adapt infrastructure to new conditions [10,11].

- AI can enhance the efficiency of renewable energy sources, such as wind and solar
power plants [6,9], which is particularly important in the decarbonization process [12].

- AI plays a key role in monitoring, managing and forecasting energy needs, taking into
account future climate change. This includes optimizing energy distribution, integrat-
ing renewable sources and reducing the load on power systems during periods of
peak demand [7,13,14]. These studies propose solutions to enhance the sustainability
of energy systems and reduce their carbon footprint [14,15].

On the other hand, the rapid growth in AI usage, particularly in large language
model (LLM) training, has led to a substantial increase in energy consumption [16]. Tech
giants, such as Google, OpenAI, Microsoft and others, despite their ambitious goals, face
significant challenges in achieving carbon neutrality by 2030 [17,18]. The high energy costs
associated with creating and operating powerful AI models highlight the contradiction
between technological progress and its environmental consequences [19]. Moreover, the
rise in energy consumption is directly linked to an increasing carbon footprint [18,19].
Therefore scientific efforts are aimed at finding solutions to improve the energy efficiency
of AI systems and minimize their negative impact on the environment [3,18].

Investigating the application of AI and ML to improve energy efficiency holds signifi-
cant potential for creating a more sustainable future with minimal negative consequences
for the environment [20,21]. However, a full understanding of the current situation requires
analyzing current achievements and existing barriers to determine the effectiveness of inte-
grating AI into business models of enterprises to solve global humanity’s challenges [22,23].
Further research is crucial to understand how AI and ML can contribute to reduce global
energy consumption without introducing additional climate risks.

Thus, the aim of this review is to synthesize and systematize the existing scientific liter-
ature, demonstrating how artificial intelligence (AI) and machine learning (ML) techniques
can contribute to energy efficiency in different industries and countries. The review also
aims to analyze the role of AI in addressing current climate challenges, including reducing
carbon emissions and optimizing resource use.

In order to achieve the set goal, the following tasks are defined:

- identify the main trends and research directions in which AI and ML are applied to
improve energy efficiency and address climate challenges;

- assess the main technical barriers that limit the widespread adoption of AI and ML in
practice and identify directions for overcoming them;

- examine how AI and ML can contribute to reducing carbon footprints and optimize
resources for long-term sustainable development.

This review provides an in-depth and comprehensive study of the impact of AI and
ML on energy efficiency, addressing the interrelated energy and climate aspects of these
digital technologies. Unlike previous studies, this review focuses on a comprehensive
analysis of technological barriers and innovative solutions and outlines specific directions
for future research. The findings are aimed at contributing to the knowledge for both the
scientific community and practitioners working in the field of sustainable development
and energy management.

Section 1 contains a description of the relevance of the topic, the aims and tasks of the
study and a summary of the current review.
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Section 2 describes the methodology used to select and screen peer-reviewed articles,
ensuring a thorough and structured approach to the topic.

Section 3 contains a chosen selected list of research questions that are explored in the
research and deals with each topic individually.

Finally, Section 4 concludes the review by offering perspectives on future research
directions, emphasizing the critical need for continuous innovation to improve the energy
efficiency of companies and reduce the electricity consumption of LLMs by improving
their architecture.

2. Materials and Methods

This literature review addresses key issues related to the application of artificial
intelligence (AI) and machine learning (ML) techniques in the context of energy efficiency
and their impact on climate change. The following research questions were formulated to
structure the analysis:

- What energy-efficiency projects using AI and machine learning are currently being
implemented? This question aims to explore specific examples of AI and ML applica-
tions in energy-efficiency projects, with the goal of identifying successful cases and
innovative approaches.

- Which major industries, companies or countries are benefiting from the application of
AI and machine learning in energy efficiency? This question focuses on identifying key
players, such as industries, companies, and countries, that are most actively utilizing
AI and ML to achieve energy-efficiency solutions.

- What are the main problems and challenges facing companies, cities and states when
implementing energy-efficiency projects? This question seeks to uncover the existing
barriers for integrating AI into energy-efficiency practices, including technological,
financial and organizational obstacles.

- What are the prospects for applying AI and ML in energy-efficiency projects? This
question explores future research directions and innovations that could enhance the
use of AI in achieving energy-efficiency objectives.

The methodology of this literature review was developed to systematically analyze ex-
isting research on the application of artificial intelligence and machine learning techniques
in the field of energy efficiency and their impact on climate change. The primary goal is to
identify trends and challenges in the implementation of these technologies and forecast
their future impact on climate change. A systematic approach is used to emphasize the
transparency and reproducibility of the results.

The literature search was conducted using the Scopus database, which encompasses a
broad spectrum of peer-reviewed scientific articles and patents. The aim was to capture
a wide range of research across different fields and disciplines. Key terms relevant to the
research questions were used to develop the search strategy. The logical search string was
constructed as follows: TITLE-ABS-KEY ((“artificial intelligence” OR “machine learning”)
AND “energy efficiency” AND “climate change”) AND PUBYEAR AFT 2010 AND PUB-
YEAR BEF 2025. The search string was designed to capture both fundamental and recent
publications from 2010 to 2024, aiming to identify intersections between energy efficiency
and climate solutions through AI and ML. The keywords used in this literature review
were carefully selected to ensure both the completeness and relevance of the documents to
the study’s objectives and key research questions.

The search identified 237 relevant papers and 388 patents. Over 60% of the documents
were published in the last two years (2023–2024), reflecting a growing interest in the topic.
This rising trend is also evident in industry, with 243 patents filed in the past three years
(2022–2024), representing 63% of the total for the fourteen-year period. The increasing
number of patents is noT, with 59 filed in 2022, 85 in 2023 and 99 patents filed in 2024 (as of
16 October).

The resulting review data were categorized into key categories, including industries,
geographic distribution and types of research documents. Figure 1 illustrates the annual
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distribution of published papers (as of 16 October 2024), highlighting trends and research
activity over time. Source: Scopus Analytics.
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Figure 1. Distribution of documents by years. Source: compiled by authors.

Figure 2 illustrates the distribution of scientific articles retrieved from the Scopus
database categorized by subject area (Source: Scopus Analytics). The figure reveals that
nearly 60% of the articles are concentrated in three fields: Engineering, Computer Science
and Energy.
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Figure 2. Distribution of documents by industries. Source: compiled by authors.

Figure 3 presents the number of articles published by researchers from various coun-
tries, highlighting the geographic diversity and concentration of research efforts, particu-
larly in China, India, the UK and the US (Source: Scopus Analytics).
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Figure 4 illustrates the distribution of documents by types, indicating that articles
and conference publications account for over 80% of the total, with articles comprising the
largest share (Source: Scopus Analytics).
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A systematic approach was employed to ensure comprehensive coverage of the field.
The selection process followed the methodology outlined in [24] and adhered to the guide-
lines set out in [25], ensuring transparency and rigor. Publications were evaluated using a
3-point quality scoring system to assess relevance and validity (see Table 1). Each study
was reviewed based on several criteria, including innovation, practical application and
strength of evidence. The systematic review method recommended in [26] was applied to
ensure the transparency and reproducibility of the results.
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Table 1. Evaluation of source quality.

Evaluation Question Description Evaluation Metric

1 Stage of implementation of the energy
efficiency project using AI and ML 1: Experiments; 2: Economic impact; 3: Scalability.

2 The magnitude of the energy efficiency
effect from AI and ML projects. 1: Negligible; 2: Enterprise level; 3: Country level.

3
Identification and discussion of

challenges in implementing AI and ML
for energy efficiency projects.

1: Minimal; 2: Key issues; 3: Detailed.

4 Proposing future research directions to
improve ML models. 1: Some; 2: General; 3: Detailed and innovative.

Source: compiled by authors.

This study focused on four key questions related to the application of AI and ML
in energy efficiency. These evaluative questions (see Table 1) facilitated a comprehen-
sive assessment of the research findings while adhering to the principles of relevance
and objectivity.

Consequently, this approach enabled in-depth analysis and the identification of the
most significant areas for further research.

3. Results

The analysis made it possible to identify the following topics in scientific research that
have undergone their evolution during the analyzed period.

1. Sustainable construction and green technologies that utilize AI and ML to enhance
the energy efficiency of buildings.
This topic centers on optimizing the energy efficiency of buildings, particularly in urban
areas affected by climate change and urban heat island effects. It encompasses the use
of physical simulation models, multi-criteria optimization, digital twins and cloud tech-
nologies to enhance the energy efficiency and resilience of buildings in the face of climate
change. Additionally, it addresses methods and approaches for improving building en-
ergy efficiency through passive measures, the use of sustainable ecological materials and
thermographic and AI-assisted optimization of the building life cycle.

2. Enhancing energy efficiency in transportation and e-mobility.
This topic addresses issues related to the development of electric vehicles, hybrid
transportation systems and the charging infrastructure. It encompasses transportation
energy management, energy efficiency and the safety of autonomous vehicles through
the application of AI and ML.

3. The role of AI in sustainable production and industrial automation.
This topic focuses on utilizing AI to optimize manufacturing processes, reduce energy
consumption and minimize the carbon footprint of the industry. It encompasses pre-
dictive maintenance, energy management and automation to enhance sustainability
and productivity, as well as the application of AI in agriculture.

4. Energy efficiency in smart energy grids.
This topic explores the role of AI and machine learning in optimizing energy manage-
ment within smart grids. It addresses demand management, real-time forecasting and
the integration of distributed energy sources to enhance grid stability and efficiency.

5. Climate change forecasting and the adaptation of energy systems.
This topic involves the application of mathematical models and machine learning to
predict climate change and its impact on energy systems. It includes the assessment of
future energy consumption scenarios, infrastructure adaptation and the development
of strategies to mitigate the negative effects of climate change on energy systems.

6. Machine learning for water resources management.
This topic addresses the use of machine learning to optimize membrane distillation
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processes, enhance the energy efficiency of solar desalination and solve global water
shortage problems through innovative technologies and bioreactors.

7. AI in renewable energy sources.
This topic involves the application of AI to optimize, predict and integrate renewable
energy sources, such as solar, wind and geothermal, into energy systems. The focus is
on enhancing the performance of geothermal heat pumps and developing predictive
models for energy management and grid interactions.

8. Energy transition and decarbonization through innovative technologies.
This topic focuses on reducing the carbon footprint across various sectors, including
construction, energy and transportation, while transitioning to a low-carbon economy
through the integration of renewable energy sources and innovative technologies. It
encompasses the use of blockchain, AI and cyber-physical systems (CPSs) to manage
energy consumption and promote sustainable development. Additionally, it includes
an analysis of economically feasible energy investments.

9. Carbon footprint of large AI language models.
This research focuses on the carbon footprint of large language models and explores
potential strategies for reducing it.

10. Post-combustion carbon capture and its optimization through multi-objective opti-
mization (MOE).
The application of machine learning to optimize post-combustion carbon capture
(PCCC) technologies encompasses enhancing the energy efficiency of carbon capture
processes, reducing emissions and integrating PCCC into industrial processes.

11. Climate change mitigation through AI.
This theme focuses on strategies to reduce carbon emissions, enhance energy efficiency
and promote sustainable practices across various sectors. It emphasizes the integration
of energy-efficient technologies, the modernization of infrastructure and the use of AI
to monitor climate impacts and adapt to climate change. Additionally, it includes the
monitoring and mitigation of ocean acidification.

12. Social, economic and political aspects of energy management.
The topic examines the role of public policies in promoting renewable energy, re-
ducing emissions and supporting sustainable development in the energy sector, as
well as government regulation and policies for energy transition. It includes pro-
grams to reduce energy consumption, rewards for energy savings and an analysis of
the impact of policy decisions on sustainable development and the UN Sustainable
Development Goals.

In Table 2, the distribution of sources by important topics (key research questions) and
years is presented.

Table 2. Thematic analysis by years.

Summary 2024 2023 2022 2021 2020

The impact of AI and ML on energy efficiency

Sustainable construction and green technologies using AI and ML
to enhance the energy efficiency of buildings. 44 10 8 8 9 9

Enhancing energy efficiency in transportation and e-mobility. 12 3 1 1 7 0

AI in sustainable production and industrial automation. 22 6 8 2 4 2

Energy efficiency in smart grids. 17 7 4 2 4 0

Climate change forecasting and adaptation of energy systems to
climate change. 27 8 5 5 6 3

ML for water resources management. 19 7 4 1 5 2

AI in renewable energy sources. 21 7 5 5 2 2
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Table 2. Cont.

Summary 2024 2023 2022 2021 2020

The impact of AI and ML on climate change.

Energy transition and decarbonization through
innovative technologies. 19 8 5 3 2 1

Carbon footprint of LLM. 10 5 2 1 0 2

Post-combustion carbon capture. 8 4 3 0 0 1

Mitigating the effects of climate change with the help of AI. 11 5 3 2 1 0

Policy and regulation.

Social, economic and political aspects of energy
consumption management. 27 8 5 5 6 3

Total

Source: compiled by authors.

3.1. Sustainable Construction and Green Technologies Using AI and ML to Enhance the Energy
Efficiency of Buildings

As indicated in the literature survey, sustainable building and the implementation
of green technologies using artificial intelligence and machine learning have emerged as
the most significant research topics in the face of global climate change over the past five
years. AI and ML technologies have been actively applied to develop energy prediction
and optimization models, particularly in urban areas, where urbanization and phenomena,
such as the urban heat island effect (UHI), necessitate solutions to enhance thermal comfort
and reduce energy consumption. The combination of physical simulation and AI can
accurately predict energy consumption under various climate scenarios, which not only
improves energy efficiency but also contributes to increase indoor thermal comfort [27].

A key challenge of sustainable building research is the application of ML and multi-
criteria optimization methods to enhance the energy performance of buildings and reduce
their carbon footprint, particularly in the context of climate change and urbanization. In
recent years, artificial intelligence (AI) and optimization (ML) have been actively utilized
to create models for predicting and optimizing energy consumption, especially in urban
areas affected by the urban heat island effect (UHI) and climate change.

3.1.1. Modeling and Forecasting

A study [28] emphasizes the significance of modeling heating, ventilation and air
conditioning (HVAC) systems using neural networks to enhance the energy efficiency
and comfort of buildings. The utilization of AI-based models enables the prediction of
HVAC system performance and their adaptation to specific environmental conditions,
resulting in a significant reduction in energy consumption. Additionally, in study [29],
the application of machine learning models for weather forecasting and the design of
energy-efficient building structures is explored, highlighting the creation of sustainable
urban environments capable of withstanding climate change.

Furthermore, study [30] analyzes mechanical cooling in high-rise buildings, demon-
strating that the application of ML to model climate conditions can improve the energy
efficiency of ventilation systems and promote energy savings. Study [31] highlights the con-
siderable potential of AI to manage variations in climate scenarios by predicting the future
energy demands of buildings and facilitating their adaptation to changing conditions.

Particular attention is given to optimizing heat transfer and enhancing comfort in
buildings. The use of advanced machine learning techniques, such as CNN-LSTM, effec-
tively simulates the thermal dynamics of buildings and optimizes HVAC systems, resulting
in a reduction of energy consumption from 15.7% to 22.3% [10]. Additionally, study [32]
investigates gradient boosting models, including LightGBM, CatBoost and XGBoost, which
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provide accurate predictions of energy consumption in office buildings, offering optimal
solutions for improving energy efficiency.

Work [33] highlights the significance of machine learning in predicting thermal loads
in residential buildings. This aids in reducing energy consumption and improving the
sustainability of energy management systems. Also, study [34] indicates that the more AI
and IoT devices are deployed in energy-intensive sectors of the economy, the higher their
energy efficiency becomes. Study [35] explores a hybrid strategy that integrates AI with
modeling tools, such as EnergyPlus™, to forecast annual cooling energy consumption. This
study offers a practical guide for reducing cooling costs by analyzing building materials
and design solutions.

3.1.2. The Use of Digital Twins

Digital twins and the Internet of Things (IoT) play a key role in predicting and op-
timizing the energy efficiency of buildings. These technologies facilitate the real-time
monitoring and management of energy systems, contributing to a more sustainable and
environmentally friendly urban environment [11]. The use of digital twins allows for the
integration of real-world data to enhance operational efficiency and reduce energy costs,
representing an important step towards the environmental sustainability of buildings.

The application of digital twins and the Internet of Things (IoT) offers unique oppor-
tunities for the real-time monitoring and control of energy systems, leading to improved
heat management and enhanced energy efficiency in buildings [14].

Digital twin and predictive models, such as LSTM and the Kalman filter, play a crucial
role in accurate energy consumption prediction through the processing of time series data
and optimization of energy processes [36]. The use of machine learning algorithms and
the Petri Net control system allows the thermal energy efficiency of vertical and horizontal
building envelopes to be achieved [37]. These technologies provide new opportunities
for sustainable building, particularly in the face of uncertainties associated with climate
change [38].

Research underscores the significance of utilizing digital twins and autonomous
machine learning agents to manage the energy consumption of buildings in the face of
unpredictable environmental changes. Specifically, the work in [39] highlights that adaptive
systems capable of learning from real-world data can substantially enhance the energy
efficiency of buildings. These methodologies are illustrated in work [37], which employs
machine learning and a Petri Net-based control system to optimize thermodynamic param-
eters of buildings, including the window type and insulation selection.

The utilization of digital twins and multi-criteria optimization enables the more ac-
curate modeling of the energy performance of buildings, providing effective solutions for
enhancing their energy efficiency [40]. These technologies contribute to the creation of
adaptive and resilient systems capable of responding effectively to variations in climatic
conditions while minimizing energy consumption, although delaying their implementation
may result in multi-billion-dollar losses [41].

3.1.3. Green Technologies and Ecological Materials

The development of sustainable construction and the implementation of green tech-
nologies aimed at enhancing the energy efficiency of buildings have become crucial compo-
nents in the battle against climate change. Key research areas encompass a broad spectrum
of topics, ranging from the physical modeling of buildings to the application of artificial
intelligence and machine learning for predicting and optimizing energy consumption.

A study [42] investigates the application of AI in designing green buildings within
healthcare facilities, emphasizing the selection of environmentally friendly materials and
energy consumption optimization during the operational phase. Techniques, such as
random forests and ant colony optimization, highlight the increasing interest in automated
energy and material management systems in the construction industry.
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Work [43] investigates green building techniques, including the use of recycled and
advanced materials, as well as the life-cycle optimization of buildings through simulation
and AI to reduce overall energy consumption and minimize the environmental impact. A
key focus of this study is the application of phase change materials (PCMs) and hybrid
cladding to decrease energy consumption for heating and cooling. An example includes a
hybrid system composed of 10% polycarbonate and 90% aluminum, which demonstrates
improved energy efficiency compared to using pure aluminum or polycarbonate [44].

Moreover, digitalization is crucial across all phases of the building life cycle, from
design to operation, which is especially significant for developing countries [14]. This
underscores the importance of employing AI and ML to enhance the energy efficiency of
buildings in the context of climate change.

The utilization of adaptive materials, such as aerogels, is increasingly recognized as a
significant factor in enhancing the thermal performance of buildings. A study [45] explores
the uncertainties associated with the use of these materials in subtropical climates. In
particular, the application of machine learning to optimize the thermal performance of
buildings highlights the necessity of adapting materials to changing climatic conditions in
order to improve energy efficiency.

Therefore, the application of green technologies, AI and adaptive materials, such
as phase change materials (PCMs) and aerogels, along with digital technologies and ma-
chine learning, contributes to enhancing the sustainability of buildings, reduces energy
consumption and minimizes their carbon footprint [46].

3.1.4. Passive Energy Efficiency Measures

Passive building design strategies, including bioclimatic approaches and the incorpora-
tion of natural ventilation, continue to be important components of sustainable construction.
However, in the context of a changing climate, there is an urgent need to develop more
precise models that can adapt to varying weather conditions, thereby enabling the more
effective utilization of passive elements [15]. This underscores the necessity of integrating
artificial intelligence to predict climate risks and optimize passive solutions.

Studies [38] highlight the significance of such passive measures, such as thermographic
and building life cycle optimization, within the framework of Near Zero Energy Build-
ings (NZEBs). The application of AI aids in predicting future energy consumption and
optimizing energy management, which is crucial for minimizing energy loss.

Study [47] examines the application of AI and thermography to assess heat loss
through building envelopes. The utilization of drones and infrared cameras enables the
identification of heat-loss areas, facilitating the development of targeted strategies to
enhance energy efficiency.

Additionally, a study [48] investigates the application of machine learning algorithms
to analyze the thermophysical performance of ventilated facades (VFs) and predict heat
fluxes. This research underscores the significance of machine learning in modeling building
behavior under varying temperature and structural parameters, thereby contributing to
the development of more accurate and adaptive energy-consumption models.

Therefore, the integration of AI and ML with passive measures, such as bioclimatic
design, thermography and building life cycle optimization, is essential for enhancing
energy efficiency and building resilience in the face of a changing climate.

3.1.5. Ventilation Systems and AI

The application of artificial intelligence and big data to optimize ventilation systems
and predict energy consumption has emerged as a key area of research aimed at reducing
the carbon footprint of buildings and enhancing their sustainability [49]. Optimizing
ventilation systems is particularly important for sustainable construction in the context
of a changing climate. A study [50] illustrates the use of machine learning models to
forecast the cooling load and energy consumption of buildings, enabling an evaluation
of the effectiveness of various ventilation management strategies in high-rise structures.
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The findings indicate that employing optimal ventilation systems can significantly enhance
energy efficiency, particularly during transitional seasons.

Mechanical ventilation and air conditioning systems constitute over half of the energy
costs associated with buildings [51], and climate change is exacerbating this issue by
intensifying the connection between rising greenhouse gas emissions and fluctuating
weather patterns. One effective approach is to incorporate passive measures, particularly
in regions with hot climates. However, the variability of climate conditions necessitates
the adaptation of these measures to optimize the utilization of natural resources, such as
daylight and natural ventilation. This highlights the importance of effectively managing
building systems to regulate their performance.

Therefore, the integration of artificial intelligence, big data and passive measures
can enhance the energy efficiency of ventilation systems while simultaneously adapting
buildings to the impacts of climate change. This holistic approach ultimately contributes to
a significant reduction in their carbon footprint over the long term.

3.1.6. Carbon Footprint of Buildings and Structures

A significant challenge in the context of sustainable development is the substantial
contribution of buildings to global energy consumption and greenhouse gas emissions.
Buildings account for up to 50% of global energy consumption and around 30% of green-
house gas emissions, highlighting the urgent need to enhance their energy efficiency to
achieve sustainable development goals [52]. The application of artificial intelligence and
machine learning to predict energy efficiency, both at the individual building level and
across urban areas, has emerged as a crucial strategy for solving these issues. Research in-
dicates that accurately predicting energy consumption requires taking into account climate
change factors and the functional characteristics of buildings [53].

Despite advancements in AI applications, the prediction of energy efficiency at the city
level remains insufficiently explored, particularly regarding the interactions among vari-
ous spatial functions and climate scenarios [52]. Modern research indicates that machine
learning (ML) and artificial intelligence (AI) can significantly enhance energy consumption
management and reduce the carbon footprint of buildings. For instance, in smart and
energy-efficient buildings (SEEs), ML-based control systems allow thermal comfort and
energy consumption to be effectively balanced [54]. Prediction models utilizing ML and
genetic algorithms can improve the energy efficiency of existing buildings by analyzing
historical data [55], including taking into account climate change forecasting [56]. Addi-
tionally, the application of multi-criteria optimization techniques for assessing the thermal
performance of buildings further underscores the critical role of AI in adapting structures
to shifting climatic conditions [57].

A significant innovation in building energy management is the application of artificial
intelligence (AI) and cloud technologies to automate energy consumption processes, for
example, using time series data [58]. These systems not only optimize energy consumption
but also identify anomalies, producing tailored reports for various stakeholders [59]. This
integration contributes to more efficient energy utilization and a reduction in carbon
emissions [60].

Building life cycle optimization techniques that leverage artificial intelligence (AI) and
digital technologies are employed to minimize the overall environmental impact, including
energy consumption and carbon emissions, at every stage of the life cycle—from design to
operation and disposal [40]. These approaches are crucial for achieving sustainability in
the construction and operation of buildings, which is particularly important in the context
of global climate change.

3.1.7. Adaptation of Buildings to Climate Change

Other studies focus on the adaptation of buildings to specific climatic conditions. For
example, the use of XGBoost and genetic optimization algorithms, due to their ability
to accurately predict building performance with respect to multiple parameters, such as
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thermal comfort, energy efficiency, structural parameters and daylight levels, helps to
improve thermal insulation and natural lighting in tropical regions. It highlights the need
of climate-adapted solutions to improve building energy efficiency [61].

XGBoost, learned from historical data, provides high accuracy in modeling the build-
ing response to different climatic conditions, allowing for the adaptation of design solutions
to the specific weather conditions of the tropical region. As a result, the combined applica-
tion of XGBoost and genetic optimization allowed for the creation of an integrated structure
capable of adapting and improving design solutions, as confirmed by the high R² values
(0.95 for point blocks and 0.87 for slab blocks). The above indicates the high predictive
accuracy of the models adapted to tropical climatic conditions.

The adaptation of building management systems to changing climatic conditions is
also an important area of research. For example, the use of machine learning to predict
thermal loads and model thermodynamic characteristics of buildings helps to significantly
reduce their energy consumption [62]. Predicting changes in climate conditions using
explainable AI and adapting control systems to these changes are found to be important
for maintaining energy efficiency [63].

Research also highlights the importance of reliability, safety and climate change adap-
tation in building design, which reinforces the importance of implementing AI to effectively
manage these factors [54]. Optimizing the energy efficiency of buildings in the face of
climate change becomes a key challenge. For instance, a study [55] introduces an energy-
prediction model that utilizes ML and genetic algorithms to enhance the energy efficiency
of existing buildings based on historical energy consumption and weather data. Similarly,
study [56] emphasizes the need to incorporate climate scenarios in building design to
optimize parameters, such as insulation thickness, to improve their energy efficiency.

Study [63] significantly enhances our understanding of the effects of climate change on
building energy consumption. An explainable AI (XAI) model was employed to predict en-
ergy usage under various climate scenarios, including “business-as-usual” and sustainable
energy transition scenarios. The findings indicate that climate change could substantially
increase cooling energy costs, underscoring the need for adaptation measures to mitigate
adverse economic and environmental consequences.

Thus, studies emphasize the important role of applying AI and ML to predict climate
change and adapt building systems, ensuring buildings resilience in a changing climate [61].

3.1.8. Energy Efficiency and Thermal Comfort

The optimization of heating, ventilation and air conditioning (HVAC) systems through
the application of neural networks facilitates an effective balance between energy savings
and the maintenance of thermal comfort within buildings [28]. Adaptive AI systems that
can learn from real-world data are crucial for the development of sustainable buildings in
the future, as they can automatically adjust HVAC parameters in response to fluctuations
in the external environment and evolving user needs [39].

Research [54] focuses on modern control systems for smart and energy-efficient build-
ings (SEEs), where the balance between minimizing energy consumption with the mainte-
nance of comfortable indoor temperatures is a central concern. Machine learning techniques,
including supervised, unsupervised and reinforcement learning methods are actively em-
ployed to achieve this balance.

The integration of physical simulation and artificial intelligence to predict energy consump-
tion across various climate scenarios not only facilitates the optimization of energy costs but
also enhances the thermal comfort level within buildings [27]. For instance, precise predictions
derived from AI models enable better adaptation of indoor conditions to a changing climate,
thereby maintaining comfort while reducing cooling and heating expenses.

The study conducted by [62] highlights the significance of selecting optimal parameters
for window structures, which allows for improving thermal insulation and subsequently
reduces energy consumption while maintaining a comfortable indoor temperature. This
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underscores how contemporary machine learning techniques contribute to developing
energy-efficient solutions that balance resource conservation with user comfort.

3.1.9. Energy Efficiency of Buildings in the Context of Sustainable Development and
Financial Efficiency

The trend of utilizing artificial intelligence to predict and optimize energy consumption
is steadily gaining momentum. However, the slow adoption of these technologies may
result in substantial economic losses, underscoring the importance of expediting their
integration into the construction industry [41]. The implementation of energy-efficient
solutions is increasingly recognized not only as an environmental necessity but also as an
economically reasonable step for sustainable development.

A study [49] investigates the challenges and opportunities associated with the ap-
plication of big data, artificial intelligence (AI) and Internet of Things (IoT) technologies
to enhance the energy efficiency and sustainability of buildings in Europe. The research
highlights the need for technology integration to meet the requirements of policy, business
and technology, emphasizing the importance of coordinating these elements for a successful
transition to sustainable building practices.

Particular emphasis is placed on the role of digitalization and the application of artifi-
cial intelligence (AI) throughout all stages of the building life cycle from design to operation
and renovation, which is especially important for developing countries [14]. Digital tech-
nologies, such as Building Information Modeling (BIM) and Building Management Systems
(BMS), can significantly enhance resource efficiency and minimize the environmental im-
pact. These technologies are increasingly recognized as an important element of sustainable
construction, providing both economic advantages and reductions in the carbon footprint.

The integration of AI and the ML into the design and operation of buildings not only
improves energy efficiency but also increases resilience to climate change, positioning these
technologies as essential components of the future building industry. Nevertheless, there is
still a need for further investigation of the practical aspects of their integration, as well as
an assessment of their long-term economic impacts and contribution to sustainable urban
development [64].

Current research demonstrates that green technologies and sustainable construction
play an important role in the face of climate change. For instance, study [61] proposed an
integrated platform for predicting and optimizing the performance of residential build-
ings in tropical climates, utilizing machine learning (XGBoost) and genetic optimization
algorithms. Particular attention is paid to improving thermal insulation and optimizing
the use of natural light, which confirms the importance of adapting building materials and
structures to improve energy efficiency.

A study [41] highlights the economic importance of the rapid implementation of
energy-efficient technologies. Delayed implementation could result in billions of euros
in lost opportunities and additional expenses linked to rising energy consumption. This
underscores the necessity of actively utilizing AI and digital solutions to reduce costs and
enhance resilience in the face of a climate change.

3.2. Improving Energy Efficiency in Transport and e-Mobility

This topic encompasses a broad spectrum of issues, ranging from optimizing energy
consumption in transportation systems to developing infrastructure for charging electric
vehicles. A key area of research is the application of artificial intelligence and machine
learning to enhance the energy efficiency and safety of vehicles, particularly in hybrid and
autonomous transportation systems.

Studies indicate that one of the most promising areas is the use of AI to predict vessel
arrival times (ETA) in maritime logistics, which contributes to reduce greenhouse gas
emissions and improves energy efficiency in international transportation [65]. Optimizing
the energy efficiency of shipping and minimizing the carbon footprint are key priorities
in this field. A study [66] highlights the use of big data and machine learning to enhance
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fuel efficiency in large ships, marking a step towards more sustainable transportation
solutions. Similar approaches are also applicable to land transportation, particularly for
electric vehicles and hybrid systems.

The application of machine learning is being actively utilized to enhance the energy
efficiency of vehicles. A study [67] indicates that intelligent transportation systems have the
potential to reduce CO2 emissions by 60%. Specifically, AI can optimize fuel consumption
in hybrid transportation systems, leading to significant reductions in energy costs and
improved environmental performance, and this allows for the more efficient use of un-
manned aerial vehicles [68]. Research [69] focuses on developing a machine learning-based
hybrid architecture to predict the battery health of electric vehicles, which is crucial for
extending battery life and optimizing energy consumption, ultimately resulting in more
efficient electric vehicle operation. This approach is also being explored in transportation
logistics, where AI helps to optimize routes and forecast energy consumption [19].

Studies also demonstrate the significant role of electric vehicles in urban energy strate-
gies. The adoption of electric vehicles helps to reduce energy consumption and carbon
dioxide emissions, which is crucial for sustainable urban development [70]. Furthermore,
research, such as [71], explores the broader integration of AI and IoT into the urban in-
frastructure, where smart systems can optimize energy management in transportation,
contributing to more sustainable cities. Additionally, the energy-demand analysis in the
study by [72] highlights key aspects of managing energy demand in the transportation sec-
tor. As energy demand for charging electric vehicles increases, efficient energy management
becomes essential to prevent overloading the power grid.

Study [73] utilizes machine learning to map the drivetrain efficiency of electric vehicles,
enhancing energy management and predicting energy efficiency. This helps to improve
energy management and predict energy efficiency, contributes to reduced fuel costs and
accelerates the shift towards more sustainable transportation solutions. Additionally, the
use of AI and ML to predict and optimize thermal and cooling loads in electric vehicles
further improves their energy efficiency and reduces operating costs.

The safety of autonomous vehicles, alongside their energy efficiency, is another crucial
area of research. AI technologies have been applied to enhance the safety management of
autonomous vehicles, improving their reliability and reducing the likelihood of accidents
by better predicting critical situations [74].

Thus, key trends in improving energy efficiency in transport include the application
of AI and machine learning to optimize energy consumption in both land and maritime
transportation systems, as well as expanding the use of electric vehicles in cities as a tool
to achieve energy sustainability. Additionally, there is an increasing focus on developing
charging infrastructure and the management of transport networks powered by renewable
energy sources.

3.3. AI in Sustainable Manufacturing and Industrial Automation

The integration of artificial intelligence in industrial automation and sustainable
manufacturing is becoming a crucial strategy for optimizing production processes, reducing
energy consumption and minimizing carbon footprints. The implementation of AI enables
predictive maintenance and energy consumption management and fosters automation,
leading to increased productivity and sustainability across various industrial sectors.

A key focus area is the implementation of AI for predicting and optimizing energy
consumption. For instance, machine learning is employed to enhance energy-consumption
efficiency in logistics and industrial settings, aiming to minimize carbon footprints and
optimize resource utilization [75]. However, a study [76] showed that R&D expenditures
are only effective in reducing CO2 in low-CO2-emitting countries, and conversely, patent
applications contribute to higher CO2 emissions.

Studies emphasize the importance of using AI to manage energy consumption in
manufacturing processes to improve sustainability and efficiency [77]. In addition, Internet
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of Things (IoT) and AI technologies can significantly improve automation in industrial
buildings, leading to lower energy costs and improved overall energy efficiency [34].

The application of AI significantly reduces energy intensity by optimizing production
processes and minimizing energy consumption [78]. Economies of scale are also crucial:
large enterprises that have integrated AI technologies achieve higher economic efficiency
and reduce energy intensity, highlighting the potential of AI to enhance the sustainability
of industrial production. However, reliable methods suitable for all levels of production
have not yet been sufficiently developed [79].

In addition to industrial enterprises, AI enhances household energy management
through the implementation of home energy management (HEM) systems [80]. These
systems optimize energy usage by employing advanced meta-heuristic algorithms, such as
Social Spider Algorithm (SSA) and Strawberry Algorithm (SWA), which effectively reduce
energy costs and peak loads.

AI also plays a crucial role in managing carbon dioxide emissions in the industrial
sector. Specifically, AI technologies are utilized to monitor and control CO2 emissions,
which contributes to the achievement of carbon-footprint-reduction targets [81]. Further-
more, AI plays an important role in the integration of industrial systems with renewable
energy sources, enabling the optimization of resource allocation and real-time energy
management [82], which contributes to environmental sustainability [83].

The transportation industry remains a major source of emissions, which requires the
implementation of intelligent systems to improve energy efficiency. Since 2016, with the
increasing popularity of deep learning, 219 patents focused on energy management, sus-
tainable driving and behavior optimization applied, of which more than 70% are registered
in China [84].

Research indicates that AI can substantially reduce inefficient energy usage, for in-
stance, by automatically adjusting equipment operation depending on demand levels [85]
or fuel economy in the maritime industry [86]. Conscious energy utilization enhanced by
AI mechanisms [87] promotes sustainable development by helping businesses reduce their
carbon emissions and increase the environmental responsibility of enterprises [88].

One promising area is the application of AI in agriculture to enhance the sustainability
and energy efficiency of agricultural production. In this sector, AI facilitates the opti-
mization of resource consumption, improves harvesting processes and enhances irrigation
management, ultimately reducing the carbon footprint and increasing the environmental
sustainability of agricultural production [89]. Additionally, AI is employed to optimize
production processes and reduce energy costs, thereby increasing the sustainability and
productivity of agribusinesses. AI technologies can automate processes related to the
management of agricultural resources, improving their efficiency and minimizing environ-
mental impacts, including through post-combustion carbon capture [90].

Predictive maintenance is emerging as one of the key application areas of AI in the in-
dustrial sector. Specifically, AI allows industrial enterprises not only to automate processes
but also to implement predictive maintenance systems, which significantly reduces repair
costs and extends equipment lifespan, as well as buildings [91]. In this context, predictive
analytics is extensively employed to detect potential breakdowns in advance, thereby
avoiding costly downtime [75]. Consequently, this approach enhances the resilience of
industrial systems while also contributing to reductions in energy consumption.

A particular area of research is the application of AI to enhance resource efficiency in
manufacturing systems. This encompasses both material usage optimization and waste re-
duction, resulting in leaner and more environmentally responsible production practices [75].
Furthermore, AI facilitates the development of intelligent control systems that adapt to
changing production conditions and automatically adjust processes to achieve maximum
efficiency [92].
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3.4. Energy Efficiency in Smart Grids

The application of artificial intelligence and machine learning has emerged as a crucial
element in enhancing energy efficiency within smart grids. Key components include real-
time demand forecasting and management, the integration of distributed energy resources,
such as solar and wind power, and process automation, all of which are essential for the
advancement of smart grid technology.

Artificial intelligence plays a key role in optimizing energy consumption within
smart grids, improving power system management through real-time demand forecasting
and increasing grid resilience. For instance, the application of AI techniques, such as
machine learning and data analytics, allows for more precise predictions of energy demand
and enables immediate responses to fluctuations in the load, thereby reducing costs and
improving the efficiency of power systems [93].

An important aspect of the efficient integration of renewable energy sources into smart
grids is the ability to predict their power output. Study [4] examines various methods
for predicting solar radiation and photovoltaic (PV) power using machine learning and
deep learning techniques. These methods aim to reduce uncertainty and improve energy
management within smart grids. Demand-side management techniques combined with
machine learning also help to optimize the operation of distributed energy sources, such as
solar panels and wind turbines, thereby increasing the share of renewable energy sources
within the overall energy system [94]. Artificial intelligence is employed to manage dis-
tributed energy resources, enabling efficient predictions of energy intensity and optimizing
the utilization of renewable sources, like solar and wind energy [95]. A study [96] inves-
tigates the integration of distributed energy sources, such as solar panels, utilizing AI to
effectively manage energy consumption and distribution within a proposed nanogram and
microgrid architecture, thereby improving system stability.

Machine learning techniques, such as the Multivariate Temporal Fusion Transformer,
enhance the accuracy of energy-demand forecasting [9]. This forecasting accuracy is
essential for optimizing energy flow management, particularly for variable energy sources
like solar installations.

The Internet of Energy (IoE) plays a crucial role in smart grids, allowing devices
and systems to be connected to monitor and manage energy consumption. A study [97]
investigates the combined application of IoE and ML to optimize energy-consumption
management and enhance the overall energy efficiency of the grid. This includes load
forecasting, system state monitoring and the automation of energy consumption manage-
ment processes.

Carbon forecasting is increasingly recognized as a vital component of smart grids, as it
impacts investment decisions and risk management. Real-time forecasting and distributed
sources energy management significantly reduce carbon emissions and contribute to the
development of sustainable energy infrastructure [93]. A study [98] employs machine
learning to predict the carbon emissions of corporations, enabling investors to make more
informed decisions in response to emerging environmental regulations.

The focus of research is on energy-demand management and the development of
cost-effective models for smart grids. A study [99] proposes a blockchain and artificial
intelligence-based “cap and trade” model for demand management, utilizing AI to incen-
tivize consumers to save energy. This is accomplished by introducing a system of energy
credits that can be traded if energy consumption remains below a specified limit. Intelligent
AI algorithms, such as predictive analytics and optimization algorithms, enable power
grids to efficiently allocate resources and manage electricity demand and consumption,
thereby minimizing peak loads and ensuring grid stability [100]. Additionally, a study [101]
presents an open-access decision support system (NESSI) for energy consumption and
generation planning at both the household and neighborhood levels. This system uses AI
and machine learning to calculate and optimize energy consumption and forecast demand.

The utilization of Information and Communication Technology (ICT) platforms for
energy consumption management in buildings is emerging as a significant trend within



Energies 2024, 17, 5965 17 of 34

smart grids. ICT platforms enable the collection and processing of massive amounts
of data in real time, which is critical to accurately monitor, analyze and predict energy
consumption. ICT platforms provide smart grids with the analytics they need to respond
instantly to changes in demand and manage loads to prevent congestion and improve the
efficiency of energy distribution. A study [77] provides a real-world example of an ICT
platform employed to predict and optimize energy consumption, leveraging data collected
from sensors in smart buildings. This approach results in enhanced energy efficiency
and sustainability.

Internet of Things (IoT) technology facilitates real-time data collection and processing,
thereby enabling the automation of energy management processes both at the micro-grid
level [102] and at the level of smart energy infrastructure in general [103]. A study [104]
demonstrates the potential of utilizing IoT data to predict peak energy demand and op-
timize energy consumption across various types of buildings. This capability enhances
energy management flexibility and reduces the overall load on the grid.

As a result of the conducted research, the following most effective methods for man-
aging distributed energy resources (DER) can be identified:

1. Using AI to predict and optimize DERs. Methods, such as Temporal Fusion Trans-
former, improve forecasting accuracy, which is especially important for DERs with
variable capacity, such as solar and wind installations. High-quality forecasts mini-
mize load peaks and improve grid stability.

2. Demand management using AI and blockchain. Demand management allows users
to adjust energy consumption based on grid conditions and helps prevent grid con-
gestion, especially during periods of high demand, by economically incentivizing
users to reduce consumption. Thus, DER owners can adapt consumption and even
offer surplus energy to the market.

3. IoE and IoT for monitoring and managing DER. IoE and IoT devices collect data in
real time, allowing for rapid monitoring of the network status and when using AI
together, automatically adjust energy consumption.

4. ICT platforms for data collection and analysis in smart grids. ICT enables the collection
and processing of large amounts of real-time data from DERs, which is critical for
accurate demand management and prediction.

5. Microgrids and nano-grids allow DERs to operate autonomously, providing energy
to the local community or sites, while being able to connect to the main grid for
additional flexibility.

3.5. Climate Change Forecasting and Adaptation of Energy Systems

Current research increasingly employs mathematical models and machine learning
to predict the impact of climate change on energy systems. These technologies enable the
consideration of various climate scenarios, facilitating assessments of future energy needs
and potential risks [105]. Mathematical models and machine learning make it possible not
only to predict but also to optimize energy systems by developing adaptive algorithms that
dynamically adjust energy strategies, taking into account changing climate conditions in
real time.

For instance, the application of machine learning techniques, such as multi-criteria
optimization and Explainable AI (XAI), enables the assessment of the impact of various
climate scenarios on energy consumption in buildings and the development of adaptation
strategies [106], which is important for understanding and informing decisions to reduce
climate risk.

Additionally, ref. [107] discusses the use of machine learning-based models and dynamic
panel estimation to manage nonlinear and chaotic systems related to climate vulnerability and
energy infrastructure. Taking into account non-linear relationships between climate factors and
energy consumption helps to improve the accuracy of long-term forecasts.

A significant area of research is the adaptation of infrastructure to the new conditions
brought about by climate change [108]. Study [39] explores building adaptation through
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the use of AI and digital twins to predict changes in climate conditions and adjust energy
systems accordingly. Meanwhile, [50] focuses on forecasting changes in building cooling
loads and energy consumption to develop long-term adaptation strategies and optimize
the energy system infrastructure in response to climate change. Research indicates that
employing climate models and optimization techniques can lead to a reduction in energy
consumption in buildings by up to 54% when adapting to the climate change scenario
SSP585 [27]. Additionally, studies [109] concentrate on regional approaches to adapting
energy systems to climate change, which confirms the growing overall interest in the impact
of climate change on energy systems that has been observed in recent years [110]. There are
also investigations into the adaptation of energy systems in arid regions, where increased
energy consumption necessitates the implementation of sustainable and energy-efficient
solutions [44].

The use of machine learning not only makes it easier to predict energy demand but also
takes into account changes in the structure of electricity demand. For instance, electricity
demand forecasting employing techniques, such as Blade Element Momentum (BEM) and
Explainable AI, enables the prediction of changes in energy consumption depending on
weather conditions and adapting energy systems to minimize losses [111]. Furthermore,
a study [112] reveals the adaptation of energy systems to climate change through fault
detection in the power electronic circuits of the wind turbine system, allowing it to adjust to
changing demand in the face of population growth and increasing extreme weather events.

Research underscores the necessity of developing strategies to minimize the negative
consequences of climate change on energy systems. The integration of AI and quantum
computing technologies is enhancing the resilience of energy networks, improving the
management of renewable energy and reducing carbon emissions and carbon dioxide
removal (CDR) [113]. These advanced technologies facilitate the development of strategies
that enable energy systems to adapt to evolving conditions and maintain stable operations
amidst climate uncertainties.

A crucial area of research is the development and implementation of climate-resilient
solutions for urban and industrial systems [31]. Forecasting climate change and its ef-
fects on urban infrastructure is essential for creating climate-resilient cities that can adapt
to changing conditions and minimize adverse impacts on energy systems [114]. Such
strategies encompass the integration of smart grids and renewable energy sources, which
contribute to enhanced energy consumption efficiency and a reduction in carbon emissions.

3.6. Machine Learning for Water Resource Management

The use of Intelligent Energy Monitoring Systems (IEMSs) to manage glacial ecosystems
demonstrates how machine learning (ML) and artificial intelligence (AI) can be powerful
tools in managing water resources in the face of climate change [115]. IEMS applies remote
sensing technologies, sophisticated sensors and ML algorithms to track real-time changes,
which opens up opportunities to better understand and conserve glacial ecosystems.

Approaches to improving energy efficiency in the shipping industry based on behav-
ioral change and operator involvement provide meaningful insights for the application
of AI and ML in water resource management [116]. The use of autonomous ML-based
systems for data collection and analysis in the shipping industry will overcome the lack
of standardization, enabling more informed decisions and optimizing the use of limited
water resources.

One of the primary applications of machine learning in water resource management
is the optimization of membrane distillation processes [85]. Studies show that ML, which
optimizes key system parameters and forecasts its behavior with high accuracy, can be used
to improve the accuracy of performance forecasting of membrane distillation processes.
It helps to reduce energy costs and improve desalination efficiency [117]. Also, machine
learning algorithms help to accurately model water flow, forecast pollution and take
into account the impact of micropollutants on the treatment and desalination process.
Modern technologies make it possible to improve membrane material selection, automate
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water quality control, optimize distillation processes and minimize energy consumption.
The use of AI and machine learning helps to minimize the amount of data required for
process modeling and optimizes the tuning of system parameters, which increases the
interpretability of models and process stability [118].

Machine learning (ML) contributes to the optimization of solar desalination systems
by reducing energy consumption and increasing the water production volume [96]. Specifi-
cally, ML has been employed to predict and optimize the performance of solar membrane
desalination systems, in order to minimize energy consumption through the more precise
selection of system parameters [117].

Machine learning is also actively employed to address global issues related to water
scarcity. The use of AI and machine learning for energy consumption management in the
textile industry provides useful approaches for optimizing water resources [119]. Innova-
tive technologies, such as bioreactors [120] and solar-powered water purification systems,
are being improved through machine learning algorithms that help minimize energy con-
sumption and improve productivity [121], particularly within water treatment systems,
which is crucial for regions facing water shortages. Study [122] examines the use of IoT
and machine learning for monitoring ocean acidity, while [123] explores the application of
artificial intelligence and big data for water resource monitoring through the use of sensors
on the plants, which helps manage water resources as part of global initiatives.

Machine learning not only facilitates the optimization of treatment processes but also
aids in predicting water resource demand. By analyzing data on climate, demographics
and water consumption, accurate forecasts are generated to help the development of
effective water management strategies. This capability is particularly significant for both
industry and agriculture, as precise predictions can help minimize water losses and enhance
planning efforts [124]. Additionally, [125] describes innovative technologies for water
consumption monitoring that employ wireless systems and optical sensors, which can be
integrated with ML to optimize water consumption and management.

3.7. AI in Renewable Energy Sources

One of the key trends in renewable energy is the application of AI to enhance the
efficiency of geothermal heat pumps. Research indicates that AI can help optimize the
performance of these systems through more accurate heat load predictions, real-time data
analysis and automation of controls. The use of machine learning makes it possible to
better predict the output temperatures from heat pumps [126] and regulates temperature
flows [96], thereby improving control mechanisms and reducing operating costs. Addition-
ally, various approaches are being explored to optimize pump parameters to improve their
energy efficiency [127].

AI not only helps in predicting energy consumption but also facilitates the manage-
ment of interactions between the grid and renewable energy sources. The application
of machine learning algorithms enhances the accuracy of energy consumption forecasts,
thereby optimizing the management of energy resources [6]. This capability is particularly
crucial for energy systems operating with variable renewable sources, such as solar and
wind energy [5]. For instance, study [128] explores the processes of the integration of solar
energy into conventional power systems, while another study [129] analyzes the prediction
of solar radiation and the performance of solar panels, including strategies for preventing
panel failures.

AI also plays a crucial role in the integration of various renewable energy sources into
energy networks. Green AI and digitalization moving to low-power peripherals, such as
TinyML, support the efficient management of renewable energy [130]. The application of
AI techniques enhances grid stability, improves energy resource management and reduces
carbon emissions. Studies [131] investigate strategies for incorporating renewable sources,
such as solar and wind energy, into existing urban energy systems. Additionally, the use of
AI in wind energy systems improves power forecasts under varying weather conditions,
thereby increasing the overall stability of the grid [111]. Furthermore, AI technologies
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enable the real-time management of renewable sources, which reduces the grid load and
improves the interaction between consumers and energy producers [103].

A crucial aspect of applying AI to renewable energy sources is the creation of models
that take into account the instability of natural conditions and assist in predicting energy
output [132]. For instance, wind turbines are influenced by fluctuating weather conditions
and AI can accurately predict how these changes will impact their performance [111].
Additionally, the use of AI for fault detection enhances the reliability and efficiency of wind
energy systems [112]. AI also aids in predicting geothermal resources, enabling a more
efficient utilization of their potential for energy supply [126].

Research indicates that utilizing AI to manage renewable energy sources enhances
the resilience of power systems in the face of climate change and other unforeseen cir-
cumstances. Predictive models developed through AI allow us to assess risks and make
decisions under conditions of uncertainty, thereby improving the stability of the power
system and reducing its dependence from traditional energy sources [22].

3.8. Energy Transition and Decarbonization Through Innovative Technologies

One of the primary challenges of the current energy transition is achieving decar-
bonization through the integration of renewable energy sources (RESs), such as solar, wind
and geothermal energy. For instance, the implementation of smart grids equipped with
AI can enhance the stability of energy systems and minimize energy losses through more
accurate forecasting and resource management [22].

Artificial intelligence (AI) plays a crucial role in managing energy consumption, op-
timizing energy systems and minimizing CO2 emissions. The use of machine learning
and big data analytics enables real-time predictions of energy consumption, improves the
energy efficiency of industrial processes and reduces the overall carbon footprint [133].
This is particularly relevant for the electronics industry sector, where optimizing energy
management can significantly reduce emissions [134].

Blockchain technology is actively being investigated as an innovative tool for man-
aging distributed energy sources, fostering transparency and enhancing the security of
transactions within energy systems. For instance, blockchain facilitates the creation of
sustainable energy ecosystems by enabling distributed users to engage in renewable energy
markets REM, thereby promoting the growth of localized clean energy production and
contributing to the reduction in carbon emissions.

Cyber-Physical Systems (CPSs) and Energy Management Automation: CPSs play
a crucial role in optimizing energy resource management, particularly within the trans-
portation and industrial sectors. These systems enable more the efficient utilization of
energy resources and support the transition to sustainable technologies, including the
development of decentralized energy systems [102]. They are actively employed to manage
the integration of renewable sources into energy systems, effectively reducing the carbon
footprint by enhancing the accuracy of control and monitoring processes.

With the energy crisis, in the context of accelerated climate change, conflict in Ukraine
and the past 2019 coronavirus pandemic, carbon emissions are growing rapidly [135],
requiring the use of innovative technologies to reduce these emissions [136].

Artificial intelligence (AI) and machine learning are helping to model investment
scenarios for new energy technologies, such as wind and solar power, and evaluate their
economic and environmental impacts. Research [1] underscores the necessity for eco-
nomically reasonable investments in the energy transition, highlighting the significance
of developing strategies that integrate renewable energy sources that include renewable
energy, which will contribute to the transition to a low-carbon economy.

3.9. The Carbon Footprint of Large AI Language Models

Despite the significant potential of AI and ML in promoting energy conservation, a
critical concern is the high carbon footprint associated with the training and operation of
large language models (LLMs). These models demand substantial computational resources
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and consume considerable amounts of energy [137]. The training of LLMs, especially
for natural language processing tasks, involves the repeated processing of vast datasets,
which significantly contributes to CO2 emissions [18]. This presents a challenge for re-
searchers and AI developers in finding ways to minimize environmental losses, despite
the fact that artificial intelligence can support environmental sustainability [138] and solve
environmental problems.

One proposed approach to reducing the carbon footprint of language models is to
adopt more energy-efficient computing architectures and to optimize learning algorithms,
thereby reducing the number of computational operations required [139].

Methods to reduce energy consumption by employing specialized hardware solu-
tions and utilizing renewable energy sources for data center operations are also being
actively explored [19]. Some studies propose integrating green energy and implementing
energy-efficient solutions to support AI computing, which contributes to reducing carbon
emissions [18].

Another important aspect is the use of more energy-efficient hardware for computa-
tional tasks. For instance, some studies suggest the use of hardware accelerators, such as
specialized processors and graphics processing units (GPUs), to reduce power consumption
during the training and implementation of language models [19].

Study [92] highlights that the computational resources required to train and operate
large language models (LLMs) consume substantial amounts of energy, contributing to
carbon emissions. Research indicates that reducing the training time through more ef-
ficient allocation of computational resources can significantly reduce the overall carbon
footprint [138]. This can be achieved by developing new algorithms that can minimize the
number of repetitive operations during the training process.

Work [130] explores the potential of using Green AI technologies to minimize energy
consumption, such as shifting computation from the cloud to edge computing. This
approach can reduce the amount of data transmitted over the network and decrease the
computational demands for training and deploying models.

3.10. Post-Combustion Carbon Capture and Its Optimization Using Machine Learning

Global warming caused by increasing carbon emissions requires immediate action.
Study [140], emphasizes the need to develop global policies with specific targets to stabilize
atmospheric carbon, including low-carbon technologies and improved energy efficiency.

Post-combustion carbon capture (PCCC) is a complex process that requires significant
energy input. The application of machine learning for optimizing these processes is becom-
ing an urgent task, as it can significantly enhance energy efficiency, reduce operational costs
and reduce the carbon footprint of industrial enterprises [2]. Some studies have employed
machine learning to improve modeling and prediction, enabling the precise identifica-
tion of parameters that need adjustment for the optimal performance of carbon-capture
systems [141].

One of the main challenges in implementing post-combustion carbon capture (PCCC)
is its high energy intensity, which reduces its economic efficiency. Machine learning can
optimize CO2-absorption processes by improving process control and minimizing heat loss,
thereby reducing energy consumption. Specifically, machine learning can help identify the
most efficient operating conditions for carbon filters and adsorbents, maximizing carbon
dioxide capture [90].

The successful implementation of carbon capture technologies necessitates their in-
tegration into existing industrial systems, which account for 50% of the world’s energy
consumption [142], such as steel and cement production, which are significant sources of
CO2 emissions [143]. In this context, machine learning optimization (ML) plays a crucial role
by predicting how variations in operating parameters impact the performance of carbon-
capture systems. This capability allows for the flexible integration of post-combustion
carbon capture (PCCC) into production cycles without substantial losses in efficiency [113].
Some studies indicate that the application of ML models can not only enhance capture pro-
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cesses but also predict emissions at various stages of the production process, contributing
to a reduced carbon footprint during both the planning and operational phases [90].

Machine learning is also actively applied in the search for new materials and catalysts
that can enhance the efficiency of carbon capture. By simulating the behavior of materials
under various conditions, machine learning optimization (ML) accelerates the discovery of
innovative solutions [140]. This is particularly important in environments where traditional
carbon capture methods require significant energy inputs.

The study shows that the most promising way to improve the economic efficiency of
PCCC using AI and ML are integrated approaches, including the prediction of thermal fluc-
tuations and energy requirements using ML algorithms. It allows for the optimal regulation
of heat exchange and increases the efficiency of heat recovery; the modeling of new sorbents
at the molecular level, analysis and forecasting of their behavior under different conditions,
in order to find materials with the lowest energy requirements; the use of co-generative
materials with the lowest energy requirements; the use in co-generation facilities to manage
the balance between heat production for PCCC and real-time electricity generation; and
other economically feasible methods, including integration of renewable distributed energy
sources and the optimization of energy efficiency of the PCCC process itself.

3.11. Mitigating the Effects of Climate Change with AI

AI plays a crucial role in monitoring climate change and predicting its impacts.
Study [107] explores methods for monitoring climate vulnerability using AI, while [144]
applies AI to analyze vegetation and urban air data to help predict and model the effects of
climate change. These applications help to adapt energy-management strategies, enabling
more accurate predictions and the implementation of targeted climate mitigation measures
for energy systems and other industries [145].

A study [146] explores the use of drones and sensors to monitor climate change.
This technology enables quicker responses to environmental changes and supports the
development of strategies to adapt to evolving conditions.

An important aspect of climate change mitigation is the modernization of infrastruc-
ture with advanced energy-efficient technologies. For example, a study [39] explores the
use of AI to adapt buildings to climate change and enhance their energy efficiency. Addi-
tionally, AI is being employed in enterprises to optimize the use of renewable energy and
reduce CO2 emissions. These innovations not only make industrial facilities more resilient
to climate change but also significantly reduce their carbon footprint [147].

AI plays a critical role in predicting and managing climate risks. By utilizing machine
learning and big data, models can be developed to forecast the impact of climate change
on the infrastructure and energy supply. For instance, AI can predict energy-consumption
patterns based on weather conditions, enabling businesses and energy networks to better
adapt to climate risks [145]. Additionally, a study [141] explores the development of AI
algorithms for the prediction of carbon emission and energy system management, which
adjust their operations according to climate conditions, helping to mitigate the effects of
climate change.

3.12. Social, Economic and Political Aspects of Energy-Consumption Management

One of the key challenges for governments is to develop and implement effective poli-
cies that promote the adoption of renewable energy and reduce carbon dioxide emissions.
These efforts often involve programs that provide financial support for renewable energy
projects, subsidies for solar panel installations and the development of infrastructure for
electric vehicles [133]. A study [65] examines the role of international policies aimed at
reducing greenhouse gas emissions in the maritime industry. An important element of
government policy includes measures that encourage reductions in energy consumption in
various sectors of the economy, along with incentives for both citizens and businesses to
participate in energy-saving initiatives [148].
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An important aspect of government policy is regulating the transition to sustainable
energy. This includes implementing standards and regulations directed to reduce carbon
footprints and ensure the long-term sustainability of energy systems [149]. A study [1]
explores the role of support programs and investments in green technologies. Numerous
studies indicate that policies promoting improved energy efficiency can not only reduce
emissions but also stimulate economic growth by creating new jobs in the renewable energy
sector [150].

An important aspect of energy-consumption management is the social and economic
consequences of the implementation of renewable energy sources [34,108]. The transition
to sustainable energy can have a significant impact on social groups, especially workers
in traditional sectors, such as the coal industry, where the development of retraining and
support programs is required.

A critical role is played by programs to support socially vulnerable groups affected by
the increase in energy costs during the energy transition [151]. The results of study [152],
based on the analysis of carbon emission reductions during the COVID-19 pandemic, show
that planned economic slowdown and energy efficiency improvements can significantly
reduce carbon emissions.

Many national and international programs for energy-consumption management and
sustainable energy development are based on the UN Sustainable Development Goals
(SDGs) [153]. Policies focused on decarbonization and the transition to renewable energy
sources contribute directly to goals, such as reducing emissions (SDG 13—Climate Action,
combating climate change) and ensuring access to affordable, clean energy (SDG 7) [137].
A key component of these programs is promoting the increased use of renewable energy
sources, enhancing energy efficiency and developing more sustainable energy systems.
This requires developing strategies for engaging the private sector and international orga-
nizations to collaborate on SDG initiatives.

The issue of energy poverty remains critical in a number of regions, particularly in
the context the global energy crisis. A study [154] examines the role of policy in com-
bating energy poverty in the EU and the UK. The application of AI and ML allows for
the more precise identification of vulnerable households and the development of support
mechanisms, helping to reduce social inequality and expand access to energy resources.
Government programs are being aimed at lowering household energy consumption, pro-
moting energy-efficient technologies and providing financial assistance to low-income
households to improve their access to energy resources [151].

Our research shows that the interest in different topics fluctuated between 2011 and
2024. Figure 5 illustrates the distribution of topics based on the number of references in the
cited sources.

If we look at the dynamics over the years, the topics can be divided into different
trends: for some topics, the interest decreased, others just emerged and for some topics, the
interest was and still is high. For example, the topics of “Sustainable building and green
technologies with AI and ML application for energy efficiency in buildings”, “Climate
change prediction and adaptation of energy systems to climate change” and the “Social,
economic and political aspects of energy consumption management” maintained high
interest throughout the period from 2021 to 2024. In fact, interest in these areas even
increased in 2024.

For the topics “AI in renewable energy sources”, “Energy transition and decarboniza-
tion through innovative technologies” and “Climate change mitigation through AI”, interest
grew steadily each year, reaching its peak in 2024. In contrast, the topic “Improving energy
efficiency in transportation and e-mobility” saw its highest level of interest in 2021, after
which interest significantly declined. This trend is depicted in Figure 6.
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4. Discussions and Conclusions

The study focused on systematizing the existing scientific literature to identify sig-
nificant common themes and trends in the use of AI and ML tools in improving energy
efficiency in different sectors and countries, with a focus on addressing climate challenges,
such as reducing carbon emissions and optimizing resource use.

This literature review highlights substantial progress in the application of artificial
intelligence (AI) and machine learning (ML) techniques aimed at enhancing energy effi-
ciency and address climate change issues. A systematic analysis encompassing 237 research
papers and 388 patents reveals a notable upward trend in research and innovation, partic-
ularly over the past two years. The focus of this trend spans several domains, including
engineering, computer science and energy. These findings suggest a growing interest from
both academic and industrial sectors in using AI to solve urgent environmental challenges.

The literature review conducted allows us to draw several key conclusions regard-
ing the role and potential of AI and ML in improving energy efficiency and addressing
climate challenges.

One of the key trends of scientific interest observed over the last 5 years is the inte-
gration of artificial intelligence (AI) and machine learning (ML) in sustainable building
practices and green technologies. These technologies are particularly significant in urban
environments, as they contribute to mitigating the urban heat island effect and reducing
carbon emissions. The combination of physical simulations and AI predictive models
shows great potential for energy consumption optimization, particularly within heating,
ventilation and air conditioning (HVAC) systems. The results indicate that neural networks,
CNN-LSTM models and gradient-boosting methods, such as LightGBM and XGBoost,
can enhance the accuracy of energy consumption predictions, leading to improvements
in building energy efficiency by as much as 22.3%. This underscores the transformative
potential of AI in promoting sustainable urban development and green building practices.

The concept of the Internet of Energy (IoE), which is the integration of the Internet
of Things, cloud computing and big data analytics technologies to create smart and in-
tegrated energy grids, is currently a relevant and rapidly growing area of research and
practical application. The critical role of the IoE is to act as a bridge between the various
components of smart grids, ensuring their optimal performance by predicting energy
consumption, monitoring system health and automating control. IoE improves network
efficiency, reduces energy costs and makes the network adaptive and resilient to changes in
energy consumption.

The results also indicate the expanding role of artificial intelligence (AI) in smart
grids, where real-time data collected from Internet of Things (IoT) sensors, combined with
AI-based algorithms, improve energy distribution and load management. The integration
of renewable energy sources, such as solar and wind power, is particularly benefited by
AI’s capacity to predict energy generation and optimize resource distribution. Nevertheless,
these achievements are accompanied by challenges, including the maintenance of grid
stability and the need to ensure the scalability of AI-based solutions.

AI also has an important role to play in the integration of renewable energy, which is a
key factor in the global transition to a low-carbon economy. The ability of AI to manage
and predict energy consumption in intermittent renewable energy systems is an important
advantage. However, ensuring the reliability of these systems in a changing environment
remains a subject of active research.

Another significant topic for discussion is the application of artificial intelligence (AI)
in climate change mitigation. The predictive capabilities of AI are crucial for predicting
the impact of climate change on energy systems and for developing effective adaptation
strategies. The successful implementation of ML in post-combustion carbon capture (PCCC)
illustrates AI’s potential to enhance the efficiency of carbon capture processes, which is
essential for reducing industrial emissions. However, the economic feasibility of these
technologies remains a challenge due to their high energy consumption, emphasizing the
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need for further research on low-energy technologies and materials, as well as materials
science and chemistry.

Finally, policy and regulatory frameworks play an important role in supporting the
adoption of artificial intelligence (AI) in energy efficiency projects. The results indicate
that government initiatives, particularly those aligned with the United Nations Sustainable
Development Goals, serve as significant incentives for the utilization of renewable energy
sources and AI-based energy efficiency measures. However, energy poverty continues to
be a challenge in many regions, and AI has the potential to provide targeted solutions for
identifying vulnerable households and enhancing access to energy-efficient technologies.

Despite this progress, the review identified significant barriers to the adoption of AI in
energy efficiency projects, especially in transportation and industrial automation. While AI
and ML improve energy management and predictive maintenance in industrial sectors, the
high energy consumption of these technologies, especially large language models (LLMs),
poses a challenge. The carbon footprint associated with LLMs underscores the need to
develop more energy-efficient computing architectures and optimize learning algorithms
to reduce their environmental impact.

Limitations of the research. As with any research, this study has its limitations. It
primarily focused on technological aspects, particularly the influence of digital technologies
on energy efficiency and climate change. However, the long-term return on investment for
energy efficiency solutions, particularly in the context of environmentally friendly materials
and innovative methods, remains insufficiently explored. This gap restricts the economic
evaluation of such projects.

Furthermore, the majority of the studies and patents examined are primarily focused
on developed economies and major markets, including the United States, United Kingdom,
China and India. This concentration may constrain the applicability of the findings to other
regions, particularly low- and middle-income countries, where infrastructure and access to
technology can vary significantly.

Although artificial intelligence contributes to enhancing energy efficiency, our research
does not broadly address the carbon footprint associated with the training of large language
models and the AI implementation process itself. This is an important aspect in the context
of measuring the positive and negative effects of AI on climate change and requires more
detailed consideration and further research to comprehensively evaluate the impact of
technology on the environment.

Prospects for Future Research. Despite significant advancements in the application of
artificial intelligence and machine learning to improve energy efficiency, there are many
areas that require deeper research and development. One of the key areas for future inves-
tigation is the integration of AI and digital twins into the existing building infrastructure.
Practical examples are essential to illustrate the long-term economic and environmental
benefits of using these technologies, particularly in the context of climate change. Addi-
tionally, evaluating the long-term return on investment for energy-efficient solutions and
ecological materials remains a pressing concern that necessitates further analysis.

Another critical area of research is the integration of artificial intelligence with re-
newable energy sources and the development of methods for their optimal utilization
in industrial and urban systems. This encompasses the creation of adaptive models for
energy-consumption management in smart grids that are capable of taking into account
extreme climatic conditions. A promising direction in this field is the creation of integrated
solutions to improve the interaction among various renewable energy sources and their
integration into urban energy systems.

Particular attention should be paid to cybersecurity challenges in smart grids and
the development of sustainable solutions to prevent the risk of cyberattacks. The rapid
development of IoT technologies and the increasing number of connected devices require
the increased security and reliability of these systems. Additionally, research focused on
developing new energy-storage methods and integrating artificial intelligence with these
technologies to improve grid stability and reliability is also critical.
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Additionally, a promising area for research is the development of standards and
protocols for evaluating the energy efficiency of various AI-controlled systems. This may
include the creation of metrics to assess the efficiency of automated industrial processes and
their adaptation across different industries. Furthermore, research is necessary to improve
water-management practices, particularly in regions vulnerable to climate risks, where
artificial intelligence can play a key role in ensuring the sustainability of water systems.

The integration of artificial intelligence with blockchain technology to manage dis-
tributed energy systems, particularly at the community and small business levels, repre-
sents a significant area for further research. This direction has the potential to support the
development of localized energy production and contribute to more sustainable energy
management models.

One of the pressing challenges is the reduction of the carbon footprint associated with
large AI language models. This requires research focused on developing more energy-
efficient computing architectures and learning algorithms that minimize energy costs.
Additionally, investigating the life cycle of language models from development to imple-
mentation and operation is essential for assessing their environmental impact.

Finally, research is essential to understand the socio-economic consequences of the
energy transition. It is important to investigate how these changes affect local communities,
the creation of jobs in the green economy and the development of retraining programs
for workers displaced from traditional sectors. Furthermore, the development of socially
oriented strategies and financial instruments to support sustainable development will help
minimize the negative consequences for vulnerable groups of the population.

Thus, future research on the application of artificial intelligence and machine learning
for enhancing energy efficiency necessitates an integrated approach focused on developing
technological solutions, enhancing the sustainability of energy systems and considering
socio-economic factors. Key priorities for the scientific community in the coming years
should include integrating renewable energy sources, improving system reliability and
cybersecurity and reducing the carbon footprint of AI technologies.
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Yıldırım, S., Yıldırım, D., Demirtaş, I., Kandpal, V., Eds.; IGI Global Scientific Publishing: New York, NY, USA, 2024. [CrossRef]

139. Agrawal, V.; Gopalan, A. Energy optimisation of cascading neural-network classifiers. In SMARTGREENS 2020—Proceedings of
the 9th International Conference on Smart Cities and Green ICT Systems; SciTePress: Setúbal, Portugal, 2020; pp. 149–158. [CrossRef]

140. Kong, Z.; Bai, K. Optimizing Carbon Emission Reduction Strategies through AIEnabled Modeling: Paving the Way to a
Sustainable Future. In Proceedings of the SPIE—The International Society for Optical Engineering, Wuhan, China, 26 September
2023; p. 12793. [CrossRef]

141. Li, Y.; Chen, H.; Yu, P.; Yang, L. The Application and Evaluation of the LMDI Method in Building Carbon Emissions Analysis: A
Comprehensive Review. Buildings 2024, 14, 2820. [CrossRef]

142. Pantazis, D.; Pease, S.G.; Goodall, P.; West, A.; Conway, P. A design of experiments Cyber–Physical System for energy modelling
and optimisation in end-milling machining. Robot. Comput.-Integr. Manuf. 2023, 80, 102469. [CrossRef]

143. Li, W.; Gao, S. Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process
technique application for China’s cement industry. Energy 2018, 165, 33–54. [CrossRef]

144. Saheer, L.B.; Shahawy, M. Self-supervised Approach for Urban Tree Recognition on Aerial Images. In IFIP Advances in Information
and Communication Technology; Maglogiannis, I., Macintyre, J., Iliadis, L., Eds.; Springer: Cham, Switzerland, 2021; Volume 628.
[CrossRef]

145. Durai, S.; Manoharan, G.; Ashtikar, S.P. Harnessing artificial intelligence: Pioneering sustainable solutions for a greener future. In
Social and Ethical Implications of AI in Finance for Sustainability; Derbali, A.M.S., Ed.; IGI Global: Hershey, PA, USA, 2024. [CrossRef]

146. Bayomi, N.; Fernandez, J.E. Eyes in the Sky: Drones Applications in the Built Environment under Climate Change Challenges.
Drones 2023, 7, 637. [CrossRef]

147. Shaamala, A.; Yigitcanlar, T.; Nili, A.; Nyandega, D. Algorithmic green infrastructure optimisation: Review of artificial intelligence
driven approaches for tackling climate change. Sustain. Cities Soc. 2024, 101, 105182. [CrossRef]

148. Umut Gökçe, K.; Ufuk Gökçe, H. Economic, social and environmental impact analysis of an indigenously developed energy
optimization system for German office and residential building types. Int. J. Low-Carbon Technol. 2021, 16, 747–760. [CrossRef]

149. Tiwari, S. Applications of Smart Technologies Regarding Promoting Energy Efficiency and Sustainable Resource Utilization. In
Proceedings of the 2022 International Conference on Futuristic Technologies, INCOFT 2022, Belgaum, India, 25–27 November 2022.
[CrossRef]

150. Axenbeck, J.; Berner, A.; Kneib, T. What drives the relationship between digitalization and energy demand? Exploring hetero-
geneity in German manufacturing firms. J. Environ. Manag. 2024, 369, 122317. [CrossRef]

151. López-Vargas, A.; Ledezma-Espino, A.; Sanchis-de-Miguel, A. The Role of the Artificial Intelligence of Things in Energy Poverty
Alleviation. In Lecture Notes on Data Engineering and Communications Technologies; Misra, S., Siakas, K., Lampropoulos, G., Eds.;
Springer: Cham, Switzerland, 2024; Volume 192. [CrossRef]

152. Elmousalami, H.H. Sustainable climate change policies driven by global CO2 reduction during COVID-19. In Studies in Systems,
Decision and Control; Hassanien, A.E., Darwish, A., Gyampoh, B., Abdel-Monaim, A.T., Anter, A.M., Eds.; Springer: Cham,
Switzerland, 2021; Volume 369. [CrossRef]

https://doi.org/10.1109/ICCE-Asia57006.2022.9954638
https://doi.org/10.3390/su151813779
https://doi.org/10.1016/j.scs.2021.103492
https://doi.org/10.1016/j.rser.2020.110385
https://doi.org/10.3390/en17184680
https://doi.org/10.1109/AISP61396.2024.10475298
https://doi.org/10.1007/s10311-023-01591-5
https://www.ncbi.nlm.nih.gov/pubmed/37362011
https://doi.org/10.1109/ICIP46576.2022.9897831
https://doi.org/10.1016/B978-0-323-99714-0.00018-2
https://doi.org/10.4018/979-8-3693-3985-5.ch012
https://doi.org/10.5220/0009565201490158
https://doi.org/10.1117/12.3006441
https://doi.org/10.3390/buildings14092820
https://doi.org/10.1016/j.rcim.2022.102469
https://doi.org/10.1016/j.energy.2018.09.152
https://doi.org/10.1007/978-3-030-79157-5_39
https://doi.org/10.4018/979-8-3693-2881-1.ch003
https://doi.org/10.3390/drones7100637
https://doi.org/10.1016/j.scs.2024.105182
https://doi.org/10.1093/ijlct/ctab002
https://doi.org/10.1109/INCOFT55651.2022.10094395
https://doi.org/10.1016/j.jenvman.2024.122317
https://doi.org/10.1007/978-3-031-53433-1_3
https://doi.org/10.1007/978-3-030-72933-2_8


Energies 2024, 17, 5965 34 of 34

153. Globalgoals. The 17 Goals. 2024. Available online: https://www.globalgoals.org/goals/ (accessed on 19 September 2024).
154. Spandagos, C.; Tovar Reaños, M.A.; Lynch, M.Á. Energy poverty prediction and effective targeting for just transitions with

machine learning. Energy Econ. 2023, 128, 107131. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.globalgoals.org/goals/
https://doi.org/10.1016/j.eneco.2023.107131

	Introduction 
	Materials and Methods 
	Results 
	Sustainable Construction and Green Technologies Using AI and ML to Enhance the Energy Efficiency of Buildings 
	Modeling and Forecasting 
	The Use of Digital Twins 
	Green Technologies and Ecological Materials 
	Passive Energy Efficiency Measures 
	Ventilation Systems and AI 
	Carbon Footprint of Buildings and Structures 
	Adaptation of Buildings to Climate Change 
	Energy Efficiency and Thermal Comfort 
	Energy Efficiency of Buildings in the Context of Sustainable Development and Financial Efficiency 

	Improving Energy Efficiency in Transport and e-Mobility 
	AI in Sustainable Manufacturing and Industrial Automation 
	Energy Efficiency in Smart Grids 
	Climate Change Forecasting and Adaptation of Energy Systems 
	Machine Learning for Water Resource Management 
	AI in Renewable Energy Sources 
	Energy Transition and Decarbonization Through Innovative Technologies 
	The Carbon Footprint of Large AI Language Models 
	Post-Combustion Carbon Capture and Its Optimization Using Machine Learning 
	Mitigating the Effects of Climate Change with AI 
	Social, Economic and Political Aspects of Energy-Consumption Management 

	Discussions and Conclusions 
	References

