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Abstract: The reliability assesment of large power systems, particularly when considering both
generation and transmission facilities, is a computationally demanding and complex problem. The
sequential Monte Carlo simulation is arguably the most versatile approach for tackling this problem.
However, assessing sampled states in the sequential Monte Carlo simulation is time-intensive,
rendering its use less appealing, particularly if nonlinear network representation must be deployed.
In this context, this paper introduces a tensor-based predictor–corrector approach to reduce the
burden of state evaluations in power generation and transmission reliability assessments. The
approach allows for searching for sequences of operation points which can be assigned as success
states within the sequential Monte Carlo simulation. If required, failure states are evaluated using a
cross-entropy optimization algorithm designed to minimize load curtailments taking into account
discrete variables. Numerical results emphasize the applicability of the developed algorithms using a
small test system and the IEEE-RTS79 test system.

Keywords: generation and transmission reliability; Monte Carlo simulation; tensor method;
cross-entropy method

1. Introduction

Reliability evaluation of large power systems, particularly when considering both gen-
eration and transmission facilities, is a complex and computationally intensive challenge [1].
The sequential Monte Carlo simulation (SMCS) can be considered the most flexible method
to address this problem, permitting the representation of time-connected aspects of op-
eration and the availability of resources. Nevertheless, evaluating sampled states in the
SMCS is a time-consuming task, making its application unattractive, especially if nonlinear
network representation must be deployed.

Several approaches to reduce the computational burden of state evaluations can be
found in the literature, with the aim of replacing optimal power flow (OPF) analyses with
alternative analyses, within the Monte Carlo simulation. In [2,3], multi-label classification
approaches trained with OPF data are applied to substitute state evaluation procedures in
the SMCS. In [4], the authors use multi-parametric linear programming to replace linearized
OPF evaluations, utilizing a transmission line state dictionary to handle transmission line
outages, while analyzing generation states and load variations. Other approaches based on
the application of neural networks [5,6], such as self-organizing maps [7], support vector
machines [8], convolutional neural networks (CNNs) [9–13], multilayer perceptrons [14],
and a deep neural networks [15], have also been utilized, aiming at a rapid assessment
of system states. A state space classification technique in conjunction with a dynamically
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directed particle swarm optimization (PSO) can be found in [16], where the first aims to
classify success or failure states, whereas the binary PSO is used to identify failure states
within the unclassified subspace. Strategies considering an approximated power flow
formulation are provided in [1], focusing on acquiring more accurate results through a
detailed network modeling.

The reported approaches aim to reduce the time required for state evaluation by re-
placing the OPF calculation with more computationally efficient methodologies. In contrast,
some studies have been employing techniques that seek to mitigate the computational
burden by reducing the number of OPF evaluations, focusing on identifying states which
are deemed to be assigned as failure states. These approaches use techniques that aim to
group samples with similar characteristics, with each of those labeled as either success
states, failure states, or mixed, and the evaluation via OPF is triggered according to the
classification acquired with the technique. In [17], unsupervised machine learning tech-
niques, including the Kohonen self-organizing map, K-means clustering, and K-medoids
clustering, are embedded into non-sequential Monte Carlo simulation for the purpose of
classifying state groups. Self-organizing maps have been applied in [18] as a state filter for
failure analysis, taking into account adverse weather and spatial conditions. Moreover, this
concept can be found in other works that employ machine learning techniques, such as
CNNs [19], the group method of data handling [20], and binary logistic regressions [21],
where classifiers are built aiming at verifying whether system states can be classified as
success states (i.e., states without load curtailment) or failure states (i.e., states without load
curtailment).

Unlike other state-of-the-art works, this work directly exploits the fact that load
transitions occur more often than component state transitions in the SMCS, aiming to
reduce computational efforts in state evaluations. For this, the paper introduces a tensor-
based predictor–corrector method to aid in the identification of success system states
(i.e., states without load curtailment) within the SMCS, considering a nonlinear network
representation. The method permits establishing a sufficient, but not necessary, condition
to check if a visited state and its subsequent ones can be assigned as success states. The
tensor-based predictor–corrector method utilizes a problem formulation inspired by the
modified tensor power flow method [22], which is also used for state evaluations in this
work. The novelties of this work can be summarized as follows:

1. The design of a tensor-based predictor-correction method to be applied within the SMCS to
reduce the computation burden of generation and transmission reliability assessments;

2. The application of a cross-entropy optimization [23] approach to search for generation
re-scheduling solutions corresponding to feasible operation points with a minimum
loss of load.

Numerical results are provided for a small test system and the IEEE-RTS79 test system,
with the aim of highlighting the relevant aspects of the proposed approach. For the
IEEE-RTS79 test system [24], in a set of about 20 million states, around 8 million evaluations
have been suppressed with simple system analyses based on modified tensor power
flow assessments, while around 7 million evaluations have been suppressed using the
tensor-based predictor–corrector approach. Results also illustrate the applicability of the
cross-entropy approach in finding remedial actions in cases where the rescheduling of
generation units is mandatory.

2. Designed Generation and Transmission Reliability Evaluation Using Nonlinear
Network Modeling

Generation and transmission reliability assessment, also referred in the state-of-the-art
research in the literature as composite reliability assessment, can be performed through
SMCS. The SMCS is comprised of three core stages: state duration sampling, state eval-
uation, and the update of test functions for index estimation, as illustrated in Figure 1.
Examples of reliability indices evaluated in composite assessments are the Loss of Load
Probability (LOLP), Loss of Load Frequency (LOLF), Loss of Load Duration (LOLD), and Ex-
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pected Power Not Supplied (EPNS). The state evaluation stage is the most time-consuming
stage and where the application of the nonlinear network modeling has its major impact.

Begin

Convergence of 

reliability indices?

State duration sampling

No

Yes

State evaluation

Update of test functions

End

End of period 

of analysis?

Update of reliability 

indices

Iniciate load and 

component states

Yes

No

Figure 1. Core stages of the sequential Monte Carlo simulation.

State evaluation in composite assessment can be attained using the following rules for
robust power systems modeled with nonlinear network representation:

1. If all system components are in the operating state, the system state can be considered
successful, meaning that load curtailments are not needed, and events of a loss of load
are not expected;

2. If at least one component is in the failure state, power flow evaluations can be per-
formed assuming standard dispatch profiles and control settings. In case the power
flow solution corresponds to an operation point without violating system constraints,
the system state can also be considered successful, meaning that load curtailments
are not needed, and events of a loss of load are not expected. Otherwise, optimiza-
tion problems must be solved aiming to verify and quantify the occurrence of load
curtailments and corresponding remedial actions.

In our approach, power flow evaluations are executed using the modified tensor
power flow method [22], which is shown to have improved performance in relation to
its original counterpart. Remedial actions are deployed considering the solution of an
optimal power flow problem targeting the minimization of load curtailments subject to
operational limits. The objective function of the problem is given by the sum of the squares
of the productions of fictitious generation units located at load buses. These fictitious
generation units can produce power up to the amount of the load connected to each bus,
with a specified cost of production that can be used to prioritize buses according to their
importance. The formulation utilized in our approach is given by
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minimize 1
2 Pt

gDCPg

subject to AgPg − Pd − P(e, f) = 0
Ar

gQg −Qd + Af
gPg −Q(e, f) = 0

Pmin
g ≤ Pg ≤ Pmax

g
Qmin

g ≤ Qg ≤ Qmax
g(

Vmin)2 ≤ (e2 + f2) ≤ (Vmax)2(
Imin)2 ≤ I2(e, f) ≤ (Imax)2

(1)

where Pg is the vector of active power productions in each generation unit; DC is a diagonal
matrix with inputs given by generation costs; Ag, Ar

g e Af
g are generation connection

matrices, where Ag(i, j) equals 1 if generator i (real or fictitious) is connected to bus j or 0
otherwise, Ar

g(i, j) equals 1 if generator i (real) is connected to bus j or 0 otherwise, Af
g(i, j)

equals the ratio of bus reactive and active load if generator i (fictitious) is connected to bus
j or 0 otherwise; Pd and Qd are vectors of bus active and reactive loads; e and f are the
real and imaginary bus voltage vectors; Pmin

g and Pmax
g are the minimum and maximum

active generator capacity vectors; Qmin
g and Qmax

g are the minimum and maximum reactive
generator capacity vectors; Vmin and Vmax are the minimum and maximum bus magnitude
voltage vectors; Imin and Imax are the minimum and maximum limits for currents in
transmission elements. The active and reactive powers injected in each bus are written as

P(e, f) = DeGe−DeBf + DfBe + DfGf (2)

Q(e, f) = DfGe−DfBf + DeBe + DeGf (3)

where e and f are vectors with the real and imaginary parts of the bus voltages, respectively;
while G and B denote the real and imaginary parts of the bus admittance matrix. The
notation Du represents a diagonal matrix with diagonal values given by the entries of
vector u, while y2 means a vector composed of the squared values of the entries in y.

Additional constraints related to, for instance, active power flow and apparent power
flow can be included straightforwardly in the formulation. Nevertheless, in case discrete
variables associated with control functions or rescheduling of generation units must be
modeled, the formulation in (1) is insufficient to allow a proper state evaluation. As
an example, for states with a high availability of generation units, minimum generation
limits may prevent OPF formulations from finding feasible solutions. Consequently, a
rescheduling of generation units is required to search for feasible operating points and
minimize load curtailments.

In our approach, discrete variables are addressed through the application of the CE
method, where it is assumed that each discrete variable in a decision vector zi follows a
Bernoulli distribution, as

Bernh(zi, p) =
nh

∏
j=1

p
zj
j (1− pj)

(1−zj) (4)

where Bernh(·, p) is the nh-dimensional Bernoulli probability mass function, p = [p1, · · · , pj,
· · · , pnh ]

t denotes the probability vector associated to the Bernoulli distribution, and zj is
the j-th component of the random variable zi.

Algorithm 1 summarizes the application of the CE method to minimize load curtail-
ments with discrete control variables and rescheduling of generation units. The algorithm
reaches an end if one of the stopping criteria is satisfied: (a) if a system state with zero
load curtailment is found, or (b) if the probabilities pt+1

j have reached convergence. In both
cases, the candidate solution with the minimal load curtailment is selected as the solution
to the problem. The general algorithm as well as an example of the application of the CE
method in combinatorial optimization problems can be found in [25] (pp. 34–36).
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Algorithm 1 CE method for optimization of discrete control variables and rescheduling of
generation units
Let N be the number of samples, ϱ the rarity parameter, Ne = ⌈ϱN⌉ the number of elite samples,
t = 1, Ut an empty set and rt an empty vector.

1: Define an initial probability vector pt.
2: Draw N samples z1, . . . , zN with zij ∼ Ber(pj) and define Ut = {z1, . . . , zN}.
3: Calculate S(zi) using S(zi) as the objective function value acquired by solving (1), ∀i.
4: Set rt = {S(z1), . . . , S(zN)}. Set rt in decreasing order and define γ̂t = rt(Ne).

5: Calculate p̂t+1
j =

∑u∈Ut
{IS(u)≥γ̂t uj}

Ne using the same sample z1, . . . , zN and I is the indicator function;

6: Update the probability vector using the expression p(t+1)
j ← α p̂t+1

j + (1 − α)pt
j , for a given

smoothing factor α.
7: If stopping conditions are met, stop the simulation. Otherwise, set t← t + 1 and return to step 2.

The execution of the algorithm procedures outlined in this section renders time-
consuming state evaluations in the SMCS. The tensor-based predictor–corrector approach
seeks to leverage the fact that load transitions occur more frequently than component state
transitions in the SMCS, making the estimation of maximum/minimum loadability factors
of interest to assess subsequent states characterized by load transitions. These loadability
factors represent a proportion of the load increase in a specified direction, given a set of
operational constraints. Consequently, their estimation can be exploited to avoid power
flow and OPF analysis, within the state evaluation procedures.

3. Tensor-Based Predictor-Corrector Approach to State Evaluation

The application of the tensor-based predictor–corrector algorithm within the SMCS
for composite reliability assessments is summarized in Algorithm 2. State evaluation is de-
scribed in Step 4 of the Algorithm 2, and is further summarized in Figure 2. The application
of the tensor-based predictor–corrector approach can be outlined in the following steps:

(a) Sort states according to load levels until the next component state transition;
(b) Starting from state k, calculate the bus voltages via the predictor–corrector model until

the operational limits described in (1) are violated, taking into account the visiting of
load levels in ascending order;

(c) Starting from state k, calculate the bus voltages via the predictor–corrector model until
operational limits provided in (1) are violated, taking into account the visiting of load
levels in descending order.

The states corresponding to operation points without violated limits are marked with a
passing mark, indicating that their evaluation using PF, OPF, or CE is not required.

The general formulation for estimating loadability factors for a given state is intro-
duced in Section 3.1. This formulation can be solved either by using a direct or predictor–
corrector method, with the latter described in Section 3.2.

3.1. Problem Formulation for Loadability Factor Estimation

The maximum loadability problem, in rectangular coordinates, considering system
loads increased by the proportion ρ2 in the direction ∆Pd, can be described as follows.

minimize c(e, f, Pg, Qg,ρ)
subjec to Pg − (Pd+ρ2∆Pd)− P(e, f) = 0

Qg − (Qd+ρ2∆Qd)−Q(e, f) = 0
Pmin

g ≤ Pg ≤ Pmax
g

Qmin
g ≤ Qg ≤ Qmax

g(
Vmin)2 ≤ (e2 + f2) ≤ (Vmax)2(
Imin)2 ≤ I2(e, f) ≤ (Imax)2

(5)

where c(e, f, Pg, Qg,ρ) = −ρ and the other variables have been previously defined. The
formulation presented in (5) has as constraints the active and reactive power balance
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equations, where the weighted load increment is included. Other constraints are designed
as in (1). The formulation of the minimum loadability problem is analogous to the one
presented in (5), differing only by a change in the signal of the objective function.

Algorithm 2 SMCS for composite evaluation with the application of the tensor-based
predictor–corrector approach
Let n, tn and Ny be a state counter, time counter and period counter, respectively; Initialize counters
as n← 1; t1 ← 0; Ny ← 1.

1: Initialize component and load states to compose the system state xn;
2: Sample state residence times using stochastic or deterministic functions;
3: Identify the next state transition time tn+1. If tn+1 does not overpass the end of the period

T, perform the transition to constitute the next system state xn+1. Otherwise, tn+1 ← T and
xn+1 ← xn.

4: If system state xn has at least one component in the failure state, execute the steps i. or ii. below.
Otherwise, go to step iii.

i. If xn has been constituted by a component state transition

(a) Perform state evaluation via modified tensor power flow method; if the state is
considered successful, execute step iii and go to step (d); otherwise, go to the next
step;

(b) Evaluate state via OPF. If the state is considered successful, execute step iii and go
to step (d); otherwise, store the load curtailment. In case of non-convergence, go to
the next step;

(c) Evaluate state via CE method. If the state is considered successful, execute step
iii and go to step (d); otherwise, store the load curtailment and finish the state
evaluation. In case of non-convergence, define the state as successful, save the state
for future analysis, and finish the state evaluation.

(d) Compute passing marks for system states characterized by load transition via tensor-
based predictor–corrector method;

ii. If xn has been constituted by a load state transition:

(a) If the state has a passing mark, go to step iii and finish state evaluation; Otherwise,
go to the next step;

(b) Execute step i.(a) without resourcing to step i.(d). Continue the process eventually
reaching step i.(c) without resourcing step i.(d);

iii. Classify the state as successful and set load curtailment as zero.

5: Update test functions H({xn}
sy
n=1), where {xn}

sy
n=1 is the sequence of states xn, with sy states in

period y;
6: If a period is completed, update reliability indices using the expected value equation E[H(X)]←

1/Ny ∑
Ny

i=1 H
(
{xn}si

n=1
)
. Otherwise, return to step 2;

7: Update coefficients of variation β ←
√

Var[H(X)]/Ny/E[H(X)]. If the coefficients of variation are
greater than a specified threshold, perform n← 1, Ny ← Ny + 1 and return to step 2. Otherwise,
stop simulation.

3.2. Loadability Factor Estimation Thought Predictor–Corrector Tensor Method (NLMCSρ̂)

The identification of loadability factors for a given state is a sufficient but not necessary
condition, to conclude whether the state and its subsequent states are successful states,
during the execution of the SMCS method. Indeed, in order to suppress state evaluations
conducted with PF, OPF, or CE, one may identify if the load level belongs to the interval
defined by the loadability factors with successful states. In this context, the application
of a continuation method is proposed in the range of possible variations of load levels to
estimate minimum/maximum loadability factors, above/below which the states can be
considered as successful.
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Figure 2. Proposed state evaluation.

Let ρ be the loadability factor. The effect of the loadability factor in the system can be
formulated as 

∆P(e, f,ρ)
∆Q(e, f,ρ)
∆V(e, f,ρ)
∆σ(e, f, ρ)


︸ ︷︷ ︸

h(x)

=


0
0

Vesp2

σesp


︸ ︷︷ ︸

hs

−


−ρPesp − P(e, f)
−ρQesp −Q(e, f)

e2 + f2

ρ


︸ ︷︷ ︸

hc(x)

(6)

where ∆P(e, f,ρ), ∆Q(e, f,ρ), ∆V(e, f,ρ) belong to the set of power balance equations and
x is a variable redefined as [e, f,ρ]. With the inclusion of ρ, the problem specified only by
the power balance equations has infinity solutions, since the number of variables is greater
than the number of equations. To overcome this issue, equation ∆σ(e, f, ρ) = σesp − ρ has
been added to the problem formulation, where σesp is an additional loadability factor.

The Taylor series at point x is given by the general expression

h(x + dn) = hs + Jmod(x)dn (7)

such that a prediction of x using the Newton direction dn is given by
∂∆P
∂e

∂∆P
∂f Pesp

∂∆Q
∂e

∂∆Q
∂f Qesp

∂∆V
∂e

∂∆V
∂f 0

0 0 −1


︸ ︷︷ ︸

Jmod(x)

 ∆e
∆f
∆ρ


︸ ︷︷ ︸

dn

=


0
0
0
−σesp


︸ ︷︷ ︸
−h(x)

. (8)

Moreover, h(x) can be expanded considering the tensor term as follows

h(x + d) = h(x) + Jmod(x)d +
1
2

dtTmodd (9)
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and using (6), we have
h(x + d) = hs − hc(x + d). (10)

Applying (9) at x = 0, we can obtain

h(d) = h(0) + Jmod(0)d+
1
2

dtTmodd = hs + Jmod(0)d +
1
2

dtTmodd (11)

and using (10), we have

h(d) = hs − hc(d). (12)

Therefore,

hc(d) = −Jmod(0)d−
1
2

dtTmodd. (13)

Suppose that the direction d can be written as d = dn + dt, where dn is the Newton
direction and dt is the tensor direction component. Then,

h(x + d) = h(x + dn + dt)

= h(x) + Jmod(x)(dn + dt) +
1
2
(dn + dt)

tTmod(dn + dt)

= h(x) + Jmod(x)dn + Jmod(x)dt +
1
2
(dn + dt)

tTmod(dn + dt). (14)

Since dn = −[Jmod(x)]
-1h(x), then,

h(x + d) = Jmod(x)dt +
1
2
(dn + dt)

tTmod(dn + dt). (15)

By solving (6), we obtain
∆P(e + ∆e, f + ∆f,ρ + ∆ρ)
∆Q(e + ∆e, f + ∆f,ρ + ∆ρ)
∆V(e + ∆e, f + ∆f,ρ + ∆ρ)
∆σ(e + ∆e, f + ∆f,ρ + ∆ρ)

 = 0

which is equivalent to searching for step components ∆e, ∆f e ∆ρ such that h(x + d) is a
null vector. In that case, we have

dt = −
1
2
[Jmod(x)]

−1[(dn + dt)
tTmod(dn + dt)

]
= [Jmod(x)]

−1[hc(dn + dt) + Jmod(0)(dn + dt)]. (16)

In general, when the iteration step is small, the behavior of the functions is approx-
imately linear, and therefore the Newton step is considered an adequate approximation.
Furthermore, it is the component with the greatest weight (importance) in the direction
d = dn + dt. Therefore, the following approximation can be made.

hc(dn + dt) + Jmod(0)(dn + dt) ≈ hc(dn) + Jmod(0)(dn). (17)

As a consequence, dt can be estimated by solving the linear equation system

Jmod(x)dt= hc(dn) + Jmod(0)dn (18)

where
xpred = x + d (19)
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corresponds to a prediction step for the solution of the problem. Each prediction step is
followed by a correction step, performed by one iteration of the modified tensor power
flow method described, using the ρ parameter retrieved after applying the prediction step.

During the SMCS, the states under evaluation are subject to a load curve, whose
variation for two consecutive states is generally small. Thus, instead of carrying out the
traditional prediction and correction steps for load factors that are not part of the load
curve, bus voltages are computed for each load factor belonging to the set of load variations
in between components’ failures. States corresponding to operation points without violated
limits receive a passing mark which is utilized in step ii.(a) of Algorithm 2.

4. Result Analysis and Discussions

This section provides a set of numerical results illustrating the validation of the
implementation of the proposed approach and a set of results using the IEEE-RTS79 test
system for two SMCS applications. The first application, named as reference method
(NLMCSτ), consists of a SMCS where the state evaluation is performed using the PF, OPF,
and CE method. The NLMCSρ̂ method employs the tensor-based prediction-correction
approach to avoid time-consuming state evaluations. All simulations have been conducted
for a coefficient of variation β of 5%, using a Notebook Acer Intel(R) Core(TM) i5-5200U
(2.20 GHz, 8 GB RAM, Made in China).

4.1. Results for Methodology Validation

In order to validate the algorithms implemented, a two-bus system has been used,
where three generation units are allocated in one bus, while the other bus has a constant
load connected, as shown in Figure 3.

Bus 1 Bus 2

G1

G2

G3

Figure 3. Two-bus test system.

The generation units have minimum and maximum active generation capacities of
0 MW and 100 MW, respectively, as well as minimum and maximum reactive generation
capacities of −25 MVAr and 60 MVAr. The system load is modeled by a curve comprising
8760 constant hourly steps corresponding to a load of 200 MW. The buses are connected by
three transmission lines in parallel, with a 0.30 p.u (Ω) reactance and a 1.10 p.u capacity (A).
The voltage at the generation bus is specified at 1.00 p.u. and the minimum and maximum
limits of voltage magnitude at the buses are 0.95 p.u. and 1.05 p.u., respectively. The voltage
and power base of the system is 230 kV and 100 MVA, respectively. It is assumed that
only two generators, named G1 and G2, and one of the transmission lines, named LT1, are
subject to failures. The component failure rate and mean time to repair are 0.002 occ./year
and 10 h, respectively, totalizing a probability of failure of 0.02. All other components are
considered 100% reliable.

The enumeration and analysis of the states of this system are illustrated in Table 1.
In Table 1, columns 1–3 indicate the component states (1—in operation, 0—in failure),

columns 4–5 indicate the load curtailment and probability of occurrence of each system
state, and columns 6–7 indicate the voltage magnitude in each bus after solving the PF and
OPF, where the OPF is executed only in case of operational limit violations.
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Table 1. Results for the analytical method considering a two-bus test system.

States Load Cut
Prob

Vmin[p.u.]

G1 G2 LT1 [MW] PF OPF

1 1 1 0 0.941192 0.9789 -

1 1 0 0 0.019208 0.9487 0.9880

1 0 1 0 0.019208 0.9789 -

1 0 0 0 0.000392 0.9487 0.9878

0 1 1 0 0.019208 0.9789 -

0 1 0 0 0.000392 0.9487 0.9878

0 0 1 100 0.000392 0.9789 0.9875

0 0 0 100 0.000008 0.9487 0.9886

For the two-bus system under evaluation, only in two states is the existence of load
curtailment verified, assuming always the value of 100 MW. In addition, the probability
of occurrence of these two states is 3.92 × 10−4 if LT1 is available, and 8 × 10−6 if LT1
is unavailable, totalizing a LOLP of 4× 10−4. The EPNS index is equal to (0.000392 +
0.000008)(100) = 4× 10−2 MW. Only the states with G1, G2, and LT1 available, or where
only one of the generators G1 or G2 is unavailable, do not require the execution of an OPF.
The states where G1 and G2 are unavailable have required a solution through an OPF due
to the insufficiency of the generation capacity.

The comparative results for the composite adequacy assessment using the analyti-
cal method (AM), NLMCSτ, NLMCSτ′, and NLMCSρ̂ are presented in Tables 2–4. The
NLMCSτ′ is a variant of the NLMCSτ method, where states are evaluated using OPF
exclusively. Result analysis allows us to conclude that the reliability indices acquired with
NLMCSτ, NLMCSτ′, and NLMCSρ̂ are equal and numerically close to indices obtained
with the AM. Furthermore, with 95% confidence, retrieved confidence intervals are equal
and contain the indices computed using AM.

Table 2. Composite evaluation results for the AM, NLMCSτ, NLMCSτ′, and NLMCSρ̂ methods.

Method AM NLMCSτ NLMCSτ′ NLMCSρ̂

#Simulated years - 1313 1313 1313

Runtime [s] - 900.31 3,983.69 651.03

LOLP [×10−4] 4.0000 3.9097 3.9097 3.9097

EPNS [MW] 0.0400 0.0391 0.0391 0.0391

Table 3. A 95% confidence interval of the reliability indices using NLMCSτ, NLMCSτ′, and
NLMCSρ̂ methods.
.

Method LOLP [×10−4] EPNS [MW]

NLMCSτ
3.5268 0.0353
4.2926 0.0429

NLMCSτ′
3.5268 0.0353
4.2926 0.0429

NLMCSρ̂
3.5268 0.0353
4.2926 0.0429

As depicted in Table 2, the number of simulated years until convergence is also the
same for all methods, although runtimes are distinct. In fact, the NLMCSρ̂ method has
converged in a reduced runtime, achieving a speed up of 1.38 times in comparison to the
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NLMCSτ method. Moreover, the runtimes of methods NLMCSτ and NLMCSτ′ support
highlighting the importance of the application of a pre-evaluation with PF in the SMCS,
since the NLMCSτ′ is 4.42 times slower than the NLMCSτ.

Table 4 highlights, for the AM, NLMCSτ, NLMCSτ′, and NLMCSρ̂ methods, the
number of visited states; the number state evaluations via PF, OPF, or CE; the number of
success states assessed straightforwardly via PF; the number of states evaluated as success
or failure via OPF; the number of executed generation reschedulings; the number of states
with loadability factor estimation; and the number of states with suppressed PF/OPF/CE
evaluations using loadability factors.

Table 4. State evaluation for AM, NLMCSτ, NLMCSτ′, and NLMCSρ̂ methods.

Counter AM NLMCSτ NLMCSτ′ NLMCSρ̂

#Visited states 8 11,585,012 11,585,012 11,585,012

#Evaluated states 8 501,360 501,360 501,360

#Success states (PF) 3 496,002 0 89,643

#OPF executions 5 5358 501,360 5358

#Generation rescheduling - 0 0 0

#States with ρ estimation - 0 0 45,946

#Suppressed PF/OPF/ - 0 0 406,359generation rescheduling

As shown in Table 4, the number of visited states and evaluated states are the same
for all SMCS methods and are equal to 11,585,012 and 501,360, respectively. The number
of states evaluated only with PF is 496,002 using the NLMCSτ method, and 89,643 in
the NLMCSρ̂ method, which correspond approximately to 18.07% of the number of PFs
required by the reference method. The number of ρ estimations is equal to 45,946, which
led to 406,359 suppressed evaluations as well as runtime reduction, as depicted in Figure 4.
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Figure 4. Results of the application of the NLMCSτ and NLMCSρ̂ methods for the two-bus system.

It is important to highlight that, since the number of executed OPFs remains the same
for the NLMCSτ and NLMCSρ̂ methods, only PF evaluations have been suppressed in
this test.

4.2. Results for the IEEE-RTS79

The IEEE-RTS79 system [24] is a benchmark test system, composed of 24 buses,
32 generating units, 33 transmission lines and 5 transformers, as illustrated in the Figure 5.
Numerical results of the composite reliability assessment for the IEEE-RTS79 system using
the NLMCSτ and NLMCSρ̂ methods are depicted in Tables 5–7.
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Table 5. Composite evaluation results for the NLMCSτ and NLMCSρ̂ methods.

Method NLMCSτ NLMCSρ̂

#Simulated years 2077 2102

Runtime [s] 104,845.47 77,550.33

LOLP [×10−3] 1.3660 1.3118

EPNS [MW] 0.1488 0.1454

Table 6. The 95% confidence intervals of the reliability indices using NLMCSτ and NLMCSρ̂ methods.

Method LOLP [×10−3] EPNS [MW]

NLMCSτ
1.2698 0.1343
1.4621 0.1633

NLMCSρ̂
1.2230 0.1311
1.4005 0.1596

Table 7. State evaluation for NLMCSτ and NLMCSρ̂ methods.

Counter NLMCSτ NLMCSρ̂

#Visited states 19,202,348 19,433,516

#Evaluated states 14,862,995 15,040,817

#Success states (PF) 14,778,582 8,059,994

#OPF executions 63,819 51,303

#Generation rescheduling 20,594 15,857

#States with ρ estimations 0 904,273

#Suppressed PF/OPF/ 0 6,913,663generation rescheduling

Table 5 shows that the composite reliability indices obtained with NLMCSτ and NLMCSρ̂
methods are similar. The NLMCSτ method requires 2077 years and approximately 29.12 h
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to reach convergence, while the NLMCSρ̂ requires 2102 years and approximately 21.54 h,
which represents a difference of 25 years and 7.58 h. Furthermore, as depicted in Table 6,
the LOLP and EPNS indices estimated using the NLMCSτ/NLMCSρ̂ method are within the
corresponding confidence intervals estimated using the NLMCSρ̂/ NLMCSτ method.

The number of states visited and evaluated in each method are considerably similar. In
the reference method, it has sampled 19,202,348 states and evaluated 14,862,995 states, while
in the NLMCSρ̂ method, it has sampled 19,433,516 states and evaluated 15,040,817 states.
Furthermore, using the NLMCSτ method, 14, 778, 582 have been evaluated via PF, 63,819
via OPF, and 20,594 via generation rescheduling, which correspond to 99.43%, 0.43%, and
0.14% of the evaluated states, respectively. Regarding the NLMCSρ̂ method, 8,059,994 states
have been evaluated via PF, 51,303 via OPF, and 15,857 via generation rescheduling, which
represents 53.59%, 0.34%, and 0.11% of the evaluated states, respectively. The remainder of
states (45.96%) had their evaluations via PF/OPF/generation rescheduling suppressed by
using loadability factors. In fact, 904,273 loadability factors have been estimated, leading to
6,913,663 suppressed PF/OPF/generation rescheduling evaluations. It has been identified
that the slight difference between the indices can be further reduced by aggregating inter-
mediate steps of the increase/reduction of load in the application of the predictor-correction
method, improving the estimates of the voltages according the load variation. Nonetheless,
for electrical system planning purposes, the index estimates are considered adequate.

Results of the application of the NLMCSτ and NLMCSρ̂ methods are shown
in Figure 6.
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Figure 6. Results of the application of the NLMCSτ and NLMCSρ̂ methods for the IEEE-RTS79 system.

Despite the corrective actions adopted, and for both methods of NLMCSτ and NLMCSρ̂,
40 sampled states could not be characterized as successful or failure states due to the lack of
convergence of the CE method. It is important to note that the number of inconclusive states
correspond to 2.083× 10−4 of the visited states in the NLMCSτ method, and 2.058× 10−4

of visited states in the NLMCSρ̂ method, which lead to a minor influence in the reliability
index estimations. Finally, the NLMCSρ̂ achieves convergence in 77,550.33 s (approximately
22 h), while the NLMCSτ requires more than 29 h to achieve convergence, which represents
a speed-up equal to 1.35.

5. Discussion and Final Remarks

A tensor-based predictor–corrector method has been proposed with the aim of re-
ducing the computational burden of state evaluations in SMCS approaches for composite
reliability assessments. Moreover, a cross-entropy optimization approach is provided to
search for generation rescheduling solutions corresponding to feasible operation points
with minimum losses of load. The tensor-based predictor–corrector method is executed,
where a state is considered successful and at least one component failure is sampled. In
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this case, passing marks are stamped on subsequent states characterized by load variations
within loadability factors.

As a final point of discussion, it is worth mentioning that the loadability factor es-
timation problem is addressed in the proposed approach using a prediction-correction
method instead of a direct method. The application of a direct method, for instance by
using the interior-point method to solve (5), would ultimately involve solving an OPF with
the loadability factor as the objective function, eventually increasing the computational
effort required in the state evaluation stage. Preliminary implementations of direct methods
aiming applications to composite reliability assessments have encouraged the authors to
design the tensor-based predictor–corrector method.

Future works are envisioned to address the adaptation of the proposed approach to the
composite evaluation of power systems with high-level integrations of renewable sources.
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