
Citation: Luo, W.; Zhang, R.; Zhang,

J.; Wu, L.; Vazquez, S.; Franquelo, L.G.

Control of Three-Phase Two-Level

Inverters: A Stochastic LPV Model

Approach. Energies 2024, 17, 6142.

https://doi.org/10.3390/en17236142

Academic Editors: José Gabriel Oliveira

Pinto, Jean-Matthieu Bourgeot and

Emmanuel Delaleau

Received: 22 October 2024

Revised: 22 November 2024

Accepted: 2 December 2024

Published: 5 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Control of Three-Phase Two-Level Inverters: A Stochastic LPV
Model Approach
Wensheng Luo 1, Ruifang Zhang 1 , Jianwen Zhang 1, Ligang Wu 1, Sergio Vazquez 2

and Leopoldo G. Franquelo 2,*

1 School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China;
wensheng.luo@hit.edu.cn (W.L.); ruifang.zhang@stu.hit.edu.cn (R.Z.); 23b306001@stu.hit.edu.cn (J.Z.);
ligangwu@hit.edu.cn (L.W.)

2 School of Engineering, University of Seville, 41092 Seville, Spain; sergi@us.es
* Correspondence: lgfranquelo@us.es

Abstract: This paper proposes a stochastic linear parameter-varying (LPV) model approach to design
a state feedback controller for three-phase, two-level inverters. To deal with the parameter changes,
stochastic noise, and delays faced by the inverter, it is modeled as a stochastic LPV system with time
delay. Stability analysis and control synthesis are conducted for the LPV system. With parameter-
dependent Lyapunov functionals, a condition of sufficient stability for asymptotical mean-square
stability is obtained. In addition, the slack matrix technique is employed to improve the feasibility
and reduce the conservatism of the conditions. The obtained theoretical results are applied to the
three-phase, two-level inverter, whose currents are treated as state variables and are controlled to
reach the equilibrium point. The simulation results validate the effectiveness of the proposed theories
and demonstrate the advantages of using the slack matrix.

Keywords: three-phase two-level inverter; linear parameter-varying (LPV) system; stochastic system;
time delay; mean square stability

1. Introduction

Three-phase, two-level inverters are the most widely used power converters in power
electronics and motor drives. The main components of the inverters are controllable power
switches such as IGBTs, MOSFETs, GTOs, etc., [1]. By implementing appropriate control
strategies, they can output active and reactive power as required while also operating
with desirable performance in terms of good current quality, high power efficiency, and
strong robustness against disturbances. In real applications, the inverter faces uncertain
conditions including time-varying grid voltage, filter capacitance and inductance changes,
measurement delays, and environmental noise. To effectively control the inverter, all of
these uncertainties should be taken into account [2,3].

Linear parameter-varying (LPV) systems are used to describe systems with time-
varying parameters. Since the seminal work of Shamma in 1991 [4], the LPV control and
filtering approach has attracted a lot of attention from the control field. This is because
(1) it is effective at coping with the nonlinearities and time-varying dynamics of the system,
and (2) the maturely developed LTI control methodologies, such as sensitivity, shaping,
and modeling tools, can be extended to LPV systems. Over the past few decades, several
advances have been made in terms of the theoretical and practical aspects. Among other
things, theoretical works are related to analysis and synthesis issues [5,6], robust filtering
problems [7,8], fault detection and isolation [9], etc. Practical engineering works are also
popular. For instance, an LPV static output feedback control method has been proposed
to improve the lateral stability and driving comfort of narrow tilting vehicles [10], an
LPV modeling method has been adopted to ensure large signal stability for multi-mode
buck-boost converters [11], and an uncertain robot system has been controlled by an
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LPV controller with sliding-mode optimization [12].Time delays exist in many practical
systems, such as network-controlled systems, electronic networks, hydraulic systems, and
chemical processes, which are mostly nonlinear systems. Time delays may cause instability
and oscillation in these systems and severely degrade performance [13,14]. To target
this problem, research on time-delayed LPV systems has come into focus in recent years;
see [15,16].

Stochastic systems are used to model systems with stochastic perturbations. This
approach is used in several fields and engineering applications, such as mechanical systems,
economic systems, etc. Over the past few decades, the study of stabilization and filtering
problems in stochastic systems has received increased attention, and many valuable results
have been obtained. As for stabilization problems, the asymptotic stability of semi-switched
stochastic systems has been investigated in [17]. The problem of input-to-state stability
for nonlinear systems with stochastic impulses was systematically studied in [18]. As
to filtering problems, the recursive filtering problem in a class of uncertain stochastic
systems with amplification and forward relays was investigated in [19], and the problem
of distributed robust filtering for switched stochastic time-delay systems with fading
measurements over sensor networks was addressed in [20].

This paper aims to propose a stochastic LPV model approach to deal with the un-
certain conditions and time delay faced by a three-phase, two-level inverter, where the
grid voltage, filter capacitance, and inductance are treated as time-varying parameters
and the environment noises as stochastic disturbances. Sufficient conditions for stability
analysis and controller synthesis are obtained for the stochastic LPV system. The theoretical
results obtained are applied to the inverter, whose currents are treated as state variables
and are controlled to reach the equilibrium point. The contributions of this paper are three
fold: (1) the LPV approach is used to model the three-phase, two-level inverter, which is
a new practical method; (2) compared to previous theoretical works, this paper further
considers the stochastic perturbation and parameter-varying time delay, based on which
the stochastic LPV model is established, and the stability conditions are obtained; (3) the
slack matrix technique is adopted to improve the feasibility of the stability conditions,
which facilitates the controller design process. The remainder of this work includes system
description and inverter modeling in Section 2. The main theoretical analysis is presented in
Section 3. Simulations to validate the proposal are provided in Section 4. Finally, conclu-
sions are addressed in Section 5.

2. System Description and Inverter Modeling

Figure 1 is a two-level, three-phase inverter which is normally used as grid-connecting
power converter (the case in this paper) or motor drive. In an ideal case, the inverter can be
modeled in a synchronous reference frame as follows [21]:

L
did
dt

=udVin − rid − ωLiq − vd, (1a)

L
diq

dt
=uqVin − riq + ωLid − vq, (1b)

where Vin is the input DC power source, ω is the frequency of grid voltage, L is the filtering
inductor and r is its equivalent series resistance, and the dq variables are transformed
from the three-phase abc variables, i.e., vd, vq are grid voltages transformed from va, vb
and vc; id, iq are grid currents transformed from ia, ib, and ic; and ud, uq are switching
functions generated by the controller, which is to be used to generate the switching signals
Sa, Sb, and Sc through the PWM modulator. To provide the required power to the grid,
the dq currents must be controlled to the desired value. Taking into account the inverter
parameter variations, stochastic grid perturbations, and control/communication delays,
the inverter model can be formulated as a general time-delayed stochastically perturbed
LPV system:
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dx(t) =[A(ρ(t))x(t) + Ah(ρ(t))x(t − h(ρ(t)))]dt

+ B(ρ(t))u(t)dt + Bv(ρ(t))v(t)dt

+ Bω(ρ(t))x(t)dω(t), (2a)

y(t) =C(ρ(t))x(t) + Ch(ρ(t))x(t − h(ρ(t)))

+ D(ρ(t))v(t), (2b)

x(θ) =ϕ(θ), θ ∈ [−h(ρ(0)), 0], (2c)

where x(t) = [id; iq] is the state vector, A(ρ(t)) is the system matrix related to L, r, ω;
u(t) = [udVin − vd; uqVin − vq] is the control input; B(ρ(t)) is the control matrix related to
L; v(t) ∈ Rq, belonging to L2[0, ∞), is either a disturbance input or a reference signal; ω(t)
is a one-dimensional (1-D) Brownian motion satisfying E{dω(t)} = 0 and E{dω2(t)} = dt;
ρ(t) ∈ Rs is vector-valued parameter evolving continuously over time and its range is
limited to a compact subset; and h(ρ(t)) is the parameter-varying delay and satisfies:

0 ≤ h(ρ(t)) ≤ H < ∞, |ḣ(ρ(t))| ≤ σ < ∞,

where H and σ are constant scalars, and x(θ) is the initial data function given in the time
interval [−H, 0]. The value of ρ(t) is unknown but can be measured in real time.

Disregarding the control input u(t), the autonomous system of (2) is formulated as:

dx(t) =[A(ρ(t))x(t) + Ah(ρ(t))x(t − h(ρ(t)))]dt

+ Bv(ρ(t))v(t)dt + Bω(ρ(t))x(t)dω(t), (3a)

y(t) =C(ρ(t))x(t) + Ch(ρ(t))x(t − h(ρ(t)))

+ D(ρ(t))v(t), (3b)

x(θ) =ϕ(θ), θ ∈ [−h(ρ(0)), 0]. (3c)

On the other hand, to carry out stability analysis and synthesis, the exogenous distur-
bance “v(t)” in (2) is considered to be zero, yielding following system:

dx(t) =A(ρ(t))x(t) + Ah(ρ(t))x(t − h(ρ(t)))

+ B(ρ(t))u(t)dt + Bω(ρ(t))x(t)dω(t), (4a)

x(θ) =ϕ(θ), θ ∈ [−h(ρ(0)), 0]. (4b)

Therefore, the autonomous system of (4) can be formulated as:

dx(t) =[A(ρ(t))x(t) + Ah(ρ(t))x(t − h(ρ(t)))]dt

+ Bω(ρ(t))x(t)dω(t), (5a)

x(θ) =ϕ(θ), θ ∈ [−h(ρ(0)), 0]. (5b)

For simplicity, ρ will be used instead of ρ(t) in the rest of this paper. Before going
further, some definitions and lemmas should be given, which are important for deriving
main results.

Definition 1. For any initial state x(0) ∈ Rn, the time-delayed LPV stochastic system (3) is said to
be robustly stable with disturbance attenuation index γ if for all v(t) ∈ L2[0, ∞) and all parameter
trajectories, it holds that

∥y(t)∥2 < γ∥v(t)∥2. (6)

Also, the system is asymptotically mean square stable according to Definition 1 in [22].
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Figure 1. Two-level three-phase inverter.

3. System Analysis and Controller Design
3.1. Stability Analysis and Synthesis

Proposition 1. If there exists a family of parameter-dependent continuous differentiable symmetric positive
matrices P(ρ) and Q(ρ) such that, for all the parameter trajectories, it satisfiesΠ11 P(ρ)Ah(ρ) Bω

T(ρ)P(ρ)
∗ Π12 0
∗ ∗ −P(ρ)

 < 0, (7)

where Π11 =
s
∑

i=1
τi

∂P(ρ)
ρi

+ sym{P(ρ)A(ρ)}+ Q(ρ), Π12 = −
(

1 −
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t − h(ρ)),

then system (5) is asymptotically mean square stable.

Proof. Set the Lyapunov–Krasovskii functional as

V(x, ρ) = xT(t)P(ρ)x(t) +
∫ t

t−h(ρ)
xT(s)Q(s)x(s)ds. (8)

According to Itô’s formula [23],

dV(x, ρ) = LV(x, ρ)dt + 2xT(t)P(ρ)Bω(ρ)x(t)dω(t), (9)

where

LV(x, ρ) =

xT(t)Ṗ(ρ)x(t) + 2xT(t)P(ρ)A(ρ)x(t)

+ 2xT(t)P(ρ)Ah(ρ)x(t − h(ρ))

+ xT(t)Bω
T(ρ)P(ρ)Bω(ρ)x(t) + xT(t)Q(ρ)x(t)

−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
· xT(t − h(ρ))Q(t − h(ρ))x(t − h(ρ))

=

[
x(t)

x(t − h(ρ))

]T

Π
[

x(t)
x(t − h(ρ))

]
,
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with Π =

Π11 P(ρ)Ah(ρ)

∗
(

1−
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t− h(ρ))

, and Π11 =
s
∑

i=1
τi

∂P(ρ)
ρi

+ sym{P(ρ)A(ρ)}+

Bω
T(ρ)P(ρ)Bω(ρ) + Q(ρ). Thus, according to [24], system (5) is asymptotically mean square

stable if Π < 0, which is equal to the inequality (7) with Schur complement transformation.
Proof is completed.

Proposition 2. If there exists a family of parameter-dependent continuous differentiable symmetric
positive matrices R(ρ), Q̄(ρ), and matrices F(ρ) such that, for all the parameter trajectories, it holds thatΠ11 Ah(ρ)R(t − h(ρ)) R(ρ)Bω

T(ρ)
∗ Π22 0
∗ ∗ −R(ρ)

 < 0, (10)

where

Π11 =sym{A(ρ)R(ρ) + B(ρ)F(ρ)} −
s

∑
i=1

τi
∂R(ρ)

ρi
+ Q̄(ρ),

Π22 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q̄(t − h(ρ)),

then system (4) is mean square stable under u(t) = K(ρ)x(t) with K(ρ) = F(ρ)R−1(ρ).

Proof. Consider system (4) with u(t) = K(ρ)x(t); K(ρ) is a parameter-dependent state
feedback controller.

Substitute A(ρ) in (7) with A(ρ) + B(ρ)K(ρ), and perform a congruence transforma-
tion to it with diag{P−1(ρ), P−1(t − h(ρ)), P−1(ρ)}. It is obtained thatΠ̄11 Ah(ρ)P−1(t − h(ρ)) P−1(ρ)Bω

T(ρ)
∗ Π̄12 0
∗ ∗ −P−1(ρ)

 < 0, (11)

where

Π̄11 =P−1(ρ)
s

∑
i=1

τi
∂P(ρ)

ρi
P−1(ρ) + P−1(ρ)Q(ρ)P−1(ρ)

+ sym{(A(ρ) + B(ρ)K(ρ))P−1(ρ)},

Π̄12 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
· P−1(t − h(ρ))Q(t − h(ρ))P−1(t − h(ρ)).

Let matrix R(ρ) = P−1(ρ), Q̄(ρ) = P−1(ρ)Q(ρ)P−1(ρ), F(ρ) = K(ρ)P−1(ρ). Then, it
is obtained that (10), and K(ρ) = F(ρ)R−1(ρ). Proof is completed.

Remark 1. τi denotes the varying rate of parameter i, which is assumed to be measurable in real
time. If τi is not measurable, but its bound is known a priori, i.e., |τi| ≤ υi, then ∑s

i=1 τi
∂R(ρ)

∂ρi
can

be approximated by ∑s
i=1 ±υi

∂R(ρ)
∂ρi

to obtain a new stability condition. ∑s
i=1 ±(·) represents the

sum of every combination of +(·) and −(·), which contains a total of 2s combinations.
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Proposition 3. If there exists a family of parameter-dependent continuous differentiable symmetric
positive matrices P(ρ), Q(ρ) and matrix W such that, for all the parameter trajectories, it satisfies the
condition that

−
(
W + WT) P(ρ) + WT A(ρ) WT Ah(ρ) 0 WT

∗ Π22 0 Bω
T(ρ) 0

∗ ∗ Π33 0 0
∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ −P(ρ)

 < 0, (12)

where Π22 = −P(ρ) +
s
∑

i=1
τi

∂P(ρ)
ρi

+ Q(ρ), Π33 = −
(

1 −
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t − h(ρ)), then

system (5) is asymptotically mean square stable.

Proof. The inequality (12) can be written as
0 P(ρ) 0 0 0
∗ Π22 0 Bω

T(ρ) 0
∗ ∗ Π33 0 0
∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ −P(ρ)

+


−I

AT(ρ)
AT

h (ρ)
0
I

W


I
0
0
0
0


T

+ (∗) < 0. (13)

The null spaces of [ −I AT(ρ) AT
h (ρ) 0 I ] and [ I 0 0 0 0 ] are

A(ρ) Ah(ρ) 0 I
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

and


0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

.

According to the projection lemma [25], the following inequalities are obtained:
Π̄11 P(ρ)Ah(ρ) Bω

T(ρ) P(ρ)
∗ Π̄12 0 0
∗ ∗ P−1(ρ) 0
∗ ∗ ∗ −P(ρ)

 < 0, (14)



s
∑

i=1
τi

∂P(ρ)
ρi

+ Q(ρ)− P(ρ) 0 Bω
T(ρ) 0

∗ −
(

1 −
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t − h(ρ)) 0 0

∗ ∗ P−1(ρ) 0
∗ ∗ ∗ −P(ρ)

 < 0, (15)

where

Π̄11 =
s

∑
i=1

τi
∂P(ρ)

ρi
+ sym{P(ρ)A(ρ)}+ Q(ρ)− P(ρ),

Π̄12 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q(t − h(ρ)).

The inequality (14) is equal to the inequality (7) with Schur complement transforma-
tion, which indicates that (12) can ensure that the system is asymptotically mean square
stable. Proof is completed.
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Remark 2. With the introduction of a new additional matrix W, the matrix P(ρ) in the Lyapunov
function is separated from the system matrix. This extra degree of freedom reduces the usually
strong interrelations between plant data and Lyapunov variables, thereby improving the solution
feasibility and reducing the conservatism.

Theorem 1. If there exists a family of parameter-dependent continuous differentiable symmetric
positive matrices X(ρ), Y(ρ), P̄(ρ) and matrices R(ρ), V such that, for all the parameter trajectories,
it holds that 

−
(
V + VT) Π12 Ah(ρ)V 0 V

∗ Π22 0 VT Bω
T(ρ) 0

∗ ∗ Π33 0 0

∗ ∗ ∗ −P̄(ρ) 0

∗ ∗ ∗ ∗ −X(ρ)

 < 0, (16)

where

Π12 =X(ρ) + A(ρ)V + B(ρ)R(ρ),

Π22 =− X(ρ) +
s

∑
i=1

τi
∂X(ρ)

ρi
+ Y(ρ),

Π33 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
Y(t − h(ρ)),

then system (4) is mean square stable under u = K(ρ)x(t) with K(ρ) = R(ρ)V−1(ρ).

Proof. Consider system (4) with u(t) = K(ρ)x(t), substituting A(ρ) in (12) with A(ρ) +
B(ρ)K(ρ), and perform a congruence transformation with diag{W−1, W−1, W−1, I, W−1}.
It is obtained that

Π̄11 Π̄12 Ah(ρ)W−1 0 W−1

∗ Π̄22 0 W−T Bω
T(ρ) 0

∗ ∗ Π̄33 0 0

∗ ∗ ∗ −P−1(ρ) 0

∗ ∗ ∗ ∗ −W−T P(ρ)W−1

 < 0, (17)

where

Π̄11 =− (W−1 + W−T),

Π̄12 =W−T P(ρ)WT + (A(ρ) + B(ρ)K(ρ))W−1,

Π̄22 =W−T

(
−P(ρ) +

s

∑
i=1

τi
∂P(ρ)

ρi
+ Q(ρ)

)
W−1,

Π̄33 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
W−TQ(t − h(ρ))W−1.

Let matrix X(ρ) = W−T P(ρ)W−1, Y(ρ) = W−TQ(ρ)W−1, V = W−1, P̄(ρ) = P−1(ρ).
(16) is obtained, and K(ρ) = R(ρ)V−1. Proof is completed.
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3.2. Performance Analysis and Synthesis

Proposition 4. The time-delayed LPV stochastic system (3) is said to be robustly stable with distur-
bance attenuation γ if there exists a family of parameter-dependent continuous differentiable symmetric
positive matrices R(ρ) and Q(ρ) such that, for all the parameter trajectories, it holds that

Π11 P(ρ)Ah(ρ) P(ρ)Bv(ρ) CT(ρ) Bω
T(ρ)P(ρ)

∗ Π22 0 CT
h (ρ) 0

∗ ∗ −γ2 I DT(ρ) 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −P(ρ)

 < 0. (18)

where

Π11 =P(ρ)A(ρ) + AT(ρ)P(ρ) +
s

∑
i=1

τi
∂P(ρ)

ρi
+ Q(ρ),

Π22 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q(t − h(ρ)).

Proof. Assume that the system has a zero initial state, i.e., x(t) = 0 when t ∈ [−h(ρ), 0],
then, according to Itô’s formula, it can be obtained that

E{V(x(t), t)} = E
{∫ t

0
LV(x(s), s)

}
ds. (19)

Let

J(t) =E
{∫ t

0

[
yT(s)y(s)− γ2vT(s)v(s)

]
ds
}

=E


∫ t

0

 x(s)
x(s − h(ρ))

v(s)

T

Π̄

 x(s)
x(s − h(ρ))

v(s)

ds

, (20)

where

Π̄ =

Π̄11 P(ρ)Ah(ρ) P(ρ)Bv(ρ)
∗ Π̄22 0
∗ ∗ −γ2 I

+

CT(ρ)
CT

h (ρ)
DT(ρ)

CT(ρ)
CT

h (ρ)
DT(ρ)

T

,

with

Π̄11 =P(ρ)A(ρ) + AT(ρ)P(ρ) +
s

∑
i=1

τi
∂P(ρ)

ρi

+ Q(ρ) + Bω
T(ρ)P(ρ)Bω(ρ),

Π̄22 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q(t − h(ρ)).

With the Schur complement, condition (18) ensures Π̄ < 0; thus, J(t) < 0, mean-
ing yT(t)y(t) < γ2vT(t)v(t), and therefore, system (3) is robustly stable in the sense of
Definition 2. Proof is completed.

Proposition 5. The time-delayed LPV stochastic system (2) is said to be robustly stabilized by
state feedback controller K(ρ) with disturbance attenuation γ if there exists a family of parameter-
dependent continuous differentiable symmetric positive matrices R(ρ) and Q̄(ρ) and matrices F(ρ)
such that, for all of the parameter trajectories, it holds that
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Π11 AhR(t − h(ρ)) Bv(ρ) R(ρ)CT R(ρ)Bω
T(ρ)

∗ Π22 0 R(t − h(ρ))CT
h 0

∗ ∗ −γ2 I DT 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −R(ρ)

 < 0, (21)

where

Π11 =sym{A(ρ)R(ρ) + B(ρ)F(ρ)} −
s

∑
i=1

τi
∂R(ρ)

ρi
+ Q̄(ρ),

Π22 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q̄(t − h(ρ)).

and K(ρ) = F(ρ)R−1(ρ).

Proof. Consider system (2) with u(t) = K(ρ)x(t), substituting A(ρ) in (18) with A(ρ)+B(ρ)K(ρ),
and perform a congruence transformation with diag{P−1(ρ), P−1(t − h(ρ)), I, I, P−1(ρ)}. It is
obtained that

Π̄11 AhP−1(t − h(ρ)) Bv(ρ) P−1(ρ)CT P−1(ρ)Bω
T(ρ)

∗ Π̄22 0 P−1(t − h(ρ))CT
h 0

∗ ∗ −γ2 I DT 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −P−1(ρ)

 < 0, (22)

where

Π̄11 =sym
{
(A(ρ) + B(ρ)K(ρ))P−1(ρ)

}
+ P−1(ρ)

(
Q(ρ) +

s

∑
i=1

τi
∂P(ρ)

ρi

)
P−1(ρ),

Π̄22 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
· P−1(t − h(ρ))Q(t − h(ρ))P−1(t − h(ρ)).

Let matrix R(ρ) = P−1(ρ), Q̄(ρ) = P−1(ρ)Q(ρ)P−1(ρ), F(ρ) = K(ρ)P−1(ρ). Then,
(21) is obtained, and K(ρ) = F(ρ)R−1(ρ). Proof is completed.

Proposition 6. The time-delayed LPV stochastic system (3) is said to be robustly stable with
disturbance attenuation γ if there exists a family of parameter-dependent continuous differen-
tiable symmetric positive matrices P(ρ) and Q(ρ) and matrix W such that, for all the parameter
trajectories, it holds that

Π11 Π12 WT Ah(ρ) WT Bv(ρ) 0 0 WT

∗ Π22 0 0 CT(ρ) Bω
T(ρ) 0

∗ ∗ Π33 0 CT
h (ρ) 0 0

∗ ∗ ∗ −γ2 I DT(ρ) 0 0

∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ ∗ ∗ −P(ρ)


< 0, (23)
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where Π11 = −(W + WT), Π12 = P(ρ) + WT A(ρ), Π22 = −P(ρ) +
s
∑

i=1
τi

∂P(ρ)
ρi

+ Q(ρ),

Π33 = −
(

1 −
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t − h(ρ)).

Proof. The inequality (23) can be written as

0 P(ρ) 0 0 0 0 0

∗ Π22 0 0 CT(ρ) Bω
T(ρ) 0

∗ ∗ Π33 0 CT
h (ρ) 0 0

∗ ∗ ∗ −γ2 I DT(ρ) 0 0

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ ∗ ∗ −P(ρ)


+



−I
AT(ρ)

AT
h (ρ)

BT
v (ρ)

0
0
I


W(ρ)



I
0
0
0
0
0
0



T

+



−I
AT(ρ)

AT
h (ρ)

BT
v (ρ)

0
0
I



T

WT(ρ)



I
0
0
0
0
0
0


< 0.

The null spaces of
[ −I A(ρ) Ah(ρ) Bv(ρ) 0 0 I ] and [ I 0 0 0 0 0 0 ] are

A(ρ) Ah(ρ) Bv(ρ) 0 0 I
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


,



0 0 0 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


respectively. According to the

projection lemma, (24) is obtained:

Π̄11 P(ρ)Ah(ρ) P(ρ)Bv(ρ) CT(ρ) Bω
T(ρ) P(ρ)

∗ Π̄12 0 CT
h (ρ) 0 0

∗ ∗ −γ2 I DT(ρ) 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −P−1(ρ) 0

∗ ∗ ∗ ∗ ∗ −P(ρ)


< 0, (24)

with

Π̄11 =
s

∑
i=1

τi
∂P(ρ)

ρi
+ P(ρ)A(ρ) + AT(ρ)P(ρ) + Q(ρ)− P(ρ),

Π̄12 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
Q(t − h(ρ)),
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and 

Π̃11 0 0 CT(ρ) Bω
T(ρ) 0

∗ Π̃22 0 CT
h (ρ) 0 0

∗ ∗ −γ2 I DT(ρ) 0 0

∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −P−1(ρ) 0
∗ ∗ ∗ ∗ ∗ −P(ρ)


< 0, (25)

with Π̃11 =
s
∑

i=1
τi

∂P(ρ)
ρi

+ Q(ρ)− P(ρ) and Π̃22 = −
(

1 −
s
∑

i=1
τi

∂h(ρ)
ρi

)
Q(t − h(ρ)).

The inequality (24) is equal to the inequality (18) with Schur complement transfor-
mation, which indicates that (23) can ensure that the system is robustly stable. Proof is
completed.

Theorem 2. The time-delayed LPV stochastic system (2) is said to be robustly stabilized by
state feedback controller K(ρ) with disturbance attenuation γ if there exists a family of parameter-
dependent continuous differentiable symmetric positive matrices X(ρ), Y(ρ), and P̄(ρ) and matrices
R(ρ) and V, such that for all the parameter trajectories, it holds that

Π11 Π12 Π13 Bv(ρ) 0 0 V

∗ Π22 0 0 VTCT(ρ) VT Bω
T(ρ) 0

∗ ∗ Π33 0 VTCT
h (ρ) 0 0

∗ ∗ ∗ −γ2 I VT DT(ρ) 0 0

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −P̄(ρ) 0
∗ ∗ ∗ ∗ ∗ ∗ −X(ρ)


< 0 (26)

where

Π11 =− (V + VT), Π12 = X(ρ) + A(ρ)V + B(ρ)R(ρ),

Π13 =Ah(ρ)V, Π22 = −X(ρ) +
s

∑
i=1

τi
∂X(ρ)

ρi
+ Y(ρ),

Π33 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
Y(t − h(ρ)).

and K(ρ) = R(ρ)V−1(ρ).

Proof. Consider system (2) with u(t) = K(ρ)x(t), substituting A(ρ) in (23) with A(ρ) +
B(ρ)K(ρ), and perform a congruence transformation with diag{W−1, W−1, W−1, I, I, I, W−1}.
It is obtained that

Π̄11 Π̄12 Π̄13 Bv(ρ)W−1 0 0 W−1

∗ Π̄22 0 0 W−TCT(ρ) 0 0

∗ ∗ Π̄33 0 W−TCh
T(ρ) 0 0

∗ ∗ ∗ −γ2 I W−T DT(ρ) 0 0

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −P−1(ρ) 0

∗ ∗ ∗ ∗ ∗ ∗ Π̄77


< 0, (27)
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where

Π̄11 =− (W−1 + W−T),

Π̄12 =W−T P(ρ)WT + (A(ρ) + B(ρ)K(ρ))W−1,

Π̄13 =Ah(ρ)W−1,

Π̄22 =W−T

(
−P(ρ) +

s

∑
i=1

τi
∂P(ρ)

ρi
+ Q(ρ)

)
W−1,

Π̄33 =−
(

1 −
s

∑
i=1

τi
∂h(ρ)

ρi

)
W−TQ(t − h(ρ))W−1,

Π̄77 =− W−T P(ρ)W−1.

Let matrix X(ρ) = W−T P(ρ)W−1, Y(ρ) = W−TQ(ρ)W−1, V = W−1, P̄(ρ) = P−1(ρ);
(26) is obtained as well as K(ρ) = R(ρ)V−1. Proof is completed.

4. Simulation Results

For the following simulation, the grid and inverter parameters were chosen as follows:
vd = 400 V, vd = 0 V, Vin = 750 V, L = 0.002 H, r = 0.004 Ω, and ω = 314 rad/s. These
values were chosen to comply with the European low-voltage grid, which has a voltage of
400 V, a frequency of 50 Hz, and small line resistance and inductance. The matrices of the
LPV inverter model (2) are as follows:

A(ρ) =

− r
L
+ 0.1ρ1(t) −ω

ω − r
L
+ 0.1ρ1(t)

,

Ah(ρ) =

− r
L
+ 0.1ρ2(t) −ω

ω − r
L
+ 0.1ρ2(t)

,

B(ρ) =

 1
L
+ 0.1ρ1(t)

1
L
+ 0.1ρ1(t)

, Bυ(ρ) =

[
0.2 + 0.1ρ1(t)

0.1 + 0.1ρ2(t)

]
,

Bω(ρ) =

[
1.4 + 0.1ρ1(t) 1.0 + 0.2ρ1(t)

0.7 0.9

]
,

C(ρ) =
[

1.2 + 0.2ρ1(t) + 0.1ρ2(t)
0.8

]T

,

Ch(ρ) =
[
0.6 + 0.1ρ1(t) + 0.1ρ2(t) 0.4

]
,

D(ρ) =1 + 0.1ρ1(t) + 0.1ρ2(t), h(ρ) = 0.01ρ2(t),

where ρ1(t) = sin(t) and ρ2(t) = |cos5t| are time-varying parameters satisfying
ρ1(t) ∈ [−1, 1], ρ2(t) ∈ [0, 1], τ1 ∈ [−1, 1], and τ2 ∈ [−5, 5]; h(ρ) is the parameter varying
delay with a bounded varying rate. The initial states are set as x(t) = [1.0,−1.0]T , where
t ∈ [−1, 0].

To deal with the problem of infinite LMIs to be solved during controller synthe-
sis, gridding technique and basis functions should be adopted. The basis functions
are chosen as f1(ρ) = 1, f2(ρ) = ρ1(t), f3(ρ) = ρ2(t), leading to R(ρ) = ∑3

j=1 f j(ρ)Rj,

F(ρ) = ∑3
j=1 f j(ρ)Fj, therefore the controller synthesis problem becomes finding matrices

Rj(j = 1, 2, 3) and Fj(j = 1, 2, 3) to satisfy (10), (16), (21), and (26).
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4.1. Stabilization

The state feedback control K(ρ) is designed to ensure that system (4) is asymptotically
mean square stable. By solving the conditions in (10) in Proposition 2, it is obtained that

R1 =10−26
[

0.1402 0.0557
0.0557 0.1030

]
, R2 = 10−28

[
0.3142 0.2191
0.2191 0.1663

]
,

R3 =10−28
[

0.5181 −0.5006
−0.5006 0.5802

]
,

F1 =10−26[−0.1251 −0.1250
]
,

F2 =10−28[−0.1031 −0.0825
]
,

F3 =10−28[−0.4335 −0.4369
]
.

K1 =
[
−0.5222 −0.9310

]
, K2 =

[
0.2204 −0.7866

]
,

K3 =
[
−9.3997 −8.8628

]
.

Figure 2a shows the state response of one arbitrarily chosen set, which means a random
set of currents can be controlled at a certain reference. Figure 2b shows the state response of
ten arbitrarily chosen sets, which shows that the states of all the sets converge to zero. As
can be seen, the stochastic phenomenon can influence the trajectories of currents but does
not affect the stability. Therefore, the time-delayed LPV inverter system is asymptotically
stabilized under the stochastic perturbations.

(a)

(c) (d)

(b)
t (s)

t (s)

t (s)

t (s)

Figure 2. Stabilization: (a) one set of state responses without slack matrix; (b) ten sets of state
responses without slack matrix; (c) one set of state responses with slack matrix; (d) ten sets of state
responses with slack matrix.
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4.2. Stabilization with Slack Matrix

Using a slack matrix technique and solving the conditions in (16) in Theorem 1, it is
obtained that

V =10−28[0.2004 0.1983; 0.2192 0.2194
]
,

R1 =10−26[−0.2288 −0.2284
]
,

R2 =10−28[−0.1545 −0.1342
]
,

R3 =10−30[0.2733 0.2741
]
.

K1 =
[
−28.4143 −78.3968

]
, K2 =

[
−8.8494 7.3862

]
,

K3 =
[
−0.0018 0.0141

]
.

Similarly to the previous subsection, Figure 2c shows the state response of one arbi-
trarily chosen set, and Figure 2d shows the state response of ten arbitrarily chosen sets. As
can be seen, with the controller obtained by adopting a slack matrix, the currents converge
to the equilibrium faster as compared to the controller obtained in the previous subsection,
which demonstrates the advantage of the slack matrix technique.

4.3. Disturbance Attenuation

Let us consider in the system a disturbance signal v(t) = 1/(1 + 0.5t2). Then, the state
feedback control K(ρ) is designed to ensure the system (2) is stabilized and achieves some
disturbance attenuation index γ. By solving the conditions in (21) in Proposition 5, it is
obtained that

R1 =

[
0.0846 0.0846
0.0846 0.0847

]
, R2 =

[
−0.0033 −0.0035
−0.0035 −0.0037

]
,

R3 =

[
−0.0111 −0.0111
−0.0111 −0.0111

]
, F1 =

[
−0.3018 −0.3017

]
,

F2 =
[
−0.0023 −0.0019

]
, F3 =

[
0.0031 0.0031

]
.

K1 =
[
−3.8245 0.2580

]
, K2 =

[
−65.2790 62.5179

]
,

K3 =
[
1.3953 −1.6769

]
.

With this controller, the currents converge to equilibrium and the system is stabilized
under stochastic perturbations, as shown in Figure 3a,b, and the achieved disturbance
attenuation index is γ is 21.4113.

4.4. Disturbance Attenuation with Slack Matrix

Similar to Section 4.3, let us consider in the system a disturbance signal v(t) = 1/(1+ 0.5t2).
By solving the conditions in (26) in Theorem 2, it is obtained that

V =
[
0.1136 0.1150; 0.1167 0.1185

]
,

R1 =
[
−0.1501 −0.1500

]
, R2 =

[
0.0075 0.0076

]
,

R3 =
[
0.0012 0.0012

]
,

K1 =
[
−5.8506 4.4128

]
, K2 =

[
−0.0117 0..0758

]
,

K3 =
[
0.0369 −0.0260

]
.

Applying the controller to the inverter system, as shown in Figure 3c,d, the currents
converge faster as compared to the controller obtained without adopting the slack matrix
technique. Furthermore, the achieved disturbance attenuation index γ is 12.0578, which is
smaller than the previous method. This means that the controller obtained with the slack
matrix has better disturbance rejection performance than the controller obtained without the
slack matrix. These results again demonstrate the advantage of the slack matrix technique.
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(a)

(c) (d)

t (s) t (s)

t (s) t (s)

(b)

Figure 3. Disturbance attenuation: (a) one set of state responses without slack matrix; (b) ten sets of state
responses without slack matrix; (c) one set of state responses with slack matrix; (d) ten sets of state responses
with slack matrix.

5. Conclusions

In this paper, a stochastic LPV approach has been proposed for controlling the three-
phase, two-level inverter. First, a time-delayed stochastic LPV system was established
with which the analysis and synthesis of the system were carried out. With the parameter-
dependent Lyapunov functionals, sufficient conditions were proposed for stability analysis
and control synthesis in terms of parameter-dependent LMIs. The slack matrix approach
was used to derive a new set of stability LMIs, which improved the feasibility and reduced
the conservatism of the solution. The theoretical results were verified on the inverter, whose
currents were controlled to reach the equilibrium point. Simulation results validated the
effectiveness of the proposed theories and demonstrated the advantages of adopting a slack
matrix in terms of faster state response and lower disturbance attenuation index.
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