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Abstract: To address the research gap regarding the flow characteristics of cryogenic perforated plate
flowmeters in vertical pipes and to enhance measurement reliability in challenging environments,
this study investigates the flow characteristics of liquid hydrogen in a vertical pipe using a perfo-
rated plate flowmeter. Numerical simulations are performed based on an extended derivation of
performance parameter formulas in the vertical direction. Various inlet Reynolds numbers, plate
thicknesses, and equivalent diameter ratios are analyzed to assess their effects on key performance
parameters, including the discharge coefficient, pressure loss coefficient, and stable region. The
results indicate that the influence of flow direction on the performance parameters decreases with
increasing Reynolds number. Downward flow is associated with smaller discharge coefficients, lower
pressure loss coefficients, and reduced upper limits of Reynolds numbers in the stable region. Fur-
thermore, the effects of gravity become more pronounced at larger thicknesses and greater equivalent
diameter ratios.

Keywords: perforated plate; liquid hydrogen; vertical flow; cavitation

1. Introduction

Flow measurement at cryogenic temperatures is vital in industries that require pre-
cise handling of cryogenic fluids, such as the liquefied natural gas (LNG) sector [1,2],
hydrogen fuel processing [3,4], and aerospace applications [5–7]. Due to the instability
of the cryogenic fluids’ phase, accurately measuring their flow rates presents significant
challenges. However, precision in these measurements is critical not only for operational
efficiency but also to ensure safety and minimize fluid loss. Perforated plate flowmeters
have gained extensive attention in these applications due to their durability, simple struc-
ture, ability to balance flow fields, reduce vortex formation, and suitability for cryogenic
environments [8–11].

In cryogenic conditions, fluid properties such as viscosity and density vary signifi-
cantly, which may intensify the effects of gravitational forces and buoyancy, especially in
vertical flow configurations. Vertical flow in perforated plate flowmeters, as opposed to
horizontal flow, involves complex interactions between gravitational effects and pressure
gradients, creating unique flow characteristics that affect the performance of flowmeters.
In addition, for differential pressure devices, cavitation is a common phenomenon [12–14].
Due to the lower gas–liquid density ratio and thermal conductivity of cryogenic fluids
compared to fluids at room temperatures, as well as the increased sensitivity of certain
physical properties to temperature changes, the thermal effects during cavitation cannot be
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overlooked [15,16]. Furthermore, gravitational forces may also have a significant influence
on the formation and collapse of cavitation bubbles under cryogenic conditions.

The current studies have extensively investigated the effect of structures of perforated
plate flowmeters. Zhao et al. [17] conducted experiments using water and identified the
equivalent diameter ratio as the primary factor influencing the pressure loss character-
istics of perforated plates. Huang et al. [18] investigated the effects of geometric shape
and upstream disturbances on the discharge coefficient of perforated plates with water.
Mehmood et al. [19] focused on the effect of surface geometry parameters of perforated
plates on the length of downstream development through numerical simulations. It indi-
cated that increasing the number of holes can improve the static pressure recovery length
of the downstream pipeline. Some scholars have carried out research on the application of
perforated plate flowmeters to cryogenic fluids. Liu et al. [20] conducted theoretical and
experimental research and found that the perforated plates have a larger upper limit in Re
number for the cryogenic fluids than the room-temperature fluids. Jin et al. [21] simulated
the flow of liquid hydrogen and concluded that perforated plates with the distribution of
holes matching the turbulent velocity distribution in the circular tube are more suitable
for liquid hydrogen measurement. Using liquid nitrogen, Zhao et al. [22] simulated and
attributed the performance improvement of double-stage perforated plates over single-
stage perforated plates to the “thickness effect”. Peng et al. [23] built an experimental setup
for liquid nitrogen and, combined with numerical simulations, found that increasing the
thickness can improve the pressure recovery rate, thereby reducing pressure loss.

It can be observed that the studies mainly focus on flow in horizontal pipes. However,
these findings are often inadequate for applications of cryogenic fluids in vertical setups,
as they fail to account for the unique forces and flow behaviors encountered under these
conditions. Gravitational effects can alter the distribution of velocity and pressure, poten-
tially introducing measurement errors if not properly considered [24]. However, existing
research predominantly investigates horizontal flow setups, with a limited focus on the
performance of cryogenic flowmeters in vertical applications. Thus, examining the flow
characteristics of cryogenic fluids in vertical pipes remains an important gap in research.

Building upon existing studies, this research explores the flow characteristics of cryo-
genic perforated plate flowmeters in vertical pipes, focusing on how changes in inlet
Reynolds number, plate thickness, and equivalent diameter ratio affect performance. By
analyzing the effects of these factors under cryogenic conditions, this study fills a gap in
the research on the flow characteristics of cryogenic fluids in vertical pipes and provides a
theoretical basis for the optimization of flowmeters in vertical configurations.

The findings of this study will provide valuable insights for optimizing the design and
operational parameters of cryogenic flowmeters in vertical pipe applications, especially in
industries dealing with low-temperature fluids. The results offer theoretical support for
the design of efficient flowmeters suitable for cryogenic fluids, improving the reliability,
accuracy, and efficiency of flow measurement systems. This is critical for developing
high-precision cryogenic flow meters and has significant implications for the design and
operation of flow measurement systems in relevant industries.

2. Working Principle and Key Performance Parameters

Figure 1 is the working principle diagram of the perforated plate. It can be seen that
when the fluid flows through the perforated plate from upstream, the pressure first drops
and then recovers due to the throttling effect.
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Figure 1. Working principle diagram of the perforated plate. 
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Figure 1. Working principle diagram of the perforated plate.

According to the principles of fluid mechanics, there is a quantitative relationship
between the pressure difference formed across the orifice plate and the fluid flow rate. For
an incompressible fluid, assuming the pipe has an inner diameter of D and a cross-sectional
area of A, and the smallest contracted flow area is A0, the Bernoulli equation and continuity
equation can be applied to the upstream Section 2 and the smallest contracted Section 0.
Thus, the following can be derived:

p2

ρ
+ c2

u2
2

2
+ gy2 =

p0

ρ
+ c0

u2
0

2
+ gy0 + ξ

u2
0

2
(1)

Au2 = A0u0 (2)

where pi, ui, and yi represent the average pressure, average flow velocity, and longitudinal
position at section i, respectively; c2 and c0 refers to the kinetic energy correction factor
at Sections 2 and 0; ρ is the density of fluid; g is the gravitational acceleration; and ξ is
the total resistance coefficient of the orifice plate; A0 is the smallest contracted flow area,
calculated using the contraction coefficient µ and the equivalent diameter ratio β:

µ =
A0

Ah
(3)

β =

√
Ah
A

(4)

where Ah represents the total area of all holes on the plate.
By solving Equations (1)–(4) simultaneously, the following can be obtained:

u0 =
1√

c0 + ξ − c1µ2β4

√
2∆p0

ρ
+ 2g∆y0 (5)

∆p0 = p2 − p0 (6)

∆y0 = y2 − y0 (7)

where ∆p0 is the maximum pressure difference caused by the throttling of the perforated
plate, which occurs at the point of the minimum flow cross-section, labeled as Section 0.
Since the position of this minimum contracted section varies depending on the flow speed
and the characteristics of the perforated plate, it is not a fixed value. Therefore, a pressure
coefficient ψ is introduced to relate ∆p0 to the actual measured pressure difference ∆p.
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Furthermore, based on Figure 1, the pressure variation between Sections 2 and 0 can be
approximated as linear, leading to the following conclusion:

ψ =
∆p0

∆p
≈ ∆y0

∆y
(8)

where ∆y is the distance between the actual pressure taking positions before and after the
perforated plate (positions 2 and 3 in Figure 1).

Based on the Formulas (3)–(5) and (8), the actual measured flow rate of the fluid is
derived as follows:

qv = A0u0 = µAh√
c0+ξ−c1µ2β4

√
2∆p0

ρ + 2g∆y0

≈ µβ2 A√
c0+ξ−c1µ2β4

√
2ψ∆p

ρ + 2gψ∆y

=
µβ2 A

√
ψ√

c0+ξ−c1µ2β4

√
2∆p

ρ + 2g∆y#

(9)

Assuming an ideal situation where the fluid velocity distribution in the pipeline is
uniform and there is no energy loss, the total area of the orifices in the perforated plate is
the minimum contracted area of the fluid. Additionally, the measured pressure difference is
exactly the maximum differential pressure caused by the throttling, with the kinetic energy
correction factor c2, c0 equal to 1, ξ = 1, µ = 1, ψ = 1. The theoretical flow rate in this case is

q′v =
β2 A√
1 − β4

√
2∆p

ρ
+ 2g∆y (10)

Introducing the discharge coefficient C, which characterizes the ratio between the
actual flow rate and the theoretical flow rate, the formula is given as

C =
4qv
√

1 − β4

πD2β4

√
ρ

2∆p + 2ρg∆y
(11)

During the simulation, after obtaining the pressure difference across the orifice plate
at the corresponding pressure tapping points, the C can be determined using Equation (11).
The larger and more stable the C, the better the performance of the flowmeter.

For orifice flowmeters, another important parameter is the permanent pressure loss
after the fluid passes through the orifice plate, which reflects the energy consumption
of the fluid. The smaller the permanent pressure loss, the better the performance of the
flowmeter. In practical applications, a dimensionless pressure loss coefficient ζ is often
used to evaluate the pressure loss characteristics of the flowmeter. The relevant calculation
formula is as follows.

ζ =
∆ω

0.5ρu2 (12)

where ∆ω is the permanent pressure loss, which is the static pressure difference measured
between 1D upstream and 6D downstream (pressure taking positions 1 and 4 in Figure 1)
of the orifice plate, and u represents the average flow velocity at the inlet.

3. Numerical Model and Validation
3.1. Physical Model

The vertical flow is divided into downward and upward flows. Figure 2 shows the
studied computational domain and the two-dimensional structure of the perforated plates.
To ensure that the flow fully develops and recovers, straight pipe sections with lengths
of 5D and 15D are setup upstream and downstream of the perforated plate, respectively,
where D = 25 mm. The thickness of the plate is t. The perforated plates used in this study
have seven holes, and the diameters of the holes are all d0. One hole is located at the
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center of the plate, and the remaining six holes are uniformly distributed in a circle with a
diameter of D0, where D0 = 16 mm.
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Numerical simulations of LH2 through the perforated plates are carried out with
ANSYS Fluent. The inlet and outlet of the pipe are set as velocity and pressure boundary
conditions, respectively. The inner wall of the pipe is specified as walls with heat insulation.
The inlet temperature of LH2 is set to 77.36 K. Since the saturated vapor pressure of LH2 at
that temperature is 90,717 Pa, the outlet pressure is set to 200,000 Pa to ensure that the LH2
is supercooled.

In the iterations, the coupling of pressure and velocity adopts the SIMPLE algorithm,
the interpolation of pressure adopts PRESTO discretization, and the discretization of
momentum, energy, and turbulence equations adopts the second-order upwind scheme. It
is considered to be convergent when the residual of the continuity is less than 10−3, and
the other convergence indexes are all less than 10−6.

3.2. Governing Equations

Currently, the study of cavitation phenomena commonly uses the homogeneous mix-
ture method based on two-phase flow [25]. Since the thermal effect of LH2 cavitation is
not negligible [26,27], the governing equations should include the continuity equation, mo-
mentum equation, energy equation, and transport equation for the vapor volume fraction:

∂

∂t
(ϱm) +

∂

∂xj

(
ϱmuj

)
= 0 (13)

∂

∂t
(ϱmui) +

∂

∂xj

(
ϱmuiuj

)
= − ∂p

∂xi
+

∂

∂xj

[
(µm + µt)

(
∂ui

∂xj
+

∂uj

∂xi

)]
+ ϱm

→
g +

→
F (14)

∂

∂t
(ϱmhm) +

∂

∂xj

(
ϱmhmuj

)
=

∂

∂xj

[
(λm + λt)

∂

∂xj
(T)

]
+ SE (15)

∂

∂t
(αρv) +

∂

∂xj

(
αϱvuv,j

)
= R (16)

uj is the velocity component of the mixed fluid, where the gas and liquid phases
share the same velocity. ϱm, µm, λm, and hm are the density, dynamic viscosity, thermal

conductivity, and enthalpy of the mixture, respectively.
→
F is the volume force. SE is the

volume heat source term caused by the phase change. R represents the net mass transfer
source term.

The realizable k-ε turbulent model can better describe features such as streamline and
vortex, so it has been widely used to simulate cryogenic cavitation flow [28]. It is also
chosen here to simulate the LH2 throttling process in the perforated plate.
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Schnerr and Sauer [29] adopted the Rayleigh–Plesset equation for bubble dynamics to
deduce an expression for the net mass transfer source term R in the following forms:

R =


Rg − Rc = 3 ϱvϱl

ϱm
α(1 − α)

(
α

1 − α
3

4n
1
n

)− 1
3
√

2
3

pv(T) − p
ϱl

, p ≤ pv(T)

Rc − Rg = 3 ϱvϱl
ϱm

α(1 − α)
(

α
1 − α

3
4n

1
n

)− 1
3
√

2
3

p − pv(T)
ϱl

, p > pv(T)
(17)

where Rg and Rc are the mass transfer source terms related to the growth and collapse of
vapor bubbles, respectively. pv(T) is the saturated vapor pressure at temperature T, and n
is the bubble number density.

3.3. Grid Scheme

The mesh around the perforated plate is shown in Figure 3. To capture the significant
pressure and velocity gradients more accurately, the grids in the 1D upstream and 2D
downstream regions of the perforated plate are refined during meshing, while sparser grids
are used in the other regions.
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It is necessary to consider the computation time while ensuring the accuracy of the
acquired data. Therefore, it is important to find a suitable number of grids. Taking the
downward flow (β = 0.635, t = 3 mm) as an example, the simulation results of the C for
grid numbers 894,652, 1,371,356, 1,769,248, and 2,204,265 are shown in Figure 4. When the
number of grids increases from 1,769,248 to 2,204,265, the change in C is less than 0.35%.
Therefore, the grid number of 1,769,248 is adopted in the following simulation.
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3.4. Model Validation

This study established an experimental system to validate the turbulence model. For
the convenience of installation, horizontal flow was used for the experiments. Figure 5
shows a diagram of the experimental system. Water flows from the water tank, flows
through the perforated plate flowmeter into the weighing tank. The standard flow rate is
calculated by weighing the quality of the outflow water within a certain period of time.
Figure 6 is the photograph of the perforated plate flowmeter (t = 4 mm, β = 0.635). The
differential pressure sensor is used to measure the pressure drop between the two ends of a
perforated plate.
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Figure 7 shows a comparison between the experimental and the numerical results of
C. The experimental results of the C in the stable region are in good agreement with the
numerical results, with a maximum deviation of no more than 1%. Therefore, the selected
Realizable k-ε turbulence model has been validated and can be considered reliable.
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To validate the cavitation model, this paper simulates the cavitation of LN2 passing
through the hydrofoil 290C and compares it with the experimental data in Hord et al. [30]
Figure 8 shows the numerical and experimental values of pressure distribution along the
hydrofoil wall. Two bubble number densities, n, are considered: the default model value of
1 × 1011 and the improved value of 1 × 108 suggested by Zhu et al. [31] as more suitable
for simulating the cavitation of cryogenic fluids. It can be seen that when n = 1 × 108, the
pressure distributions along the hydrofoil wall are all well consistent with the experimental
data. Therefore, the following simulations will use the cavitation model with n = 1 × 108.
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4. Results and Discussions
4.1. The Effect of Inlet Reynolds Number

LH2 is used to first investigate the impacts of flow direction on several typical parame-
ters under a specific perforated plate structure (β = 0.635, t = 3 mm), including pressure,
C, ζ, and vapor volume fraction.

Figure 9 shows the pressure changes along the centerline for two vertical flows and
horizontal flow at different inlet velocities. At x = 0, the pressure drops due to the throttling
of the perforated plate, with higher flow velocity causing a more significant pressure drop.
For downward flow, gravity results in the lowest pressure at the plate being lower than
that of horizontal and upward flows. In Figure 9a, it is clear that in the straight pipe of
the flowmeter, the pressure variations differ significantly depending on the flow direction.
Without considering pipe friction, the pressure in the horizontal flow remains constant
in the straight pipe. For vertical flows, the pressure increases in the downward flow and
decreases in the upward flow due to the conversion between potential and kinetic energy.
For higher flow velocity in Figure 9b, although these differences still exist, the variations
between different flow directions become smaller, and the pressure changes are more
similar. At this point, the pressure change caused by gravity is less pronounced compared
to that caused by the throttling of the plate. Overall, the influence of gravity on pressure
variations diminishes as the flow velocity increases.
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Figure 10 shows the variation in C and ζ with Reynolds number for different flow
directions. It is also evident that in the low Reynolds number region, the difference between
flow directions is pronounced, while at higher Reynolds numbers, the variations tend to
coincide. In the low Reynolds number region, unlike the trends observed for horizontal
flow, the C and ζ for vertical flow change in the same trend with increasing Reynolds
number. According to the Formula (11), since the term g∆y is positive for downward flow,
the C is reduced compared to horizontal flow, and the smaller permanent pressure loss
results in a lower ζ. The opposite is true for upward flow. Additionally, the lower limit
of the Reynolds number for the stable region in vertical flow is significantly higher than
that in horizontal flow, leading to a smaller stable region. This indicates that vertical flow
introduces greater flow instability. It can also be seen that downward flow behaves more
similarly to horizontal flow.
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Figure 10. Variations in C (a) and ζ (b) with Re.

Figure 11 shows the cavitation cloud of LH2 under different flow directions and inlet
Reynolds numbers. The cavitation region mainly occurs downstream of the perforated
plate, and as the Reynolds number increases, the cavitation region expands significantly,
leading to an increase in the hydrogen volume fraction. Comparing the two different
vertical flows under the same inlet Reynolds number, the downward flow experiences
a slightly higher velocity when reaching the plate due to the influence of gravity. This
enhances turbulence and flow separation, resulting in a greater degree of cavitation.
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Figure 11. Contours of vapor volume fraction. (a) downward, Re = 3.46 × 106; (b) downward, Re =
3.59 × 106; (c) downward, Re = 3.72 × 106; (d) upward, Re = 3.46 × 106; (e) upward, Re = 3.59 × 106;
(f) upward, Re = 3.72 × 106.
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4.2. The Effect of Thickness

The effects of the thickness of the plate on performance parameters in vertical flow are
studied based on the same equivalent diameter ratio (β = 0.635). Five thickness levels are
considered: t = 1, 3, 5, 7, and 9 mm.

Figure 12 shows the variation in C and ζ with thickness, and Figure 13 shows the
change in stable region with thickness. As the thickness increases, both the C and ζ
initially decrease and then increase, reaching their minimum values at t = 5 mm, indicating
that significant changes in flow and resistance occur around this thickness. The C and ζ
for upward flow are higher than for downward flow, and this difference becomes more
pronounced with increasing thickness. This suggests that although the C is higher for
upward flow, overcoming gravity and causing more turbulence results in greater pressure
loss. As thickness increases, the flow path becomes longer and more complex, requiring
more effort to overcome gravity, which amplifies this impact. Additionally, the increase in
thickness enlarges the term ∆y in the Formula (11), which further increases the difference
in C between upward and downward flow.
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The increase in thickness shifts the stable region toward higher Reynolds numbers,
though the overall range remains basically unchanged. When the thickness increases from
1 mm to 9 mm, the upper limit of the Reynolds number for stable region increases from
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2.5 × 106 to 3.3 × 106, an increase of about 32%, indicating that the increase in thickness
delays the occurrence of cavitation. Compared to upward flow, downward flow is more
prone to cavitation, with a slightly higher upper limit of the Reynolds number for stable
region. This difference becomes more pronounced as thickness increases, but the lower
limit of the Reynolds number for the stable region remains nearly the same for both cases.

4.3. The Effect of Equivalent Diameter Ratio

Further analysis is conducted by keeping the thickness constant (t = 5 mm) and consider-
ing the effect of the β on performance. Five β levels are studied: β = 0.317, 0.423, 0.529, 0.635,
and 0.741. Figure 14 shows the variation in C and ζ with β, and Figure 15 shows the change in
stable region with β. Unlike the effect of thickness, the influence of the equivalent diameter
ratio on the C and ζ is the opposite. As the β increases, the C increases monotonically, while
the ζ decreases monotonically. This is understandable, as a larger β implies a larger flow area,
leading to a lower pressure drop and higher C. Moreover, the increase in the β not only raises
the upper limit of the Reynolds number for the stable region but also extends the overall
length of the stable region, indicating that systems with a larger β exhibit better flow stability.
Additionally, upward flow still has a larger C, ζ, and upper limit of the Reynolds number for
the stable region compared to downward flow (where the difference in ζ is less noticeable
due to the small overall range on the axis). The gap between these values also widens with
the increase in the β.
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5. Conclusions

The flow characteristics of liquid hydrogen flowing through a perforated plate flowme-
ter in a vertical pipe are studied by numerical simulation under varying inlet Reynolds
numbers, plate thicknesses, and equivalent diameter ratios. The focus is on the discharge
coefficient, pressure loss coefficient, and stable region. It is found that due to the influence
of gravity, the flow in the vertical direction exhibits different characteristics compared to
the horizontal flow. The main conclusions are as follows:

(1) When the structure is held constant, the influence of flow direction on the performance
parameters of the perforated plate flowmeter diminishes with increasing Reynolds
number, with the throttling effect of the perforated plate becoming predominant.

(2) Under the influence of gravity, downward flow experiences lower pressure loss but
greater flow instability, resulting in a smaller discharge coefficient, pressure loss
coefficient, and lower upper limits of Reynolds numbers for stable regions. The flow
characteristics of downward flow are more akin to horizontal flow. Additionally, the
differences in the effects of gravity become more pronounced at larger thicknesses
and greater equivalent diameter ratios.

(3) The effective operating range of the perforated plate flowmeter can be adjusted by
altering its structures. Increasing the equivalent diameter ratio or the thickness within
a certain range can effectively raise the measurement upper limit of the perforated
plate flowmeter and reduce pressure loss. However, when the increase in thickness
exceeds a certain limit, both the discharge coefficient and pressure loss coefficient of
the flowmeter will increase.
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Nomenclature

C Discharge coefficient p Pressure
ζ Pressure loss coefficient u Velocity
ξ Total resistance coefficient ρ Density
∆ω Permanent pressure loss D Diameter
β Equivalent diameter ratio g Acceleration of gravity
c Kinetic energy correction factor y Position along the pipe
ψ Pressure coefficient A Area
α Volume fraction of phase t Thickness
pv Saturated vapor pressure µ Dynamic viscosity
n Bubble number density λ Thermal conductivity
qv Volume flow rate h Enthalpy
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