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Abstract: Lithium, a crucial rawmaterial for new energy vehicles, is experiencing significant market
price fluctuations due to escalating geopolitical conflicts, periodic mismatches in supply and de‑
mand, and increased attention to lithium resources from countries around the world. These factors
may adversely affect the development of the new energy vehicle industry. This paper adopts the
TVP‑VAR‑DY model, which measures dynamic spillover effects by allowing for variance changes
through the estimation of a stochastic Kalman filter, thereby measuring risk spillover among up‑
stream and downstream firms in the lithium industry chain. We selected 16 listed companies and
six regional financial markets as the research sample, with the sample period from 4 July 2018, to
30 June 2023. The main conclusions are as follows: Between 2018 and 2020, the overall risk spillover
in the lithium industry chain demonstrated a declining trend, though it experienced a sudden surge
in 2020 as a result of the COVID‑19 pandemic. This increase was followed by a gradual decline as
the global economy improved and market stability was restored, leading to a reduction in risk aver‑
sion. Regarding the reception of risk spillovers, upstream firms exhibited a generally consistent level
of directional risk spillovers, whereas downstream firms experienced more significant fluctuations.
Chinese firms exhibited a higher level of received risk spillovers compared to their international
counterparts, with less variation in these spillovers. From the perspective of risk spillover effects,
significant variations were observed between firms in both the upstream and downstream markets.
Chinese firms exhibited a higher level of risk inflow than international firms, with more pronounced
changes in risk spillovers. Upstream enterprises should enhance their market competitiveness to
mitigate the adverse effects of economic uncertainty. Downstream enterprises can alleviate the rise
in raw material costs resulting from market price fluctuations through strategic cooperation. Addi‑
tionally, the government should increase the market supply of resources, which will contribute to
the establishment of a more robust lithium industry chain system.

Keywords: lithium; industry chain; risk spillover; market risk

1. Introduction
The non‑renewable nature of fossil energy means that its excessive exploitation and

utilization will eventually lead to its depletion. Additionally, issues such as climate warm‑
ing caused by carbon dioxide emissions during the use of fossil energy have drawn world‑
wide attention. Countries around the world are initiating energy transitions, promoting
the application of clean energy technologies, reducing carbon dependence in industries,
and driving the transformation of energy systems from carbon‑intensive fossil energy sys‑
tems to environmentally friendly clean energy systems. The clean energy system demands
a greater amount of key mineral resources. For example, the metal usage in electric vehi‑
cles is six times that of conventional fuel vehicles, and the metal demand for onshore wind
power plants is ten times that of natural gas power plants [1]. The global energy transition
has led to a surge in demand for these critical minerals, significantly increasing the propor‑
tion of renewable energy in the total newpower capacity [2]. The geographical distribution
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of key minerals is uneven, with countries like Congo possessing 70% of the world’s cobalt
resources, South Africa holding 71% of the world’s platinum resources, China having 90%
of the world’s rare earth resources, and the Lithium Triangle in South America accounting
for 76% of global lithium reserves. The mineral resource policies of these major exporting
countries will have a significant impact on the global energy transition [3].

Lithium, a critical rawmaterial for power batteries [4], plays a significant role in clean
energy technologies [5]. The rapid development of the new energy vehicle market has led
to a dramatic surge in the demand for power batteries [6]. Consequently, countries world‑
wide are increasing their capital investments to establish a lithium industry chain [7,8].
However, sharp fluctuations in lithium market prices pose challenges to the production
and operational activities of both upstream producers and downstream consumers, ad‑
versely affecting the development of the lithium industry chain. The increase in upstream
production, as a metal mineral resource, necessitates exploration, development, mining,
and smelting, all of which require substantial fixed capital investment and result in longer
production cycles. Additionally, rapid changes in market demand from downstream in‑
dustries create periodic mismatches between supply and demand for lithium resources,
triggering severe price volatility in the lithiummarket. Themarket risks arising from these
economic cycle changes may spill over along the lithium industry chain. Risk spillover
refers to the phenomenon whereby risks from a specific market, asset, or economy are
transmitted to other markets, assets, or economies, thereby impacting them. This phe‑
nomenon is prevalent and serves as an important manifestation of the interconnectedness
of global markets. In the risk transmission process, upstream producers and downstream
consumers occupy different roles, including risk acceptors, risk transmitters, and risk inter‑
mediaries. Each role adopts various market strategies to manage market risks; risk trans‑
mitters attempt to shift their risks to other market participants, while risk acceptors strive
to minimize the impact of market price fluctuations on production costs, thereby reduc‑
ing their influence on business operations. Therefore, this paper examines the process and
direction of market risk transmission within the lithium industry chain, using the new
energy vehicle industry as a case study, and analyzes the role positioning of enterprises
within the chain. Furthermore, overheated investments may intensify market competition
in lithium‑related industries, and regional financial markets will also be included in the
study of risk transmission within the lithium industry.

2. Literature Review
The study of risk transmission mechanisms is of great significance for understand‑

ing market dynamics and formulating risk management strategies. In recent years, many
scholars have conducted extensive research on market risk spillover, including different
dimensions of risk spillover, transmission mechanisms, scale, and its impact on intercon‑
nected financial systems [9–14]. Market risk spillovers often have dynamic characteris‑
tics. Engle (2002) introduced the concept of dynamic conditional correlation to model the
time‑varying dependencies between asset returns, capturing the evolving nature of risk
spillover over time [15]. Diebold and Yilmaz (2012) proposed using connectivity indica‑
tors to quantify the degree of risk transmission between financial markets, measuring the
interconnectedness of the global financial system [16]. Baruník and Křehlík (2018) con‑
ducted an analysis from a frequency domain perspective, studying how the Diebold and
Yilmaz model can extend the measurement of the strength and direction of risk spillover
effects [17]. Ferrer et al. (2018) focused on clean energy companies in the United States,
using the Baruník and Křehlík method to analyze whether there is a time–frequency vari‑
ation problem between energy fuel stock prices, energy fuel prices, and financially related
dynamic variables, finding significant fluctuations in the short term but not in the long
term [18]. Zhang et al. (2020) analyzed the tail risk connectivity of China’s stock market
sectors based on conditional value at risk (CoVaR) and single‑index model (SIM) quantile
regression, finding that during market crashes, the stock market faces more systemic risk
and increased connectivity [19]. Geng et al. (2021) took an international perspective to
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analyze the revenue and volatility networks of global new energy companies, examining
their dynamic characteristics [20].

Market risk spillover may exhibit asymmetry. Reboredo et al. (2016), using the for‑
eign exchange and stockmarkets of emerging economies as research samples, found asym‑
metries in both upward and downward risk spillovers and in the scale of risk spillover be‑
tween the stock and foreign exchangemarkets [21]. Li et al. (2020) studied the risk spillover
between financial technology companies and traditional financial institutions during a pe‑
riod of rapid technological advancement, discovering that the risk spillover from financial
technology institutions to financial institutions is positively correlated with an increase
in systemic risk among financial institutions [22]. Du and He (2015) utilized daily data
from the S&P 500 index and West Texas Intermediate mid‑grade crude oil futures returns
to examine the spillover effects of extreme risks between the crude oil and stock markets.
They found that before the financial crisis, there was a positive risk spillover from the stock
market to the crude oil market and a negative risk spillover from the crude oil market to
the stock market; after the financial crisis, bidirectional positive risk spillover significantly
increased [23]. Restrepo et al. (2023) studied the risk spillover of key raw materials such
as copper, lithium, nickel, and cobalt, finding that companies with greater risks are not
necessarily larger companies but those with less diversified production investment port‑
folios [24]. Corbet (2020), to deeply analyze the interconnections between various sub‑
markets faced by resource reserves in the energy market across the entire industry chain,
applied the spillover index method of Diebold and Yilmaz (2014) with an effective integra‑
tion of DCC‑FIGARCH, examining the spillover effect between oil prices and energy com‑
pany stock prices, which showed a significant negative correlation [25]. Konstantinos et al.
(2024) studied the volatility spillover effects between ten major commodities and the stock
market. The research study found that the relationships among hard commodities were
stronger as they served not only as rawmaterials but also as investment products, whereas
the relationships among agricultural products were relatively weaker [26]. Therefore, the
impact of regional financial markets on the lithium industry chain is worthy of attention.

Scholars have studied the extent and roles differentmarket entities play in the process
of risk transmission. Zhu andLuo (2023) utilized industry data from theChinese stockmar‑
ket to investigate the degree of risk spillover across different industries in China and ana‑
lyzed the risk roles of different sectors [27]. Wu (2019) examined the risk spillover among
various segments of the Chinese stockmarket, finding that the industrial sector plays a piv‑
otal role in theChinese stockmarket [28]. Bruyckere et al. (2013) investigated the contagion
between European banks and sovereign debt default risk during 2007–2012, discovering
that banks with weaker capital buffers, more fragile financing structures, and less engage‑
ment in traditional banking activities are particularly vulnerable to risk spillover [29].

The existing literature mainly focuses on the risk impact of individual market enti‑
ties on the overall financial system, while research on the direction of risk transmission
and spillover effects among different entities within the same market is relatively scarce.
Moreover, the market risks arising from the periodic mismatch between supply and de‑
mand sides in the lithium industry chain cannot be ignored. Due to the differences in in‑
formation transmission channels between various markets, the directions of risk spillover
vary across markets and exhibit dynamic and time‑varying characteristics. Furthermore,
lithium, as a commodity, possesses both commodity and investment attributes, making
the volatility spillover from the stock market a significant factor influencing the lithium
industry chain.

This paper employs the TVP‑VAR connectivity method to analyze the risk spillover
between the upstream and downstream markets of the lithium industry chain, as well as
the risk spillover between the lithium industry chain and regional financial markets, dis‑
tinguishing between Chinese and international companies within the lithium ore industry
chain. The possible marginal contribution of this paper is that it measures the degree and
direction of risk spillover between upstreamanddownstreammarkets of the lithium indus‑
try chain and regional financial markets, and analyzes the heterogeneity of risk spillover
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between Chinese and international companies. The TVP‑VAR‑DY method is used to an‑
alyze the overall and directional transmission of risk spillover between industries, and
based on the degree of risk spillover, companies are classified as risk exporters, risk accep‑
tors, and risk intermediaries.

3. Materials and Methods
In the research field of risk spillover effects, various methods are employed based on

considerations of correlation, systemic risk, and risk spillover, including Granger causal‑
ity tests, VAR (vector autoregressive) models, GARCH (generalized autoregressive con‑
ditional heteroskedasticity) family models, copula functions, and the DY spillover index
model proposed by Diebold and Yilmaz (2014). Cointegration tests and Granger causality
tests are limited to describing low‑dimensional structures, which complicates the explana‑
tion of the intricate risk spillover network structures. Furthermore, multivariate GARCH
models have their own limitations: among the commonly used multivariate GARCH fam‑
ilymodels, theGARCH‑BEKKmodel can only identify the direction of risk spillover, while
the DCC‑GARCH model, although capable of capturing time‑varying characteristics, can‑
not specify the direction of risk spillover. The DY spillover index can measure the degree
and direction of risk spillover among multiple market participants; therefore, this paper
adopts the DY index method for the research.

Diebold and Yilmaz (2014) proposed the DY index method, which estimates the fore‑
cast error variance decomposition of the VAR model [30]. The DY method can measure
the interconnectedness between system variables, thus finding wide application in the
measurement of risk spillover effects. Antonakakis et al. (2020) proposed the TVP‑VAR
method, which extends the Diebold and Yilmaz method for measuring dynamic spillover
effects by allowing for variance changes through the estimation of a stochastic Kalman
filter with a forgetting factor [31]. The TVP‑VAR(p) model can be written as follows:

yt = βtzt−1 + εt (1)

vec(βt) = vec(βt−1) + vt (2)

where yt and zt−1 =
[
yt, · · · ,yt−p

]′
represents the n × 1 vector and np × 1 vector. βt is

an n × np time‑varying coefficient matrix. εt represents error vector. Then, we transform
the TVP‑VAR into a TVP‑VMA model:

yt = ∑∞
j=0 Bjtεt−j (3)

where Bjt = J′Mj
tJ is an n× nmatrix, and J andMt represent the np× nmatrix and np × np

matrix:
J = [I, 0, · · · , 0]′,Mt =

[
βt 0

Inp−1 0

]
(4)

The H‑step‑ahead generalized forecast error variance decomposition (GFEVD) and
scaled GFEVD can be defined as follows:

Φijt(H) =
σ−1

jj ∑H
h=0

(
e′ iBhtPtej

)2

∑H
h=0

(
e′ iBh∏t B′

hej
) (5)

∏t represents the covariance matrix of the error vector εt. Pt is a lower triangular
matrix. σjj represents the jth diagonal element of the matrix ∏t. ej is an m × 1 selection
vector with unity in the jth position and is zero otherwise. This article constructs a series
of network overflow indicators based on the principle of total overflow index proposed
by Diebold and Yilmaz (2012, 2014) and the generalized variance decomposition matrix
as follows:
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(1) Total spillovers

We can define the total volatility spillover index:

total =
100 × ∑N

i,j=1,i ̸=j Φijt(H)

∑N
i,j=1 Φijt(H)

(6)

(2) Directional spillovers

We can define the directional connectedness from others ( f romj→i,t) and to others
(toi→j,t).

f romj→i,t(H) =
100 × ∑N

j=1,i ̸=j Φjit(H)

∑N
i,j=1 Φjit(H)

(7)

toi→j,t(H) =
100 × ∑N

j=1,i ̸=j Φijt(H)

∑N
i,j=1 Φijt(H)

(8)

(3) Net spillovers

The net volatility spillover is simply the difference between the gross volatility shocks
transmitted to and those received from all other markets.

neti,t(H) = f romj→i,t(H)− toi→j,t(H) (9)

4. Data
The research sample of this paper consists of the stock returns of sixteen listed com‑

panies that have a significant impact on the lithium industry chain, including eight up‑
stream companies and eight downstream companies. International companies primarily
engaged in lithium resource development, such asAlbermarle Corporation (Charlotte, NC,
USA), Sociedad Quimica y Minera (Santiago, Chile), Pilbara Minerals Limited (West Perth,
Australia), and Mineral Resources Ltd. (Vincent, Australia), represent the upstream sec‑
tor of the international lithium industry chain. Chinese companies primarily engaged in
lithium resource development, such as Sinomine Resource Group Co., Ltd. (Hong Kong,
China), Ganfeng Lithium Group Co., Ltd. (Xinyu, China), Tianqi Lithium Corporation
(Chengdu, China), and Sichuan Yahua Industrial Group Co., Ltd. (Chengdu, China), rep‑
resent the upstream sector of the Chinese lithium industry chain. International lithium bat‑
terymanufacturers such as Enersys (USA), Panasonic (Japan), LGChem (SouthKorea), and
Samsung SDI (South Korea) represent the downstream sector of the international lithium
industry chain. Chinese companies, such as Contemporary Amperex Technology Co., Ltd.
(Ningde, China), Byd Company Limited (Shenzhen, China), Sunwoda Electronic Co., Ltd.
(Shenzhen, China), and Eve Energy Co., Ltd. (Huizhou, China), represent the downstream
sector of the Chinese lithium industry chain.

The financial market’s cross‑market risk spillover to the lithium industry chain is also
worth attention. Therefore, this paper selects six regional markets with abundant global
mineral resources and relatively high levels of financial marketization as research subjects:
China, Australia, the United Kingdom, the United States, Canada, and Russia. The FTSE
China A600 Industrial Metals and Mining Index represents the Chinese market, the ASX
300 Metals & Mining Index represents the Australian market, the FTSE Metals & Mining
Index represents theUKmarket, the S&PMetals&Mining Select Industry Index represents
the US market, the TSX Metals & Mining Index represents the Canadian market, and the
MOEX Metals and Mining Index represents the Russian market.

Due to the different impacts of public holidays on stock markets in different coun‑
tries and the different opening and closing times, there is a non‑complete correspondence
between the time series data and dates, with some missing data. Therefore, to obtain a
complete time series corresponding to the dates, non‑public trading day data are excluded.
The sample period for all data is from 4 July 2018, to 30 June 2023. The forward‑adjusted
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prices of each listed company are selected as the basis for calculating returns to avoid the
influence of outliers in closing prices caused by individual company factors. All data are
sourced from the WIND database and Investing.com. The research sample is shown in
Table 1.

Table 1. Research samples.

Name Code Country Position

Albermarle Corporation ALB America Upstream
Sociedad Quimica y Minera SQM America Upstream
Pilbara Minerals Limited PLS Australia Upstream
Mineral Resources Ltd. MIN Australia Upstream

Sinomine Resource Group Co., Ltd. ZK China Upstream
Ganfeng Lithium Group Co., Ltd. GF China Upstream

Tianqi Lithium Corporation TQ China Upstream
Sichuan Yahua Industrial Group Co., Ltd. YH China Upstream

Enersys ENS America Downstream
LG Chem Ltd. LG Korea Downstream
Panasonic PC Japan Downstream

Samsung SDI SDI Korea Downstream
Contemporary Amperex Technology Co., Ltd. ND China Downstream

Byd Company Limited BYD China Downstream
Sunwoda Electronic Co., Ltd. XWD China Downstream

Eve Energy Co., Ltd. YW China Downstream
FTSE A600 Industrial Metals and Mining A600 China China Market

ASX 300 Metals & Mining ASX Australia Australia Market
FTSE Metals & Mining FTSE England England Market

S&P Metals & Mining Select Industry SP America America Market
TSX Metals & Mining TSX Canada Canada Market

MOEX Metals and Mining MOEX Russia Russia Market
China Securities New Energy CNNE China China New Energy Industry

From Figures 1–3, it can be observed that stock price trends of upstream enterprises
in the international lithium industry chain are basically consistent with those of domestic
lithiummining upstream enterprises. From 2018 to 2020, due to the increase in production
of major global lithium resource projects, lithium prices entered a long‑term downward
channel. The mining cost of lithium does not change with the market price of lithium,
resulting in a continuous compression of enterprise profit margins and a decline in stock
prices. The COVID‑19 outbreak at the end of 2019 led to labor shortages overseas, with
manymajor lithiummining areas experiencing production cuts and shutdowns andmany
planned capacity expansions being delayed. Supply has tightened and is difficult to re‑
cover in the short term. On the demand side, countries around the world have set targets
for vehicle electrification, andmajor car manufacturers have begun to invest heavily in the
development of new electric and hybrid vehicle models. The industry has entered a vir‑
tuous cycle of growth, with demand rapidly increasing. The strong demand and limited
supply have led to soaring lithiumprices and an increase in the stock prices of upstream en‑
terprises. After 2023, the global supply of lithium resources gradually increased, lithium
production capacity continued to be released, and lithium demand fell short of expecta‑
tions, leading to a downward trend in lithium prices and a decline in the stock prices of
upstream enterprises. For downstream consumer enterprises in the lithium industry chain,
the demand for lithium batteries has surged as the technology of new energy vehicles has
gradually matured. However, with the strong rise in the prices of upstream lithium raw
materials, the profit margins of downstream lithium battery manufacturing enterprises
have been compressed, leading to a decline in the stock prices of downstream enterprises.
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Figure 1. Upstream companies’ price time series.
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Descriptive statistical analysis was conducted on the volatility series of all indicators
to analyze the basic statistical distribution of the return series. The daily return equation
is as follows:

Rt = ln
Pt

Pt−1
= ln Pt − ln Pt−1 (10)

The statistical results of each return rate are shown in Table 2:

Table 2. Summary statistics.

ZK GF TQ YH ALB SQM PLS MIN

Nobs 898 898 898 898 898 898 898 898
Minimum −0.337 −0.319 −0.277 −0.233 −0.222 −0.269 −0.249 −0.123
Maximum 0.172 0.155 0.191 0.191 0.232 0.247 0.202 0.215
Mean 0.001 0.001 0.000 0.001 0.001 0.000 0.002 0.002
Median 0.000 0.000 −0.002 0.000 0.002 0.002 0.000 0.003
Stdev 0.040 0.041 0.044 0.038 0.037 0.037 0.050 0.032

Skewness −0.549 −0.900 0.024 −0.074 −0.538 −0.410 −0.171 0.257
Kurtosis 7.185 8.100 3.150 5.005 5.953 7.659 3.134 3.174

ND BYD XWD YW LG PC SDI ENS

Nobs 898 898 898 898 898 898 898 898
Minimum −0.570 −0.208 −0.273 −0.197 −0.195 −0.138 −0.191 −0.174
Maximum 0.173 0.181 0.182 0.177 0.282 0.113 0.177 0.154
Mean 0.001 0.002 0.001 0.002 0.001 0.000 0.001 0.000
Median 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001
Stdev 0.039 0.033 0.040 0.042 0.033 0.022 0.030 0.029

Skewness −3.332 0.129 −0.119 0.008 0.821 −0.043 0.245 −0.542
Kurtosis 50.895 3.775 4.296 2.406 10.429 4.804 5.008 6.069

SP TSX ASX FTSE A600 MOEX

Nobs 898 898 898 898 898 898
Minimum −0.164 −0.104 −0.077 −0.184 −0.143 −0.324
Maximum 0.178 0.119 0.108 0.161 0.125 0.161
Mean 0.000 0.000 0.001 0.000 0.000 0.000
Median 0.001 0.000 0.001 0.002 0.000 0.001
Stdev 0.027 0.023 0.019 0.029 0.022 0.021

Skewness −0.141 −0.069 0.143 −0.486 −0.492 −4.919
Kurtosis 5.314 2.963 4.094 4.312 6.286 80.722
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It can be seen from Table 2 that the average return rate of lithium industry chain enter‑
prises is positive and close to zero. In terms of standard deviation, the standard deviation
of the return rate of upstream enterprises in the lithium industry chain is generally greater
than that of downstream enterprises, indicating greater volatility in return rates. As for
skewness, the skewness levels are close to zero, indicating no significant deviation. In
terms of kurtosis, the kurtosis levels of all industries are much greater than 3, indicating a
pronounced peak. Figure 4 shows the time series plot of the return rates of various enter‑
prises during the sample period.
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Figure 4. Stock returns.
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Beforemeasuring the spillover effects, it is necessary to first ensure that the time series
is stationary to avoid spurious regression problems. The unit root test results for each
financial series are shown in Table 3. As can be seen from Table 3, the ADF test, KPSS
test, and PP test all indicate that the time series are stationary. Specifically, the ADF test
shows that all return rate series are stationary at the 1% confidence level, the KPSS test
indicates that most return rate series are stationary at the 10% confidence level, and the PP
test shows that most return rate series are stationary at the 1% confidence level, meeting
the requirements of the VAR model.

Table 3. Unit root test.

Variable ADF P KPSS P PP P

ZK −10.88 0.01 0.16 0.10 −866.43 0.01
GF −8.31 0.01 0.26 0.10 −923.28 0.01
TQ −8.70 0.01 0.16 0.10 −811.17 0.01
YH −9.40 0.01 0.17 0.10 −829.99 0.01
ALB −9.25 0.01 0.13 0.10 −811.43 0.01
SQM −10.61 0.01 0.16 0.10 −825.07 0.01
PLS −9.10 0.01 0.44 0.06 −939.75 0.01
MIN −9.81 0.01 0.09 0.10 −961.84 0.01
ND −8.47 0.01 0.39 0.08 −857.32 0.01
BYD −8.10 0.01 0.14 0.10 −850.87 0.01
XWD −8.69 0.01 0.28 0.10 −865.00 0.01
YW −9.34 0.01 0.3 0.09 −833.35 0.01
LG −10.08 0.01 0.05 0.10 −853.10 0.01
PC −8.94 0.01 0.29 0.10 −865.60 0.01
SDI −9.53 0.01 0.09 0.10 −826.88 0.01
ENS −9.86 0.01 0.09 0.10 −913.37 0.01
SP −8.75 0.01 0.16 0.10 −908.21 0.01
TSX −8.97 0.01 0.05 0.10 −805.35 0.01
ASX −9.26 0.01 0.02 0.10 −916.97 0.01
FTSE −9.15 0.01 0.11 0.10 −916.85 0.01
A600 −9.06 0.01 0.11 0.10 −872.73 0.01
MOEX −10.58 0.01 0.21 0.10 −890.59 0.01

For the VARmodel, it is necessary to determine the lag order of the variables. If the lag
order chosen is too large, it will result in too few degrees of freedom, affecting the overall
fit of the model. Conversely, if the lag order chosen is too small, there will be omitted
variable information that falls into the disturbance term, causing autocorrelation issues in
the disturbance term. As shown in Table 4, the optimal lag order under the AIC criterion,
HQ criterion, SC criterion, and FPE criterion is all 1. Therefore, this paper chooses a lag
order of 1 for the model.

Table 4. Lag order selection.

Lag AIC HQ SC FPE

1 −161.5751 −160.5320 −158.8462 −161.5751
2 −161.4171 −159.3762 −156.0781 −161.4171
3 −161.0658 −158.0271 −153.1165 −161.0658
4 −160.7515 −156.7151 −150.1920 −160.7515
5 −160.3553 −155.3212 −147.1857 −160.3553
6 −159.8574 −153.8255 −144.0775 −159.8574
7 −159.4568 −152.4271 −141.0667 −159.4568
8 −159.0729 −151.0455 −138.0726 −159.0729
9 −158.6371 −149.6119 −135.0266 −158.6371
10 −158.2299 −148.2069 −132.0092 −158.2299

AIC stands for Akaike Information Criterion, SC stands for Schwarz Information Criterion, HQ stands for
Hannan–Quinn Information Criterion, FPE stands for Final Prediction Error Criterion.
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5. Empirical Analysis
5.1. Static Risk Spillover Analysis

In this paper, the forecast period is set to 10 periods, and the risk spillover indexmatrix
of return rates within the sample period is shown in Figure 3. The first row in the figure
represents the sources of risk spillover, indicating the directional risk spillover effects that
market entities receive from other market entities. The first column represents the targets
of risk spillover, indicating the directional risk spillover effects that market entities exert
on other market entities. The diagonal data show the contribution of market shocks to the
forecast error variance of the elements themselves, reflecting the proportion of eachmarket
affected by its own risk spillover.

The systemic risk spillover index is 64.97, whichmeans that 64.97% of the fluctuations
within the system’s variables are caused by the fluctuations of other variables, indicating
a significant spillover relationship among the variables. From the absolute values on the
diagonal, it can be discerned that the average value for the upstreammarket of the lithium
industry chain is 31.09%, while the downstreammarket’s average value is 37.58%. This in‑
dicates that the flow ofmarket information in the upstreammarket is relatively robust, and
changes in the external economic environment exert a greater impact on upstream enter‑
prises. The average value for Chinese companies in the upstream industry chain is 26.25%,
while the average value for international companies is 35.93%. For the downstream indus‑
try chain, the average value forChinese companies is 32.44%,while the average value for in‑
ternational companies is 42.72%. This shows that in the lithium industry chain, market risk
for Chinese enterprises primarily originates from other enterprises within the chain, with
market price fluctuations having a greater impact on them. In the lithium stock market,
the risk spillover from the Canadian and Russian stock markets exceeds 50%, suggesting
that these markets are less affected by spillovers from other variables within the system. A
possible explanation is that Canada possesses abundant lithium ore resources, rendering it
less susceptible to shocks from external markets, whereas the Russian market experiences
poor financial liquidity with other markets, resulting in a diminished influence from other
market participants.

Correspondingly, based on Figure 5, the risk spillover degree of each company to the
upstream, downstream and financial markets of the lithium industry chain can be calcu‑
lated. “To_top” is the sum of the non‑diagonal elements in the column for the upstream
of the lithium industry chain, representing the total directional risk spillover from each
company to other companies in the upstream of the lithium industry chain. “To_Down”
is the sum of the non‑diagonal elements in the column for the downstream of the lithium
industry chain, representing the total directional risk spillover from each company to other
companies in the downstream of the lithium industry chain. “To_Stock” is the sum of the
non‑diagonal elements in the column for the financial market, representing the total direc‑
tional risk spillover from each company to the financial market. “From_Top” is the sum
of the non‑diagonal elements in the row for the upstream of the lithium industry chain,
representing the total directional risk spillover received by each company from other com‑
panies in the upstreammarket. “From_Down” is the sum of the non‑diagonal elements in
the row for the downstreamof the lithium industry chain, representing the total directional
risk spillover received by each company from other companies in the downstream of the
lithium industry chain. “From_Stock” is the sum of the non‑diagonal elements in the row
for the financial market, representing the total directional risk spillover received by each
company from the financial market. “From” is the sum of the non‑diagonal elements in the
row, indicating the total risk spillover received by a company from other companies; the
“To” row can be viewed as the spillover output index, indicating the total risk spillover a
company exerts on other companies; and the “Net” row indicates the net risk spillover of a
company, calculated by subtracting the “From” value from the corresponding “To” value.
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Figure 5. Heatmap of static risk spillover index.

Table 5 presents the risk spillover effects in the upstreammarket of the lithium indus‑
try chain. From Table 5, it can be observed that for Chinese companies in the upstream seg‑
ment of the lithium industry chain, “To_Top” is greater than “To_Down” and “To_Stock”,
indicating that the primary risk spillover target for Chinese companies is the upstreammar‑
ket, followed by the downstream market. Some risks are transmitted downstream along
the industry chain, and competition among Chinese companies is relatively intense. For
international companies, “To_Stock” is greater than “To_Top” and “To_Down”, suggest‑
ing that the primary risk spillover target for international companies is the stock market,
followed by the upstream market. Market competition among international companies is
relatively low, and risks are mainly transferred through the capital market. For Chinese
companies, “From_Top” is greater than “From_Down” and “From_Stock”, indicating that
the primary source of risk spillover for Chinese companies is the upstream market, fol‑
lowed by the stock market. For international companies, “From_Stock” is greater than
“From_Top” and “From_Down”, with the primary source of risk spillover being the stock
market, followed by the upstream market. Price fluctuations in upstream raw materials
have a greater impact on Chinese companies, while capital investment has a greater im‑
pact on international companies. The average level of risk spillover accepted by Chinese
companies is higher than that accepted by international companies, indicating that com‑
pared to the international lithium industry chain, the upstream segment of the Chinese
lithium industry chain is subject to greater external shocks and higher risk levels. From
the net risk spillover, it can be seen that the main risk exporter in the upstream market is
Ganfeng Lithium Group Co., Ltd. (GLG), with a net risk output index of 15.32%. GLG has
the largest lithium reserves in the China, and changes in its production can significantly
impact the entire market. Themain risk receiver isMineral Resources Limited (MRL), with
a net risk input index of 19.72%. This may be because the lithium business is just one of
many businesses of MRL, and its overall impact on the market is relatively small.
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Table 5. Upstream market risk spillover effect.

ZK GF TQ YH ALB SQM PLS MIN

To_Top 26.91 40.34 36.35 40.27 26.91 29.42 15.05 12.70
To_Down 24.01 38.76 24.67 33.89 21.72 23.90 11.90 12.31
To_Stock 12.86 15.52 14.02 16.74 24.48 32.29 14.25 20.79
From_Top 34.63 36.72 39.66 37.78 23.5 23.29 25.26 19.30
From_Down 21.89 27.79 19.97 25.04 17.52 16.63 13.17 14.41
From_Stock 16.03 14.79 15.48 16.39 24.43 36.11 21.23 31.81

To 63.78 94.62 75.04 90.90 73.11 85.61 41.20 45.80
From 72.55 79.3 75.11 79.21 65.45 76.03 59.66 65.52
Net −8.77 15.32 −0.07 11.69 7.66 9.58 −18.46 −19.72

Table 6 presents the risk spillover effects in the downstream market of the lithium
industry chain. From Table 6, it can be observed that for the downstream segment of
the lithium industry chain, the average level of “To_Top” for both Chinese and interna‑
tional companies is greater than “To_Down” and “To_Stock”. This indicates that the pri‑
mary risk spillover targets for both Chinese and international companies are the upstream
market, followed by the downstream market. The risk spillover in the downstream seg‑
ment of the lithium industry chain is mainly transmitted to the upstream market through
changes in market supply and demand relationships. The average levels of “From_Top”
and “From_Down” for both Chinese and international companies are similar and greater
than “From_Stock”, indicating that the primary sources of risk spillover for downstream
companies are other companies in the upstream and downstream segments of the indus‑
try chain, while the stock market has a relatively smaller impact on the risk spillover in
the downstream segment of the lithium industry chain. The average level of risk spillover
accepted by Chinese companies is higher than that accepted by international companies,
indicating that compared to the international lithium industry chain, the downstream seg‑
ment of the Chinese lithium industry chain is subject to greater external shocks and higher
risk levels. From the net risk spillover, it can be observed thatmost companies in the down‑
stream market are risk receivers. Among them, the net risk value for Chinese companies
ranges from −1.76% to −8.42%, while for international companies, it ranges from 6.08%
to −19.28%. This indicates that the downstream segment of the Chinese industry chain
has greater resilience, possibly due to China’s emphasis on the development of the new
energy industry, leading to a more well‑developed downstream market in the lithium in‑
dustry chain.

Table 6. Downstream market risk spillover effect.

ND BYD XWD YW LG PC SDI ENS

To_Top 21.73 24.96 22.67 26.85 10.84 12.78 10.67 25.92
To_Down 30.74 27.8 26.6 31.51 25.24 15.64 24.55 12.73
To_Stock 8.14 8.24 8.14 9.33 9.61 9.26 8.72 28.54
From_Top 25.97 29.81 28.28 30.73 15.57 19.79 15.48 25.53
From_Down 30.58 27.46 27.36 28.43 26.93 19.79 27.22 7.04
From_Stock 10.32 10.83 10.19 10.29 13.6 17.38 12.27 28.54

To 60.61 61.00 57.41 67.69 45.69 37.68 43.94 67.19
From 66.87 68.10 65.83 69.45 56.10 56.96 54.97 61.11
Net −6.26 −7.10 −8.42 −1.76 −10.41 −19.28 −11.03 6.08

Table 7 presents the risk spillover effects in the downstream market of the lithium
industry chain. From Table 7, it can be observed that the primary spillover targets of the
Chinese stock market are the upstream and downstream markets, with the mining index
having a greater impact on the upstreammarket and the new energy index having a greater
impact on the downstreammarket. Apart from theChinese stockmarket, theUnited States
has a net risk spillover of 34.56%, making it a risk exporter, while the United Kingdom has
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a net risk spillover of 2.61%, acting as a risk intermediary. The net risk spillover indices of
other stock markets are all less than 0, indicating that they are risk receivers.

Table 7. Stock market risk spillover effect.

SP TSX ASX FTSE A600 MOEX

To_Top 38.21 10.84 31.37 21.98 54.76 9.79
To_Down 27.49 7.28 14.58 15.16 36.39 12.52
To_Stock 39.87 23.16 20.22 29.41 8.12 16.96
From_Top 28.3 11.99 29.42 21.36 46.64 13.24
From_Down 17.9 7.68 12.74 13.32 24.87 13.47
From_Stock 24.81 26.61 29.48 29.26 6.06 21.52

To 105.57 41.28 66.17 66.55 99.27 39.27
From 71.01 46.28 71.64 63.94 77.57 48.23
Net 34.56 −5.00 −5.47 2.61 21.70 −8.96

5.2. Dynamic Spillover Analysis
5.2.1. Total Risk Spillover Index

Since the static risk spillover index can only represent the average level of each vari‑
able over the entire sample period and cannot reflect the time‑varying characteristics of
interactions between markets, market fluctuations may experience significant changes un‑
der the influence of special events. Therefore, this paper will further analyze the dynamic
spillover index between markets, as shown in Figure 6. From Figure 6, it can be seen that
the total market risk spillover level exhibits obvious time‑varying characteristics, fluctuat‑
ing significantly between 40% and 66% and being sensitive to extreme events. From 2018
to 2020, the overall spillover level showed a downward trend. In 2020, due to the impact of
the COVID‑19 pandemic, factors such as labor shortages and logistics disruptions caused
the overall risk spillover level to rise sharply. With the effective control of the pandemic
and the global economic recovery, the overall risk spillover level gradually declined. It
can be observed that under the impact of extreme sudden events, the risk spillover index
of the entire sample rises significantly. When the global economy is performing well and
the market tends to stabilize, investors’ risk aversion decreases, and the total systemic risk
spillover index decreases.
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5.2.2. Directional Risk Spillover
Further, the time‑varying characteristics of the risk spillover index for each company

are analyzed using the dynamic directional risk index. “TO” indicates the dynamic risk
spillover from the price fluctuations of a particular company (market) to other markets,
while “FROM” indicates the dynamic risk spillover received by a particular company from
other companies (markets).

Figure 7 shows the risk inflow and risk spillover of various companies in the upstream
market of the lithium industry chain over time. From the perspective of risk inflow, the di‑
rectional risk inflow of companies in the upstreammarket remains relatively stable overall
and is positively correlated with the overall system’s risk spillover changes. The risk in‑
flow level of Chinese companies fluctuates less, mainly concentrated in the range of 3.0–3.5.
Chinese companies are more affected by external risk shocks, while the risk inflow level
of international companies fluctuates more, and the time‑varying characteristics of risk
spillovers are more apparent. International companies are less affected by external risk
shocks. From the perspective of risk spillover, the risk spillover level of Chinese compa‑
nies is higher than that of international companies, with relatively smaller changes in risk
spillover. Overall, the upstream segment of the Chinese lithium industry chain is more
susceptible to external shocks, and the resilience of the upstream industry chain needs to
be strengthened.
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Figure 7. Risk spillover in the upstream market.

Table 8 shows the risk inflow of various companies in the upstream supply market
of the lithium industry chain. The mean and median risk inflow of Chinese companies
are higher than those of international companies, while the standard deviation is lower,
and the absolute value of kurtosis is lower. This is because the international companies
selected in the sample, such asAlbemarle in theUnited States and SQM (SociedadQuímica
y Minera de Chile), have lower lithium mining costs. Therefore, compared to Chinese
companies, international companies have lower risk inflow levels and are less affected by
external risk shocks. The time‑varying characteristics of risk spillovers are more apparent,
and the risk inflow of Chinese companies fluctuates less.
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Table 8. Descriptive statistics of risk inflow in the upstream market.

Variable ZK GF TQ YH ALB SQM PLS MIN

Nobs 898 898 898 898 898 898 898 898
Minimum 2.8187 3.0512 2.9836 3.1994 2.4064 2.4540 1.2758 2.0771
Maximum 3.4641 3.6213 3.5780 3.6122 3.5296 3.6088 3.4271 3.5193
Mean 3.1535 3.4290 3.2661 3.4154 2.8448 2.9484 2.5949 2.8487
Median 3.1630 3.4561 3.2502 3.4232 2.7876 2.9148 2.7714 2.9338
Stdev 0.1449 0.1187 0.1401 0.0821 0.1993 0.2716 0.4940 0.3035

Skewness −0.1650 −0.9704 0.1754 −0.0065 0.3238 0.55050 −1.2700 −0.3640
Kurtosis −0.6816 0.6914 −0.8719 −0.1609 −0.7461 −0.7452 0.6131 −0.6776

Table 9 shows the risk spillover of various companies in the upstream supply market
of the lithium industry chain. The risk mean values of international companies such as
Albemarle in the United States, SQM (Sociedad Química y Minera de Chile), and Chinese
companies such as Ganfeng Lithium and Sichuan Yahua Industrial Group are relatively
high, indicating that these companies have a relatively large impact on other markets. The
risk spillover level of Chinese companies is higher than that of international companies,
and the standard deviation of Chinese companies is lower, indicating smaller variations
in risk spillover. Considering both risk inflow and risk spillover overall, the upstream
segment of the Chinese lithium industry chain is more susceptible to external shocks, and
the resilience of the upstream industry chain needs to be strengthened.

Table 9. Descriptive statistics of risk outflow in the upstream market.

Variable ZK GF TQ YH ALB SQM PLS MIN

Nobs 898 898 898 898 898 898 898 898
Minimum 1.9984 2.7334 2.2471 3.0798 2.3922 2.7349 0.4814 1.1453
Maximum 3.8407 5.2548 4.3691 5.1508 4.5785 5.0043 3.3602 3.1088
Mean 2.7843 4.1191 3.2251 3.9660 3.1373 3.6726 1.7644 1.9452
Median 2.8130 4.2531 3.1460 3.8458 3.1318 3.3860 1.8971 1.9042
Stdev 0.4034 0.4988 0.5344 0.4583 0.3819 0.6237 0.5789 0.4863

Skewness 0.2483 −1.2080 0.2770 0.2027 0.1973 0.6797 −0.6223 0.3663
Kurtosis −0.7934 0.6923 −1.0490 −0.8338 −0.5174 −0.9405 −0.4129 −0.7602

Figure 8 shows the risk inflow and risk spillover of various companies in the down‑
stream consumermarket over time. From the perspective of risk inflow, the directional risk
inflow in the downstreammarket follows a similar trend to the directional risk spillover in
the upstream market. Notably, the risk inflow for international companies shows a signif‑
icant downward trend after March 2020, while the risk inflow for Chinese companies re‑
mains highwith less fluctuation, mainly concentrated in the range of 2.7–3.5. From the per‑
spective of risk spillover, the risk spillover level in the downstream market varies greatly,
with Chinese companies having a higher risk spillover level than international companies.

Table 10 shows the risk inflow in the downstream consumer market of the lithium
industry chain. The mean andmedian values for Chinese companies are higher than those
for international companies. Overall, the risk inflow level for Chinese companies is higher
than that for international companies, indicating that the Chinese market is more suscep‑
tible to shocks from other markets and has weaker risk resistance in the downstream con‑
sumer market of the lithium industry chain. The standard deviation for Chinese compa‑
nies is lower than that for international companies, indicating that the risk inflow in the
Chinese market has less variation, while the time‑varying characteristics of risk inflow in
the international market are more pronounced.
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Figure 8. Risk spillover in the downstream market.

Table 10. Descriptive statistics of risk inflow in the downstream market.

Variable ND BYD XWD YW LG PC SDI ENS

Nobs 898 898 898 898 898 898 898 898
Minimum 2.3345 2.7553 2.5659 2.4243 1.6495 1.8708 1.2552 1.9122
Maximum 3.5631 3.3614 3.5300 3.4582 3.4304 3.5371 3.5405 3.5624
Mean 3.0770 3.1188 3.0410 3.1966 2.4793 2.4955 2.4264 2.6786
Median 3.2348 3.1304 3.0317 3.2256 2.5061 2.4540 2.4365 2.6195
Stdev 0.3365 0.1335 0.2219 0.2019 0.3525 0.3606 0.4386 0.3710

Skewness −0.7880 −0.5290 0.0462 −1.8262 −0.0951 1.1167 −0.6790 0.3289
Kurtosis −0.9299 −0.2650 −1.0713 3.4794 0.1321 1.0289 0.2877 −0.9080

Table 11 shows the risk spillover in the downstream consumer market of the lithium
industry chain. The mean andmedian values for Chinese companies are higher than those
for international companies. Overall, the risk spillover level of Chinese companies is higher
than that of international companies. The rapid development of China’s new energy indus‑
try and the surging demand for lithium‑ion batteries have led toChinese companies having
a greater influence in the downstream market compared to the international market.

Table 11. Descriptive statistics of risk outflow in the downstream market.

Variable ND BYD XWD YW LG PC SDI ENS

Nobs 898 898 898 898 898 898 898 898
Minimum 1.2833 1.7694 1.6578 1.8344 0.9135 0.9644 0.7847 1.4534
Maximum 4.1588 3.7626 3.4185 3.8905 3.3850 3.1618 3.1034 4.6422
Mean 2.7450 2.7190 2.5825 3.0656 1.9455 1.5947 1.8631 2.8903
Median 2.9300 2.7546 2.6693 3.1175 1.9501 1.4521 1.8635 2.5773
Stdev 0.8225 0.3728 0.4527 0.5050 0.4307 0.4861 0.4385 0.7438

Skewness −0.1836 −0.5388 −0.1082 −0.5625 −0.2637 1.1305 −0.4193 0.4351
Kurtosis −1.0329 −0.0495 −1.4172 −0.7362 0.0330 0.6843 −0.0993 −1.0375

5.2.3. Net Directional Spillover Index
To further analyze whether each company in the lithium industry chain is a risk re‑

ceiver, risk exporter, or risk intermediary, Figure 9 depicts the time‑varying characteristics
of the net directional spillover, which is the fluctuation after offsetting the spillover effect



Energies 2024, 17, 6173 18 of 23

and inflow effect of each company (market). If the net spillover index of a market entity
is positive, it indicates that the company is a net exporter of risk spillover; if it is negative,
the company is a net receiver of risk spillover. If the net spillover index is close to 0, indi‑
cating that the risk spillover level and risk inflow level are similar, the company acts as a
risk intermediary, amplifying the effect of information spillover in the system. Prior to the
COVID‑19 pandemic, the risk net spillover indices of upstream enterprises, downstream
enterprises, and the stock market exhibited a downward trend. Following the onset of
the pandemic, these indices experienced significant fluctuations: the risk net spillover in‑
dices of upstream enterprises and the stock market declined, whereas the index for down‑
stream enterprises increased. The production disruptions caused by the pandemic led to
a rapid decline in global demand for lithium resources, resulting in a sustained decrease
in lithium market prices. This situation hindered upstream enterprises’ ability to mitigate
market risks through the prices of mineral products. Over time, as the global economy be‑
gan to recover and demand for lithium resources increased, the risk net spillover index for
upstream enterprises rose, while that for downstream enterprises fell, enabling upstream
enterprises to transfer their market risks via commodity trade. As global capital increas‑
ingly focused on the lithium industry chain, the risk net spillover index for the stockmarket
displayed an upward trend.
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Figure 9. Net risk spillover.

Table 12 shows the roles of market entities in the risk spillover within the lithium in‑
dustry chain. In the upstream supply market, companies that dominate the market, such
as Albemarle Corporation, Sociedad Quimica y Minera, Sinomine Resource Group Co.,
Ltd., and Sichuan Yahua Industrial Group Co., Ltd., have net directional spillover indices
greater than 0 and relatively large values, making them themain exporters of risk spillover.
Tianqi Lithium Corporation’s net risk spillover index is close to 0, making it a risk inter‑
mediary. In the downstream consumer market, except for Enersys, companies have net
risk spillover indices less than 0, playing the role of risk receivers in the lithium industry
chain, and other consumers are risk receivers. In the financial stock market, excluding
China, the United States is the main exporter of risk, while Canada, Russia, and Australia
are risk receivers. The United Kingdom’s net risk spillover index is close to 0, making it a
risk intermediary.
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Table 12. Roles of market entities.

Code Market Entity Role

ALB Albermarle Corporation Risk Exporter
SQM Sociedad Quimica y Minera Risk Exporter
PLS Pilbara Minerals Limited Risk Taker
MIN Mineral Resources Ltd. Risk Taker
ZK Sinomine Resource Group Co., Ltd. Risk Exporter
GF Ganfeng Lithium Group Co., Ltd. Risk Taker
TQ Tianqi Lithium Corporation Risk intermediary
YH Sichuan Yahua Industrial Group Co., Ltd. Risk Exporter

ENS Enersys Risk Exporter
LG LG Chem Ltd. Risk Taker
PC Panasonic Risk Taker
SDI Samsung SDI Risk Taker
ND Contemporary Amperex Technology Co., Ltd. Risk Taker
BYD Byd Company Limited Risk Taker
XWD Sunwoda Electronic Co., Ltd. Risk Taker
YW Eve Energy Co., Ltd. Risk Taker

A600 FTSE A600 Industrial Metals and Mining Risk Exporter
ASX ASX 300 Metals & Mining Risk Taker
FTSE FTSE Metals & Mining Risk intermediary
SP S&P Metals & Mining Select Industry Risk Exporter
TSX TSX Metals & Mining Risk Taker

MOEX MOEX Metals and Mining Risk Taker
CNNE China Securities New Energy Risk Exporter

6. Robust Test
Since there is a certain degree of subjectivity in selecting the lag order and the forecast

error variance decomposition period during the research process, a robustness check is
conducted to verify whether the results depend on the choice of model parameters. The
lag order is adjusted to 2 and 3, respectively, and the overall risk spillover effect is re‑
estimated. The results are shown in Figure 10. The time‑varying trend of the overall risk
spillover effect is basically the sameunder different lag orders, indicating that the empirical
results have a certain degree of robustness.
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Regarding the forecast error variance decomposition periods, the forecast periods
were changed to 5 and 10 periods, respectively. As shown in Figure 11, the overall risk
spillover effects calculated under different forecast error variance decomposition periods
basically overlap, indicating that the impact of changing the forecast error variance decom‑
position periods on the empirical results can be almost ignored.
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7. Conclusions
This paper uses the DY spillover index to measure the static risk spillover effects be‑

tween the upstream and downstream of the lithium industry chain and employs the TVP‑
VAR‑DY model to measure the dynamic risk spillover effects between the upstream and
downstream of the lithium industry chain. This study finds that the upstream market
is more affected by its own market risk spillover, while the downstream consumer mar‑
ket is more affected by risk spillover from other markets. For the lithium industry chain,
more attention needs to be paid to the upstream supply market, especially the operating
conditions of key enterprises that dominate the market, to prevent external shocks from
impacting China’s lithium mining industry. The downstream of China’s lithium industry
chain has strong resilience and can withstand a certain degree of external risk shocks. The
empirical results are outlined below.

From 2018 to 2020, the overall risk spillover level showed a downward trend. In 2020,
due to the impact of the COVID‑19 pandemic, factors such as labor shortages and logistics
disruptions led to a sharp increase in the overall risk spillover level. With the effective
control of the pandemic and the global economic recovery, the overall risk spillover level
gradually decreased. It can be observed that under the impact of extreme events, the risk
spillover index of the lithium market rises significantly, while when the global economy
is operating well and the market is stable, the risk aversion sentiment decreases and the
risk spillover index gradually falls. In the lithium industry chain, most of the downstream
market risks are internal risks, influenced by their own price fluctuations, whereas the up‑
streammarket enterprises’ risks are more from external risks. The risk sources for Chinese
enterprises are mainly external risks, while international enterprises’ risks are more inter‑
nal. In the lithium stock market, the stock markets of Canada and Russia account for more
than 50%, indicating that compared to other countries, their risks are more influenced by
their own price fluctuations and less by the risk spillovers from other variables within the
system. The price impacts from risk fluctuations in the lithium industry chain or other
regional markets are relatively small.

For the upstream supply market, the main risk spillover targets for Chinese enter‑
prises are the upstreammarket, followedby the downstreammarket, with some risks trans‑
mitted downstream through the industry chain, indicating intense competition among



Energies 2024, 17, 6173 21 of 23

Chinese enterprises. For international enterprises, the main risk spillover targets are the
stock market, followed by the upstreammarket, with relatively lower market competition
among international enterprises and risks primarily transferred through the capital mar‑
ket. From the perspective of risk spillover, the directional risk spillover of upstream mar‑
ket enterprises is generally stable. Chinese enterprises are more affected by external risk
shocks, while the risk spillover of international enterprises fluctuates significantly, show‑
ing more pronounced time‑varying characteristics. From the perspective of risk spillover,
the risk spillover level of Chinese enterprises is higher than that of international enterprises,
with relatively smaller changes in risk spillover. Overall, China’s upstream supply market
is more susceptible to external shocks, and the resilience of the upstream industry chain
needs to be strengthened.

For the downstream consumer market, the main sources of risk spillover for Chinese
enterprises are the upstreammarket, followed by the stock market, while for international
enterprises, the main sources of risk spillover are the stock market, followed by the up‑
stream market. The price fluctuations of upstream raw materials have a greater impact
on Chinese enterprises, while capital investment has a greater impact on international en‑
terprises. From the perspective of risk spillover, the risk spillover fluctuations of Chinese
enterprises are relatively small, with a greater impact from external risk shocks, while the
risk spillover fluctuations of international enterprises are more significant, showing more
pronounced time‑varying characteristics. International enterprises are less affected by ex‑
ternal risk shocks, and as the global economy recovers, the risk spillover level decreases sig‑
nificantly, while the risk spillover of Chinese enterprises remains high. From the perspec‑
tive of risk spillover, the risk spillover level of the downstream market fluctuates greatly,
with Chinese enterprises having a higher risk spillover level than international enterprises.
Due to the rapid development of China’s new energy industry and the surging demand for
lithium power batteries, Chinese enterprises have a greater influence in the downstream
market than international markets.

From the perspective of net risk spillover, for the upstream supply market, market‑
dominant enterprises such as Albermarle Corporation, Sociedad Quimica y Minera, Gan‑
feng Lithium Group Co., Ltd., and Sichuan Yahua Industrial Group Co., Ltd., have a net
directional spillover index greater than 0, with relatively large values, acting as major risk
spillover sources, while other suppliers are risk recipients. For the downstream consumer
market, except for Enersys, enterprises have a net risk spillover index less than 0, play‑
ing the role of risk recipients in the lithium industry chain, while Enersys has a net risk
spillover index close to 0, acting as a risk intermediary. For the financial stock market,
except for China, the United States is the main risk spillover source, while the markets of
Canada, Russia, and Australia are risk recipients, with the UK market having a net risk
spillover index close to 0, acting as a risk intermediary. Therefore, enterprises need to pay
more attention to the development of leading enterprises in the industry and closely mon‑
itor the trends of the US stock market, which can represent the global economic trend to a
certain extent. As a capital‑intensive industry, the lithiummining industry needs to closely
monitor capital movements to prevent financial market risks from impacting the lithium
industry chain.

For upstream enterprises in the lithium industry chain, it is recommended that they
enhance their focus on the stock capital market to mitigate the adverse effects of economic
uncertainty on their operational activities. Additionally, increasing investment in lithium
mining projects and improving the market competitiveness of these enterprises is advised.
For downstream enterprises in the lithium industry chain, strengthening the management
of rawmaterial inventories, seeking strategic cooperation with upstream producers when‑
ever possible, and effectively utilizing financial instruments to lock in raw material pro‑
curement costs are suggested to reduce the impact of market risk spillover. For the gov‑
ernment, increasing capital investment in lithium resource exploration and development
projects, maintaining trade partnerships with major resource‑exporting countries, and en‑
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hancing the market supply of lithium resources are recommended, as these actions will
contribute to the establishment of a more robust lithium industry chain system.

This paper investigates market risk spillover within the lithium industry chain; how‑
ever, it acknowledges certain limitations and shortcomings. GivenChina’s notable achieve‑
ments in the new energy sector, the proportion of Chinese enterprises in the selected re‑
search sample is disproportionately high, which may introduce subjective bias. The uncer‑
tainty surrounding global economic policies can significantly affect market risk spillover,
potentially transmitting through the stockmarket to both upstream anddownstream enter‑
prises in the lithium industry chain. Due to limitations in the sample data period and the
model, it is not feasible to examine the influence of economic uncertainty on risk spillover.
This study measures the degree of risk spillover through stock volatility, categorizing the
price fluctuations of listed companies into increases and decreases. Further research and
discussions are needed to determinewhether these fluctuations have heterogeneous effects
on market risk spillover within the lithium industry chain.
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