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Abstract: In order to solve the mismatch between renewable energy and load in urban building
microgrids, that is, the problem of renewable energy consumption in building microgrid clusters,
while preserving the privacy of each user, this paper proposes a distributed low-carbon energy
management method for urban building microgrid clusters. First, a low-carbon energy management
method for the urban building microgrid is proposed in order to coordinate the power sharing of
various subjects to minimize the total economic cost, unleash the consumption potential of low-carbon
building clusters for renewable energy, and reduce carbon emissions on the spatial and time scale.
Second, an ADMM-based distributed optimal energy management method is proposed to meet user
energy needs while preserving local privacy; this includes energy storage systems, renewable energy
generation, and the loads within each urban building microgrid. Finally, simulation experiments are
conducted based on actual data from a certain area in Hangzhou, China, and the results verify the
effectiveness of the model.

Keywords: alternating direction method of multipliers (ADMM); building microgrid; distributed
optimization; low-carbon energy management; renewable energy consumption

1. Introduction

In the context of “carbon peak and carbon neutrality” objectives in China, the energy
and power sector is pivotal in achieving substantial emission reductions. The establish-
ment of building microgrids (MGs) [1], comprising renewable energy sources (RESs) [2],
energy storage systems (ESSs), and various loads within urban distribution networks, can
significantly enhance the consumption and control capabilities of renewable energy. As
high-penetration renewable energy becomes increasingly integrated into urban distribution
networks, the interconnection and cooperative operation of these microgrids will emerge
as a crucial strategy for augmenting the capacity for renewable energy consumption. Si-
multaneously, the integration of high-penetration renewable energy into the distribution
network is a key element in the low-carbon development of the power system.

At present, the carbon trading market is in a comprehensive development stage,
and there have been many studies on low-carbon operation under the carbon trading
mechanism [3,4]. X. Zhong et al. [5] propose an optimal energy management strategy
for multi-energy microgrids considering carbon emissions, and develop a distributed
algorithm to preserve the privacy of microgrids. L. Kong et al. [6] consider carbon ben-
efits and propose a dual-layer energy low-carbon optimization scheduling method for
electricity–hydrogen–thermal energy on campus based on the alternating direction of
multipliers. H. Kong et al. [7] propose an optimal scheduling model of an integrated
energy microgrid by considering multi-time-scale energy storage, and analyze the carbon
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emissions for the analysis of the economic and environmental benefits of the microgrid. A.
Mirzapour-Kamanaj et al. [8] develop a multi-follower bi-level optimization framework
for the optimal interaction of energy hubs and the distribution network. W. Hua et al. [9]
propose a novel blockchain-based peer-to-peer trading framework to trade energy and
carbon allowance. P. Feng et al. [10] establish an optimization model that minimizes both
energy costs and carbon emissions to evaluate environmental impact, aiming to create
policies that save energy and reduce emissions. Y. Xiao et al. [11] proposes a optimization
strategy for wind–solar–energy–storage microgrids with regard to green certificate trading
and carbon emission constraints. However, the above research has not considered the issue
of interconnection and the operation of urban-level building microgrids with a high rate of
renewable energy usage in a low-carbon context to promote carbon emission reduction and
renewable energy consumption.

Considering that in practical situations, urban building microgrids are managed by
different entities, and each microgrid contains a large amount of private information such as
user characteristics, load types, and power and energy storage configurations, it is necessary
to construct a distributed economic dispatch model to coordinate the interconnected system.
The urban-level building microgrid cluster is interconnected through the power network,
and each building microgrid manages its own power source, load, and energy storage,
providing only limited boundary information to the outside world. Therefore, distributed
optimization methods [12,13] have more advantages than centralized optimization methods.
The distributed control method is more in line with the interests of users than the traditional
centralized method [14]. H. Yu and Z. Yuan et al. [15–17], respectively, adopt different
distributed optimization algorithms. In [15], based on a mixed-integer model, a two-layer
framework comprising a load aggregator and residents is developed to solve the model
above, based on the alternating direction method of multipliers (ADMM). B. Zou [18]
proposes an improved, distributionally robust, chance-constrained method to enhance the
power flexibility of an Internet data center. In [16], the researchers propose a probabilistic
distributed control method to help users formulate the electric vehicle charging plan
independently. S. Mhanna et al. [19] propose a double smoothing dual function to solve the
distributed and parallel problem of the non-convex demand response. M. Latifi et al. [20]
propose a diffusion–ADMM strategy to balance the goals of customers and the distribution
system operator (DSO). It can be seen that ADMM supports distributed computing and
has scalability. However, privacy-preserving distributed optimization techniques for the
integration of urban-level building microgrids for low-carbon operations have not been
considered in past research.

In order to overcome the two technical difficulties identified above, this paper proposes
a distributed low-carbon energy management method for urban building microgrid clusters.
Considering the complexity of the system structure, a layered optimization scheme is
adopted. The upper level aims to coordinate the power sharing of various building
microgrids, maximize the collaborative consumption of renewable energy, minimize the
total economic cost, and unleash the consumption potential of low-carbon building clusters
for renewable energy. The lower-level model coordinates and controls the energy storage
systems, renewable energy generation, and loads within each urban building microgrid,
establishes a low-carbon dispatch model for urban buildings, meets user energy needs, aims
to improve the economic efficiency of system operation, reduces system carbon emissions,
and enhances the consumption capacity of renewable energy.

The main contributions of this article are summarized as follows:

(1) The low-carbon energy management of an urban building microgrid is proposed in
order to coordinate the power sharing of various subjects to enhance renewable energy
consumption and reduce carbon emissions on the spatial and time scale.

(2) An ADMM-based distributed optimal energy management method is proposed to
preserve local privacy, such as in energy storage systems, renewable energy generation,
and the loads within each urban building microgrid.
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The remainder of this paper is arranged as follows. Section 2 defines the problem to be
solved and visualizes it in an illustrative framework. Section 3 formulates the mathematical
model, including a power and carbon emissions model for urban campus energy usage, and
the objective function and constraints. Section 4 provides a privacy-preserving distributed
algorithm. Section 5 offers the analysis and results of the numerical experiments. Finally,
the conclusions are summarized in Section 6.

2. Problem and System Framework

The microgrid system framework considered in this article mainly includes wind
turbines, photovoltaic (PV) power generation systems, micro gas turbines, energy storage
systems, and loads, as shown in Figure 1. The system regulates the output of traditional
power generation resources, renewable energy resources, and energy storage systems under
the microgrid through a unified energy management platform, with the goal of minimizing
the system’s economic and carbon emission costs. While ensuring low costs, the system
coordinates the output of renewable energy to regulate the system.

Building MG1

Building MG2

Building MG3

Transformer

PV System ESS Load Gas Turbine

PCC

Distribution 

Network

Unified Energy 

Management Center

Info. Flow

Energy Flow

Figure 1. Diagram of building microgrid cluster structure.

3. Mathematical Model
3.1. Cost Model for Urban Building Microgrid Energy Usage
3.1.1. Gas Turbine

The operating cost of a gas turbine consists of the fuel cost Cgas
i,t (1) and carbon emission

cost Cgas,CO2
i,t (2), which can be expressed as follows:
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Cgas
i,t = bgas

i Pgas
i,t δt (1)

Cgas,CO2
i,t = ρCO2

t egas,CO2
i,t Pgas

i,t δt (2)

where bgas
i is the cost coefficient of the i-th gas turbine; Pgas

i,t is the output power of the

i-th gas turbine at the t-th period; ρCO2
t is the price of CO2 at the t-th period; and egas,CO2

i,t
is the dynamic carbon emission factor (CEF) of the i-th gas turbine at the t-th period.
We suppose that all required scheduling periods in a day are finite and divided into
T equal sub-intervals. We define T as the set indices of all equal sub-intervals, that is,
t ∈ T : {1, 2, ..., T}.

3.1.2. Renewable Energy Resources

The renewable energy resources mainly considered in this research include photo-
voltaic power generation systems and wind turbines. It is emphasized here that, without
considering the installation costs of PV systems and wind turbines, this research assumes
that the operating and maintenance costs of PV systems CPV

i,t and wind turbines Cwind
i,t are

very small, and that their carbon emissions are 0.

CPV
i,t = bPV

i PPV
i,t δt (3)

Cwind
i,t = bwind

i Pwind
i,t δt (4)

CPV,CO2
i,t , Cwind,CO2

i,t = 0 (5)

where bPV
i and bwind

i are, respectively, the operating and maintenance cost coefficients of the
i-th PV system and i-th wind turbine; CPV,CO2

i,t and Cwind,CO2
i,t are, respectively, the carbon

emission cost of the i-th PV system and i-th wind turbine at the t-th period; and PPV
i,t and

Pwind
i,t are, respectively, the output power of the i-th PV system and i-th wind turbine at the

t-th period.

3.1.3. Energy Storage System

In order to smooth out the fluctuations in the output of renewable energy generation
and improve th renewable energy generation absorption rate, urban building microgrids
are often equipped with ESSs with a certain capacity. The operating cost of the energy
storage system mainly considers the charging and discharging costs during the operation
process, while the carbon emission cost is mainly determined by the carbon emission
factor of the common coupling point (PCC) between the building microgrids and public
bus during charging and discharging. The operating costs of the ESS Cess

i,t and the carbon

emission cost Cess,CO2
i,t can be expressed as follows:

Cess
i,t = cess

i (
Pess,d

i,t

ηd
i

+ Pess,c
i,t ηc

i )δt (6)

Cess,CO2
i,t = ρCO2

t epcc,CO2
i,t Pess,c

i,t δt (7)

where cess
i is the charge and discharge cost coefficient of i-th ESS; Pess,c

i,t and Pess,d
i,t are,

respectively, the charge and discharge power of i-th ESS at the t-th period; ηc
i and ηd

i are,

respectively, the charge and discharge efficiency of i-th ESS; and epcc,CO2
i,t is the dynamic

carbon emission factor of the PCC of i-th ESS at the t-th period.

3.1.4. Purchasing of Electricity

Each building in the urban building microgrid group can meet the demand for power
during a shortage by purchasing electricity. In this work, we assume that the main grid does
not accept electricity sales from building microgrids. Hence, the purchasing electricity cost
Cgrid

i,t (8) and carbon emission cost of the buildings Cgrid,CO2
i,t (9) can be shown as follows:
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Cgrid
i,t = cgrid,b

i,t Pgrid,b
i,t δt (8)

Cgrid,CO2
i,t = ρCO2

t epcc,CO2
i,t Pgrid,b

i,t δt (9)

Pgrid,b
i,t ≥ 0 (10)

where cgrid,b
i,t is, respectively, the electricity purchase price between the building microgrid

and the main grid at the t-th period; and Pgrid,b
i,t is the purchasing power between the

building microgrid and the main grid at the t-th period.

3.2. Objective Function

This research takes a building microgrid as the research object, comprehensively
considering the overall economic operation of the microgrid and the promotion of carbon
emission reduction. The objective function of the model built is set to minimize the overall
cost of the microgrid, including the operating costs of various devices in the microgrid,
the cost of purchasing electricity in the microgrid, and the cost of carbon emissions, as
shown below:

min Ctotal =Ccost + CCO2

=
T

∑
t=1

(
Ng

∑
i=1

Cgas
i,t +

Np

∑
i=1

CPV
i,t +

Nw

∑
i=1

Cwind
i,t +

Ne

∑
i=1

Cess
i,t + Cgrid

i,t )

+
T

∑
t=1

(
Ng

∑
i=1

Cgas,CO2
i,t + Cgrid,CO2

i,t )

(11)

where Ctotal is the total cost of the building microgrid; Ccost and CCO2 are, respectively
the total power generation cost and total carbon emission cost of the building microgrid
components; and Ng, Np, Nw, Ne are, respectively the total number of gas turbines, PV
systems, wind generation systems and ESSs.

3.3. Constraints
3.3.1. Gas Turbine

The operational constraints of gas turbines comprise upper and lower-limit constraints
for the output power (12) and the power ramp constraints (13) and (14), which are shown
as follows:

Pgas,min
i ≤ Pgas

i,t ≤ Pgas,max
i (12)

0 ≤ Pgas
i,t − Pgas

i,t−1 ≤ Pgas,up,max
i (13)

0 ≤ Pgas
i,t−1 − Pgas

i,t ≤ Pgas,down,max
i (14)

where Pgas,min
i and Pgas,max

i are, respectively, the upper and lower limit of the active out-

put power of the i-th gas turbine; and Pgas,up,max
i and Pgas,down,max

i are, respectively, the
maximum up ramp power and down ramp power of the i-th gas turbine.

3.3.2. PV Systems

Considering the different characteristics of PV power generation output, different
upper limits are set to constrain the PV output. Meanwhile, this research does not consider
the uncertainty of PV output and its reactive power output. The operational constraints of
PV are shown as (15):

0 ≤ PPV
i,t ≤ PPV,max

i (15)

where PPV,max
i is the maximum output active power of the i-th PV power generation unit

of building i.
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3.3.3. Wind Generation System

Similar to the output characteristics of PV power generation systems, we set different
upper limits for wind generation systems in order to constrain their output. Meanwhile,
this work did not take into account its uncertainty. The operational constraints of the wind
generation system are shown in (16):

0 ≤ Pwind
i,t ≤ Pwind,max

i (16)

where Pwind,max
i is the maximum output active power of the i-th wind power generation

unit of building i.

3.3.4. Energy Storage System

During the charging and discharging process, relevant restrictions need to be imposed
on the charging and discharging status and power, using the following constraints:

0 ≤ Pess,c
i,t ≤ uc

i,tP
ess,c,max
i,t (17)

0 ≤ Pess,d
i,t ≤ ud

i,tP
ess,d,max
i,t (18)

uc
i,t + ud

i,t ≤ 1, uc
i,t, ud

i,t ∈ N (19)

smin
i ≤ si,t ≤ smax

i (20)

si,t = si,t−1 +
uc

i,tP
ess,c
i,t ηc

i δt
eess

i
−

ud
i,tP

ess,d
i,t δt

ηd
i eess

i
(21)

si,1 = si,T (22)

where uc
i,t and ud

i,t are, respectively, the charge and discharge state variable of i-th ESS at
the t-th period, and where both are not equal to 1 at the same time; N is the set of natural
numbers; and si,t is the state of charge (SOC) of i-th ESS at the t-th period. Meanwhile,
smin

i and smax
i are, respectively, the specified minimum and maximum SOC of i-th ESS.

Equation (19) ensures that the ESS can have three states at the same time, which are,
respectively, charging, discharging, and standby. Equation (22) guarantees that the ESS can
restore its initial state during daily operation.

3.3.5. Power Balance Constraint

The whole microgrid system needs to ensure power balance at each time period, using
the following constraints:

Pload
t =

Ng

∑
i=1

Pgas
i,t +

Np

∑
i=1

PPV
i,t +

Nw

∑
i=1

PWind
i,t + Pgrid

t +
Ne

∑
i=1

Pess
t (23)

where Pload
t is the total power of the load at the t-th period.

4. Distributed Optimization
4.1. Basic Principle

The unified energy management model proposed in the previous section is a mixed-
integer quadratic linear programming problem, which requires building microgrids to
transfer the configuration information, control rights, and load information of the power
generation resources they manage to a unified energy management operator, resulting
in serious privacy leakage issues. In addition, due to the high demand for computing
resources, binary variables, and a slower convergence speed when the number of par-
ticipants increases, we introduce ADMM to decompose the traditional unified energy
management model. This method can enable the collaborative consumption of renewable
energy between building microgrids and unified operators without exchanging sensitive
information, while only requiring the total power of the interaction gateway; this fun-
damentally protects the privacy of each building microgrid. In addition, ADMM can be
regarded as a combination of dual decomposition and augmented Lagrangian multiplier
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methods, ensuring good decomposability, convergence, and a fast computational speed,
thus possessing excellent scalability.

The general ADMM equation can be modeled as follows:

min f (x) + g(y) (24)

s.t. Ax + By = C (25)

where x and y are two sets of separable variables, and f (x) and g(y) are two sets of separa-
ble objective functions. Meanwhile, Equation (25) shows the coupling relationship between
two sets of variables. The augmented Lagrangian form of ADMM can be represented
as follows:

Lρ1(x, y, λ) = f (x) + g(y) + λT(Ax + By − C)

+
ρ1

2
· ∥Ax + By − C∥2

2
(26)

where λ is a dual variable, and ρ1 is a penalty parameter of the augmented Lagrangian mul-
tiplier. Actually, there is no fixed standard for the determination of the penalty parameter.
Therefore, we may set the value of ρ1 as 2 or more.

Moreover, the primary and secondary residuals of ADMM in the k-th iteration are
defined as follows: {

J(k) = Ax(k) + By(k) − C

R(k) = ρ1 AT B(x(k) − x(k−1))
(27)

To decompose the objectives, within each iteration, Equation (26) is minimized over x
with y, which is obtained in the last iteration. Therefore, the equations for updating the
values of x, y and λ are shown in the following (28):

x(k) = arg min
x

Lρ1(x, y(k−1), λ(k−1))

y(k) = arg min
y

Lρ1(x(k), y, λ(k−1))

λ(k) = λ(k−1) + ρ1(Ax(k) + By(k) − C)

(28)

The iteration will stop when both J(k) and R(k) , respectively, need to reach the
primary and dual criteria, and when the iteration termination conditions fulfil the
following formulas: {

∥J(k)∥2 ≤ ϵpri

∥R(k)∥2 ≤ ϵdual
(29)

where values of ϵpri > 0 and ϵpri > 0.

4.2. Information Exchange Process

The information exchange process of the distributed solving algorithm is shown in
the figure. Distributed solving algorithms decompose a large problem into several sub-
problems that can be solved separately. The cluster’s unified operator and each building
microgrid only need to solve their own sub-optimization problems, and each subject only
shares variables and auxiliary variables. The power information, energy storage power
information, and load information within each building microgrid are only used for solving
sub-problems on their own and are not shared with the public, fully protecting the privacy
of all parties involved. The entire optimization problem can be simplified into two iterative
processes: solving sub-problems and exchanging shared variables, which do not contain
private information. In addition, the algorithm is highly scalable. Even if the number of
microgrids further increases, the difficulty of solving each sub-problem will not change,
and new entities can be easily added to the entire iteration process.
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5. Case Study and Analysis
5.1. Parameter Setup

To verify the availability of the algorithm in this work, we consider a microgrid
cluster consisting of three building microgrids. The scheduling interval is set to 1 h. In
the case study of this work, the operating parameters of every component include the
basic parameters of gas turbines and energy storage systems. The operating parameters of
each microgrid component are shown in Table 1. In addition, the upper and lower limits
of the PV and wind power output are determined based on typical output curves, and
the expected load of each building microgrid is determined based on typical load curves,
which are shown as Figure 2. The cost parameters of each microgrid component and carbon
emission parameters are, respectively, shown in Tables 2 and 3. The carbon emission factor
of the gas turbine and grid can be seen in Figure 3.

Figure 2. Typical PV, wind power and load curves of all building microgrids.

Figure 3. Carbon emission factor of gas turbines and grid.

Table 1. Component operating parameters of microgrid.

Parameters Value Parameters Value

Pgas,max/kW 120 eess/kW·h 100
Pgas,min/kW 30 ηc 0.95

Pgas,up,max/kW 30 ηd 0.95
Pgas,down,max/kW 30 smax 0.9

Pess,c,max/kW 100 smin 0.2
Pess,d,max/kW 100 Charge and Discharge Rate 1 C
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Table 2. Component cost parameters of microgrid.

Parameters Value Parameters Value

bgas/(CNY/kW·h) 0.70 bWind/(CNY/kW·h) 0.06
bPV/(CNY/kW·h) 0.05 cess/(CNY/kW·h) 0.10

Table 3. Carbon emission parameters of microgrid.

Parameters Value

ρgas,CO2 /(CNY/kg) 1.00
egas,CO2 /(kg/kW·h) 0.70
epcc,CO2 /(kg/kW·h) Figure 3

The purchase price of electricity from the microgrid to the grid is taken from the typical
peak and valley electricity prices of industrial and commercial users in Zhejiang Province,
as shown in Table 4.

Table 4. Typical electricity price of industrial and commercial users in Hangzhou, China [15].

Type Time (h) Price (CNY)

Peak Period 8:00–11:00, 13:00–17:00 1.05
Regular Period 17:00–24:00 0.67
Valley Period 0:00–8:00, 11:00–13:00 0.32

In Figure 2, it can be seen that the only renewable energy resource of building micro-
grids 1 and 3 is PV, while the renewable energy resources of building microgrid 2 contain
wind power and PV. Meanwhile, we can see that building microgrid 2 has abundant renew-
able energy resources, with the highest predictive output, while building microgrid 3 has
the lowest predictive power generation. It can also be seen that among these three building
microgrids, building microgrid 3 has the heaviest load, while building microgrid 2 has
the lightest load. Therefore, the overall situation of surplus renewable energy in building
microgrid 2 and insufficient renewable energy in building microgrid 3 reflects the potential
for the complementary adjustment of building microgrid clusters.

The numerical simulation is mainly carried out on a computer equipped with 16 Intel
Intel i5-13500H 2.60 GHz CPU and 32 GB RAM. The main problem and sub-problems are
solved by a CBC solver. Matlab is used for modeling and implementation.

5.2. Comparison of Different Scenarios

In order to test the effectiveness of the proposed algorithm scheme, three different
control scenarios were set up in this section to verify the effectiveness of the algorithm.
Here, the renewable energy consumption rate is defined as CRRES, as shown in (30).

CRRES =
∑T

t=1(∑
Np
i=1 PPV,r

i,t + ∑Nw
i=1 Pwind,r

i,t )

∑T
t=1(∑

Np
i=1 PPV, f

i,t + ∑Nw
i=1 Pwind, f

i,t )
(30)

where PPV,r
i,t and Pwind,r

i,t are, respectively, the real output power of the i-th PV system and

i-th wind turbine at the t-th period; and PPV, f
i,t and Pwind, f

i,t are, respectively, the predictive
value of the output power of the i-th PV system and i-th wind turbine at the t-th period.

5.2.1. Scenario Setup

Case 1: Without considering of electricity sharing among microgrids;
Case 2: Considering electricity sharing among microgrids but without considering

user’s privacy;
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Case 3: Considering electricity sharing among microgrids and user’s privacy.
In this section, we first consider whether to implement unified energy management

or autonomous energy management for each building microgrid. In unified energy man-
agement, each building microgrid is connected to the same power distribution bus and
interacts with the main grid through a unified power port. At the same time, mutual
power benefits can be achieved among microgrids. When building microgrids engage in
autonomous energy management, there is no mutual power benefit among them. There-
fore, Case 1 and Case 2 are used to verify the superiority of unified energy management.
When users focus on preserving their privacy information, such as internal component
configurations, power generation and load data, and are unwilling to disclose them, Case 2
and Case 3 will be used to test the effectiveness of distributed algorithms.

5.2.2. Comparison of Different Energy Management Method

In Case 1, the proposed autonomous energy management strategy is only used to
consider operation and maintenance costs. Based on the optimal objective function of
total costs (fuel, operation and maintenance costs, carbon emission costs), the system will
prioritize the use of renewable energy generation to meet load demand, and the excess
renewable energy electricity will be used to charge the energy storage system until it reaches
its maximum capacity. The additional electricity in the energy storage system will be used
to supply power with priority to the system load when the electricity prices and carbon
emission factors are at their peak, while renewable energy generation resources are scarce.
When both the energy storage system and renewable energy generation are insufficient, the
system will choose between local gas turbine power generation or purchasing electricity
from the main grid based on cost factors. In Case 2, the unified energy management
strategy proposed is not significantly different from the autonomous energy management
strategy outlined in Case 1. The main difference is that in the unified energy management
strategy, the system can coordinate all resources of all building microgrid users, including
gas turbines, renewable energy resources, energy storage systems, etc.

It can be observed in Figures 2, 4 and 5 that in Case 1, building microgrid 2 is equipped
with abundant renewable energy resources, including small wind turbines and solar power
generation resources with a peak power of about 300 kW. However, its load level is quite
low, and the periods of high renewable energy generation are mismatched with the peak
load periods, resulting in the significant waste of renewable energy resources. On the
contrary, the load level in building microgrid 3 is quite high, while the level of renewable
energy it is equipped with is relatively low. For most of the time, renewable energy
resources are insufficient to ensure power supply, so local gas turbines or the purchase of
electricity from the main grid are needed to achieve sufficient power supply. In Case 2,
under the unified energy management strategy, the renewable energy resources of building
microgrids 1, 2, and 3 can be mutually beneficial, and the overall proportion of renewable
energy consumption can be further increased to jointly meet the common load demand of
building microgrids 1, 2, and 3, achieve the maximization of renewable energy utilization,
and reduce the cost of power generation and carbon emissions.

Table 5 shows a comparison of the various economic costs, carbon emission costs
of each building microgrid, and total costs under unified energy management and au-
tonomous energy management. It can also be clearly seen from Table 5 that the unified
management of microgrids in various buildings can achieve a significant reduction in total
costs while further improving the overall renewable energy consumption rate. In particular,
the total economic cost and carbon emission cost of purchasing electricity from the main
e-commerce platform have decreased even more. The reason for this can be summarized
as follows: unified energy management eliminates the mismatch between the supply and
demand of renewable energy and load in certain sub-microgrids (supply–demand regu-
lation on the spatial scale), enables the mutual utilization of renewable energy resources
between different building microgrids, improves the utilization rate of renewable energy,
and reduces the cost of purchasing electricity and carbon emissions.
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Figure 4. Power curves of various components in each building microgrid for autonomous energy
management (Case 1).

Figure 5. Power curves of various components in each building microgrid for unified energy
management (Case 2).
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Table 5. The results of operating and carbon emission costs for each building microgrid and all
building microgrids.

Case 1

Type Total Building MG 1 Building MG 2 Building MG 3

Ctotal 5718.66 1495.53 555.25 3667.88
Cgas 2262.27 656.55 303.72 1302.00
Cgrid 1264.58 268.72 25.78 970.08

Cgas,CO2 969.54 281.38 130.16 558.00
Cgrid,CO2 1043.94 235.45 11.55 796.94
CRRES 66.00% 84.93% 50.49% 100.00%

Case 2

Type Total Building MG 1 Building MG 2 Building MG 3

Ctotal 4220.44 ∼ ∼ ∼
Cgas 2076.98 674.40 714.00 688.58
Cgrid 568.60 ∼ ∼ ∼

Cgas,CO2 890.13 289.03 306.00 295.10
Cgrid,CO2 441.66 ∼ ∼ ∼
CRRES 89.96% 78.47% 100.00% 66.76%

5.2.3. Effectiveness of Distributed Methods

To verify the effectiveness of the distributed algorithm, the value of ρ1 is 2, and the
iteration of the distributed algorithm is shown in the Figure 6. From Figure 6, it can be seen
that the primary residual continuously decreases during the iteration process and converges
when the number of iterations is 10. Correspondingly, the target value in Figure 6 also
reaches its optimum when the number of iterations is 10. It can be seen from Figure 6 that
there is basically no difference in the results between distributed algorithms and centralized
algorithms, which meet the requirements of practical applications. Distributed algorithms
converge quickly and meet practical requirements.

Figure 6. Iterative process of the algorithm (Case 3).

5.3. The Impact of ESS Parameters

In this section, we mainly study the effects of the capacity of ESSs in building mi-
crogrid systems on system economic costs, carbon emission costs, and renewable energy
consumption rates, in order to provide reasonable references for configuring ESSs in build-
ing microgrid systems. In this section, this case has considered electricity sharing among
microgrids and user’s privacy.

Table 6 shows the total economic cost, total carbon emission cost, and total renewable
energy consumption rate when the microgrid of each building is equipped with ESSs with
different capacities. Here, we set the charging and discharging rate of the ESS to 1 C. It
can be observed from Table 6 that, as the capacity of the ESS in the building microgrid
increases, both economic and carbon emission costs decrease, while the total renewable
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energy consumption rate significantly increases. The reason for this is that when the
capacity provided by the ESS increases, during periods of high renewable energy resource
supply and insufficient load demand, the system can further store excess renewable energy
resources to meet the load demand when renewable energy is scarce and the cost of
purchasing electricity is high, achieving supply–demand regulation in building microgrid
systems on the time scale.

Table 6. Various costs and total renewable energy consumption rate for each building and ESSs
equipped with different capacities.

Parameter Results

Capacity of ESS 100 200 300 400

Ctotal 4220.44 3974.96 3761.65 3637.69
Cgas 2076.98 2076.98 2001.21 1888.14
Cgrid 568.60 452.89 403.51 428.44

Cgas,CO2 890.13 890.13 857.66 809.20
Cgrid,CO2 441.66 300.84 234.10 241.70
CRRES 89.96% 94.05% 98.14% 100.00%

6. Conclusions

This paper proposes a distributed low-carbon energy management method for urban
building microgrid clusters. First, a low-carbon energy management method for urban
building microgrids is proposed in order to coordinate the power sharing of various
subjects to minimize the total economic cost, reveal the consumption potential of low-
carbon building clusters for renewable energy, and reduce carbon emissions on the spatial
and time scale. Second, an ADMM-based distributed optimal energy management method
is proposed to meet the needs of users while preserving local privacy, such as information
about the energy storage systems, renewable energy generation, and the loads within each
urban building microgrid. In the future, further consideration needs to be given to the
mechanisms associated with transaction modes and transaction prices in microgrids for the
distributed low-carbon energy management of urban power.
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19. Mhanna, S.; Chapman, A.C.; Verbič, G. A fast distributed algorithm for large-scale demand response aggregation. IEEE Trans.
Smart Grid 2016, 7, 2094–2107. [CrossRef]

20. Latifi, M.; Khalili, A.; Rastegarnia, A.; Bazzi, W.M.; Sanei, S. A robust scalable demand-side management based on diffusion-admm
strategy for smart grid. IEEE Internet Things J. 2020, 7, 3363–3377. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TSG.2015.2506152
http://dx.doi.org/10.1109/TSG.2024.3397654
http://dx.doi.org/10.1016/j.rser.2024.114720
http://dx.doi.org/10.1109/TSG.2022.3173520
http://dx.doi.org/10.1016/j.energy.2022.123428
http://dx.doi.org/10.1016/j.ijepes.2020.105925
http://dx.doi.org/10.1016/j.apenergy.2020.115539
http://dx.doi.org/10.1016/j.energy.2021.120965
http://dx.doi.org/10.1109/JIOT.2022.3209017
http://dx.doi.org/10.1109/TII.2024.3393569
http://dx.doi.org/10.1109/TPWRS.2016.2626315
http://dx.doi.org/10.1016/j.apenergy.2023.121018
http://dx.doi.org/10.1109/TSG.2023.3324731
http://dx.doi.org/10.1109/TSG.2023.3309405
http://dx.doi.org/10.1109/TSG.2016.2536740
http://dx.doi.org/10.1109/JIOT.2020.2968539

	Introduction
	Problem and System Framework
	Mathematical Model
	Cost Model for Urban Building Microgrid Energy Usage
	Gas Turbine
	Renewable Energy Resources
	Energy Storage System
	Purchasing of Electricity

	Objective Function
	Constraints
	Gas Turbine
	PV Systems
	Wind Generation System
	Energy Storage System
	Power Balance Constraint


	Distributed Optimization
	Basic Principle
	Information Exchange Process

	Case Study and Analysis
	Parameter Setup
	Comparison of Different Scenarios
	Scenario Setup
	Comparison of Different Energy Management Method
	Effectiveness of Distributed Methods

	The Impact of ESS Parameters

	Conclusions
	References

