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Abstract: The LLC resonant converter is widely recognized as an effective solution for achieving
high efficiency in high-frequency operations. This is primarily due to its ability to perform zero-
voltage switching (ZVS) on primary switches and zero-current switching (ZCS) on secondary rectifier
switches. However, implementing the secondary rectifier of an LLC resonant converter often requires
the use of jumpers on the PCB to construct circuit topologies such as the center-tap rectifier (CTR), full-
bridge rectifier, and voltage-doubler rectifier (VDR). In conventional VDR configurations, the source
voltage of the high-side FET fluctuates according to the switching operation of the primary switch.
This fluctuation necessitates auxiliary windings or bootstrap circuits to provide a floating voltage
source, adding significant complexity to gate drive circuits in high-power-density applications. This
complexity poses a major barrier to the practical adoption of VDRs. To address these challenges,
this paper proposes a novel rectification circuit based on the VDR topology, specifically designed
for LLC resonant converters, offering simplified gate drive circuitry and improved suitability for
high-power-density applications.

Keywords: LLC resonant converter; voltage-doubler rectifier; synchronous rectifier

1. Introduction

Recent advancements in semiconductor technologies, particularly silicon carbide (SiC)
and gallium nitride (GaN) devices, have facilitated the development of high-frequency
power modules without compromising efficiency [1–3]. Among various converter topolo-
gies, the LLC resonant converter is notable for achieving zero-voltage switching (ZVS) on
the primary-side switches across the entire load range and zero-current switching (ZCS) on
the secondary rectifier diodes, thereby reducing the size of magnetic components [4–8].

The LLC resonant converter is highly suited for high-efficiency and high-power-
density power conversion systems [9]. Moreover, the resonant tank generates a nearly
sinusoidal current waveform, minimizing power losses caused by harmonic currents com-
pared to pulse-width-modulated (PWM) converters [10–12]. However, the LLC resonant
converter encounters challenges in controlling the output voltage under no-load conditions.
This limitation, which is more pronounced at high operating frequencies, arises from the
junction capacitance (Cj) of the secondary rectifier diodes [13,14].

Furthermore, when secondary rectifiers utilize field-effect transistors (FETs) in low-
voltage, high-current power modules, the larger equivalent output capacitance (Coss) of
FETs compared to Schottky diodes exacerbates the issue. Although several methods have
been proposed to address light-load voltage regulation, these approaches often compromise
overall efficiency [15,16].

This paper proposes a novel rectification circuit based on the voltage-doubler rectifier
(VDR) topology for LLC resonant converters to address these challenges effectively.
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Meanwhile, instead of a CTR shown in Figure 1a, the LLC resonant converter uti-
lizing a VDR shown in Figure 1b exhibits a lower equivalent Coss value reflected to the
primary resonant circuit, as analyzed in [11]. Consequently, the VDR-based LLC converter
demonstrates superior regulation characteristics under light-load conditions. However,
conventional VDR implementations require a high-side gate drive circuit, often involving a
bootstrap or auxiliary transformer windings, which complicate the design of high-current,
high-frequency power modules. To resolve these issues, a novel VDR circuit for LLC
resonant converters is proposed, as shown in Figure 1c.
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Figure 1. (a) Conventional CTR, (b) conventional VDR, and (c) proposed VDR with SR FET. 

  

Figure 1. (a) Conventional CTR, (b) conventional VDR, and (c) proposed VDR with SR FET.



Energies 2024, 17, 6262 3 of 14

2. LLC Converter with New VDR
2.1. Operation Principles

A circuit diagram of the proposed converter is shown in Figure 2. The primary circuit
is the same as a conventional Half-Bridge LLC resonant converter, while the secondary
rectifier adopts the proposed VDR structure. The proposed VDR consists of two capacitors
and two rectifier diodes, similar to the conventional VDR, but with a split secondary
winding, as described in [13]. The operation of the proposed converter can be divided
into two symmetrical modes, akin to the conventional LLC resonant converter. In Mode 1,
when Qp1 turns on, DS1 conducts, charging CO1 and discharging CO2, as shown in Figure 2a.
Conversely, when QP2 is triggered, mode 2 enables the discharging current of CO1 and the
charging current of CO2 to flow through QS2, as shown in Figure 2b.
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Figure 2. Current path of (a) mode 1 and (b) mode 2. 

The main current waveforms, depicted in Figure 3, demonstrate that the resonant 
current flows through the two secondary windings of the transformer during both modes, 
resulting in a low RMS value. Assuming that NS1 = NS2, during mode 1, the voltage across 
NS1 is equal to VCO1, and the voltage across NS2 equal to VO − VCO2. In Mode 2, the voltage 
relationships are reversed. Therefore, it follows that VCO1 = VCO2 = VO/2. 

The proposed VDR exhibits the same low voltage stress VO as the conventional VDR. 
Furthermore, the proposed converter retains the fundamental operating characteristics of 
the conventional VDR, including the primary current and diode current waveforms. The 
input/output relationship equation for the LLC converter with the proposed VDR remains 
identical to that of the LLC converter with a conventional VDR and can be expressed as 
follows: 𝑀 = 𝑘 × 𝑓௡ଶඥሾሺ𝑘 + 1ሻ × 𝑓௡ଶ − 1ሿଶ + 𝑓௡ଶ × ሺ𝑓௡ଶ − 1ሻଶ × 𝑘ଶ × 𝑄ଶ 

(𝑓௡ = ௙ೞ௙ೢೝ  , 𝑓௥ = ଵଶగඥ௅ೝ஼ೝ  , 𝑘 = ௅೘௅ೝ  , 𝑄 = ଵ௡మோ೐ ට௅ೝ஼ೝ  , 𝑅௘ = ଶோ೚గమ ) 

(1)

Figure 2. Current path of (a) mode 1 and (b) mode 2.

The main current waveforms, depicted in Figure 3, demonstrate that the resonant
current flows through the two secondary windings of the transformer during both modes,
resulting in a low RMS value. Assuming that NS1 = NS2, during mode 1, the voltage across
NS1 is equal to VCO1, and the voltage across NS2 equal to VO − VCO2. In Mode 2, the voltage
relationships are reversed. Therefore, it follows that VCO1 = VCO2 = VO/2.

The proposed VDR exhibits the same low voltage stress VO as the conventional VDR.
Furthermore, the proposed converter retains the fundamental operating characteristics of
the conventional VDR, including the primary current and diode current waveforms. The
input/output relationship equation for the LLC converter with the proposed VDR remains
identical to that of the LLC converter with a conventional VDR and can be expressed as
follows:
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The normalized voltage gain M of the LLC resonant converter is described by the
equation shown above. This equation is fundamental for analyzing the input/output rela-
tionship of both the proposed VDR and the conventional VDR configurations. It highlights
that the proposed VDR retains the same operational characteristics as the conventional
VDR, ensuring consistent performance under various operating conditions.

In the equation, the normalized switching frequency fn is defined as the ratio of
the switching frequency fsw to the resonant frequency fr. The resonant frequency fr is
determined by the resonant inductance Lr and resonant capacitance Cr, calculated as
fr = 1

2π
√

LrCr
. The inductance ratio k represents the ratio of the magnetizing inductance

Lm to the resonant inductance Lr, while the quality factor Q quantifies the energy transfer

efficiency in the resonant tank, defined as Q = 1
n2Re

√
Lr
Cr

, where nnn is the transformer
turns ratio and ReR_eRe is the equivalent load resistance. The equivalent load resistance
Re is further expressed as Re =

2Ro
π2 with Ro being the actual load resistance.

The parameters k, Q, and fn collectively determine the voltage gain M of the LLC
converter. This equation ensures that the output voltage behavior of the proposed VDR
remains identical to that of the conventional VDR under the same conditions, thus vali-
dating the compatibility of the proposed structure with standard LLC converter designs.
Furthermore, the stable operating range provided by this equation supports the practical
implementation of the proposed design in various power module applications.
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2.2. Convenience of PCB Implementation with Planar Transformer

In conventional CTR and VDR methods, jumpers are necessary to establish connections
between the secondary winding and the device. This is due to the requirement for PCB
traces to accommodate high-current applications with fewer layers and narrower widths.
However, the proposed VDR method eliminates the need for jumpers by enabling direct
connections between the secondary winding and the device. The secondary circuit can
be implemented using a planar transformer with a UU Core, thereby simplifying circuit
design and improving PCB manufacturing efficiency [17].

The integration of a planar transformer into the proposed VDR facilitates PCB design
by eliminating jumpers and optimizing PCB layer utilization. Conventional VDR-based
LLC resonant converters often encounter challenges in PCB layout due to jumper us-
age, which increases conduction losses resulting from pattern resistance. In contrast, the
proposed VDR-based LLC resonant converter directly connects the secondary winding
and rectifier diodes using a planar transformer, simplifying the design and minimizing
conduction losses.

As shown in Figure 4, the differences between the conventional VDR and the proposed
VDR using a planar transformer with a UU Core are demonstrated. In the conventional VDR
design (Figure 4a), jumpers are required to connect the secondary winding to the rectifier
diodes, which complicates the PCB layout and increases conduction losses. Moreover, the
narrow PCB traces required for high-current applications further constrain overall circuit
efficiency and reliability. In contrast, the proposed VDR design (Figure 4b) eliminates
the need for jumpers, allowing for direct connections and reducing layout complexity.
The optimized PCB layout further improves layer utilization and facilitates more efficient
manufacturing processes.
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As shown in Figure 5, the layout of the proposed VDR-based LLC resonant converter
using a planar transformer demonstrates these advantages. Unlike conventional VDR de-
signs, which require jumpers and complicated PCB implementation, the proposed approach
simplifies the layout while reducing complexity. This improvement not only enhances
overall efficiency but also maximizes the effective utilization of PCB layers.
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2.3. Simple Driving of SR FETs

The conventional VDR configuration presents a significant challenge due to variations
in the source voltage of the high-side FET caused by the switching operation of the primary-
side FET, complicating gate voltage application. In the conventional rectifier configuration,
the anode terminals of the rectifier diodes DS1 and DS2 are connected to the negative
terminals of CO1 and CO2, respectively. This configuration increases the complexity of
driving the high-side FET, necessitating additional circuits or techniques such as a bootstrap
diode and a capacitor to manage the gate voltage effectively, as shown in Figure 6a.
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In contrast, the proposed VDR structure simplifies SR FET driving when implementing
the rectifier circuits for low-voltage, high-current power modules. The upper and lower
FETs can be driven more easily by utilizing the voltages across CO1 and CO2 as power
sources for the gate drive operation. This eliminates the need for a bootstrap circuit or
auxiliary winding. The doubler capacitors CO1 and CO2 provide a stable DC voltage that
can directly supply a self-driving IC for the SR FET, ensuring efficient operation without
additional floating voltage sources. This novel design streamlines the system and improves
efficiency in driving the SR FETs. The proposed system supports an output voltage range
of 12 V to 36 V, providing sufficient gate voltage to meet the threshold voltage requirements
while staying within the absolute maximum gate voltage limits.

Additionally, by using advanced SR FET gate drivers, such as the TEA2093TS (NXP
Semiconductors, Eindhoven, The Netherlands) or UCC24630 (Texas Instruments, Dallas,
TX, USA), the proposed VDR design can drive SR FETs more directly and efficiently
compared to the conventional VDR configuration. These drivers are well suited for the
simplified structure shown in Figure 6b, as they utilize the stable voltage supplied by CO1
and CO2 to directly operate the gates of QS1 and QS2. This direct driving capability not
only enhances system performance but also reduces the complexity of gate driving circuits.
Consequently, the proposed design offers a more robust and easily implementable solution
for low-voltage, high-current power module applications.

As shown in Figure 6, the SR FET driving circuits of both converters are compared.
While the driving circuit for the low-side SR FET is identical in both configurations, the
high-side SR FET driving circuit in the conventional VDR (Figure 6a) additionally requires
a bootstrap diode and a capacitor, increasing circuit complexity. In contrast, the proposed
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configuration (Figure 6b) eliminates this requirement, relying instead on the doubler
capacitors CO1 and CO2 to supply the gate drive voltage directly, simplifying the design
and improving reliability.

3. Experimental Results

To evaluate the effectiveness of the proposed VDR, a 24 V/240 W output prototype was
implemented for both the conventional VDR LLC and the proposed VDR LLC converters.
The key components used in the prototypes are listed in Table 1. For the 24 V/240 W output
power module, the design specifications are Vin = 355~408 V, PO,max = 240 W, VO = 24 V.
The experimental results obtained with the prototypes confirm the validity of the proposed
circuit. As shown in Figure 7, the prototype consists of the primary side, which includes
the resonant tank circuit and transformer, and the secondary side, which incorporates
the synchronous rectifier SR FETs and doubler capacitors. The layout highlights the
integration of essential components in a compact design for efficient operation. This
physical implementation validates the compatibility of the proposed topology with the
design specifications and demonstrates its capability to achieve the intended performance
under experimental conditions.

Table 1. Experimental Parameters of 240 W prototype.

Parameters Value

Input voltage, Vin 355 V~408 V (nominal 400 V)
24 VOutput voltage, Vo

Output current, Io 0~10 A
Switching frequency Fs = 87~105 kHz

Transformer turns ratio NP:NS = 34:2
Magnetizing inductance LM = 700 µH

Resonant inductance LR = 58 µH
Resonant capacitor CR = 44 nF
Doubler capacitor CO1, CO2 = 88 µF
Output capacitor CO = 1200 µF

Primary FET, QP1 and QP2 TK290P60Y
SR FET, QS1 and QS2 BSC016N06NST

SR driver TEA1999TS
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The proposed converter achieves the same DC gain as a conventional VDR LLC res-
onant converter, and its resonant tank design is comparable to that of an LLC converter
with a CTR. Moreover, the proposed VDR LLC resonant converter shares common param-
eters with the conventional VDR LLC resonant converter, including the same turn ratio,
secondary SR FETs, and doubler capacitors. The control strategy to verify the operational
principles of the proposed VDR LLC resonant converter is general voltage control, as shown
in Figure 8.
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Figure 8. Control strategy for proposed VDR LLC resonant converter.

As shown in Figures 9 and 10, the experimental waveform of the proposed VDR
converter, measured under an input voltage of 400 V, closely resembles those of the conven-
tional VDR converter in terms of current and voltage characteristics. The performance of the
proposed converter was tested under varying load conditions, specifically at 10% and 100%
loads. In both cases, the primary current and rectifier diode current waveforms aligned
with the theoretical predictions. Furthermore, an analysis of the resonant circuit revealed
that the resonant current and voltage observed during the experiments were consistent
with theoretical expectations, demonstrating reliable performance across different load
conditions. Therefore, while the proposed converter shares basic operating characteristics
with the conventional VDR, it distinguishes itself through simplified SR FET driving.
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(b) 100% loads.

The simplification of SR FET driving significantly enhances the convenience of circuit
design by eliminating the need for jumpers during PCB manufacturing, reducing circuit
complexity, and minimizing potential manufacturing errors. Additionally, the use of SR
FETs improves overall system efficiency. Unlike the conventional VDR method, which
relies on complex driving circuits for high-speed switching, the proposed method simplifies
the driving circuits, reducing switching losses. The reduction in switching losses trans-
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lates directly to the minimization of power losses, which is a crucial factor in enhancing
system efficiency.

In addition to its design advantages, the proposed converter is expected to demon-
strate superior performance compared to the conventional VDR method. Simplified SR FET
driving facilitates stable operation at high frequencies, enabling increased power density.
Moreover, it ensures stable operation under high-voltage and high-current conditions,
making it highly applicable across various fields. In conclusion, the proposed converter
offers significant improvements over the conventional VDR method. The simplification of
the PCB manufacturing process, increased efficiency, and ease of design through the simpli-
fication of the driving circuit are key advantages. These benefits collectively highlight the
proposed converter’s potential to provide a notable performance enhancement compared
to the conventional VDR.

Figures 9 and 10 illustrate the measured SR switching waveform variations under differ-
ent load conditions for both the conventional VDR and the proposed VDR, with measurements
conducted at an input voltage of 400 V. Following this, Figures 11 and 12 present the SR switch-
ing waveforms obtained at an input voltage of 355 V in the respective VDRs.
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Figures 13 and 14 show primary ZVS waveforms with output voltage and primary
resonant current waveforms under 355 V and 400 V inputs, respectively. Figure 15 shows
the results of comparing the efficiency of the proposed and the conventional convert-
ers under different input voltage conditions. Efficiency measurements were conducted
under two input voltage levels: a 400 V nominal input voltage and a 355 V minimum
input voltage. Figure 15a illustrates the efficiency results at the nominal input voltage of
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400 V, while Figure 15b presents the results at the minimum input voltage of 355 V. These
measurements provide a comprehensive evaluation of the converters’ performance across
varying load conditions.
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As shown in Figure 15a, at a 400 V input, the proposed VDR LLC converter consistently
outperforms the conventional VDR LLC converter across all load conditions. At light loads,
the efficiency of the proposed converter starts at 89.17%, compared to 88.64% for the
conventional converter. This efficiency advantage becomes more pronounced as the load
increases, with the proposed converter peaking at 95.92% efficiency at full load, while the
conventional converter reaches a maximum of 95.68%. The reduced conduction losses in
the proposed converter, achieved by eliminating jumpers during PCB implementation,
significantly contribute to this improvement. Similarly, Figure 15b shows the efficiency
comparison under a lower input voltage of 355 V. While both converters experience a slight
decrease in overall efficiency due to higher conduction losses at lower input voltages, the
proposed VDR LLC converter still demonstrates superior performance. At a 10% load,
the efficiency of the proposed converter is 88.40%, slightly higher than the conventional
converter’s 88.14%. At full load, the proposed converter achieves 94.77%, compared to
94.13% for the conventional design. These results highlight the robustness of the proposed
VDR design, maintaining higher efficiency across a wide range of operating conditions.
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The improvement in efficiency can be attributed to the elimination of jumpers and
the simplified PCB design of the proposed VDR circuit. By widening and optimizing high-
current flow paths, conduction losses are minimized, leading to enhanced overall system
performance. This benefit is particularly significant under high-output and high-voltage
conditions, as shown in Figure 15a. Moreover, the consistent efficiency advantage at lower
input voltages, as depicted in Figure 15b, demonstrates the versatility of the proposed
design for applications requiring stable performance across varying voltage levels.

Furthermore, the elimination of jumpers not only reduces power losses but also
enhances the convenience and flexibility of PCB implementation. This advantage allows
for simplified circuit design, making the proposed converter a practical solution for high-
efficiency power conversion in a wide range of applications. These results underline the
potential of the proposed VDR LLC converter as a significant advancement in the design
and implementation of power conversion systems.

4. Conclusions

In this paper, the performance improvements of LLC resonant converters adopting
the new VDR method are investigated. The proposed VDR structure simplifies SR FET
driving and enhances power conversion efficiency while optimizing PCB design. By incor-
porating UU-type planar transformers, the complexity of the PCB layout is significantly
reduced, enabling greater integration and reliability. The experimental results confirm
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that the proposed VDR-based LLC resonant converter retains the fundamental operating
characteristics of conventional VDR LLC converters while achieving improved overall
system performance. These structural enhancements demonstrate improved efficiency
without compromising the inherent high efficiency and voltage stability of LLC converters.

In particular, the proposed converter exhibits excellent performance in low-voltage,
high-current power module applications, indicating its potential to effectively replace
conventional VDR LLC resonant converters. Furthermore, the proposed VDR-based LLC
resonant converter provides a promising solution for applications requiring high-efficiency
power conversion. In conclusion, the proposed VDR method significantly improves
the performance of LLC resonant converters by offering a simplified structure and high
implementation efficiency. These characteristics make it suitable for low-voltage, high-
current power systems, underscoring its potential for broader applications in modern
power electronics.
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