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Abstract: This paper investigates a back-electromotive force (EMF) harmonic compensation strategy
for six-phase permanent-magnet synchronous motors (PMSMs) to reduce current harmonics and
improve system performance. Ideally, the back-EMF waveform should be perfectly sinusoidal.
However, manufacturing imperfections such as suboptimal magnetic circuit design, uneven winding
distribution, and mechanical eccentricity introduce low-order spatial harmonics, particularly the 5th,
7th, 11th, and 13th orders, which distort the back-EMF, increase current harmonics, complicate control,
and reduce efficiency. To address these issues, this study proposes a compensation strategy utilizing
common-mode and differential-mode current control. By injecting the 6th and 12th harmonics into
the decoupled voltage commands along the d-axis and q-axis, the strategy significantly reduces
current harmonic distortion. Experimental validation was conducted using a TMS320F28386D
microcontroller, which controlled dual inverters via PWM signals and processed real-time current
feedback. Rotor position feedback was provided by a resolver to ensure precise and responsive
motor control. At a rotational speed of 900 rpm, with a peak phase current Im of 200 A and an IGBT
switching frequency of 10 kHz, the phase-a current total harmonic distortion (THD) was reduced
from 11.86% (without compensation) to 6.83% (with compensation). This study focused on mitigating
harmonics below the 14th order. The experimental results demonstrate that the proposed back-EMF
harmonic compensation strategy effectively minimizes current THD, highlighting its potential for
improving the performance and efficiency of multi-phase motor systems.

Keywords: current harmonics; six-phase PMSM; common mode and differential mode; back-EMF
harmonic compensation

1. Introduction

In modern applications, both three-phase and six-phase PMSMs are widely utilized
across industrial and consumer sectors [1–9]. In recent years, the control of six-phase
PMSMs has garnered significant attention, with numerous studies demonstrating the
advantages [10–12]. Therefore, these benefits will not be further elaborated on in this
paper. The fundamental specifications of the six-phase PMSM under test can be found in
Appendix A Table A1. The motor is controlled using common-mode and differential-mode
current control strategies [13]. Specifically, the control involves summing and subtracting
the dq-axes currents of the two three-phase sets within a six-phase system, following the
principles of field-oriented control (FOC) [14,15].

Initially, this method failed to achieve satisfactory control performance, with the total
harmonic distortion (THD) of the six-phase currents exceeding 10%. Excessive current
harmonic distortion leads to torque ripple, which can affect the motor’s smooth operation
and potentially shorten the lifespan of mechanical components. One of the primary causes
of current harmonics is the harmonics of back-EMF, which can directly induce and amplify
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current harmonics by affecting the motor’s electromagnetic interactions, nonlinear load
characteristics, the dynamic response of the control system, and internal electromagnetic
force variations, also resulting in torque ripple [16–18]. Hence, it is clear that reducing
back-EMF harmonics can significantly enhance motor performance. By applying back-
EMF compensation techniques, as described in [19], overall operating performance can be
effectively improved. While that approach does not go into detail on phases of harmonics
during back-EMF harmonic compensation, this work takes the harmonic phases into
account to offer a more complete perspective on optimizing compensation accuracy.

This paper analyzes the harmonics of the back-EMF, focusing not only on the mag-
nitudes of the 5th, 7th, 11th, and 13th harmonics but also the phases [20] to reconstruct
the original back-EMF waveform. The 5th, 7th, 11th, and 13th harmonics of phase back-
EMF are derived into 6th and 12th harmonics of the d-axis and q-axis back-EMF through
Clarke and Park transformations [21,22], simplifying the mathematical model of back-EMF
compensation strategy.

Related studies have explored optimization strategies to further enhance system
performance and stability. For instance, inertial control strategies and optimization of
control parameters have been shown to improve system stability and dynamic response
under varying conditions [23–27]. Incorporating insights from these works provides a
broader context for the development of effective compensation and control strategies.

The rest of this paper is organized as follows: Section 2 performs FFT analysis to
obtain the harmonic magnitudes and phases. Section 3 incorporates the back-EMF har-
monic parameters into the motor model. Section 4 shows the results that were simulated
using MATLAB/Simulink R2024a, and experimental results are presented to validate the
effectiveness of the back-EMF compensation strategy.

2. Back-EMF Measurement and FFT Analysis Result
2.1. Formulation of the Back-EMF Harmonic Equation

The back-EMF needs to be transformed from the abc and xyz phases to the dq-axes
equations for further analysis. Appendix A shows the Clarke and Park transformation
matrices. The six-phase back-EMF equations for the abc and xyz phases, considering only
harmonic components and neglecting the fundamental component, are given as follows:

ea−h = −ωrλ′
m[ Σ

n=5,7,11,13
han sin(nθa + δan)]

eb−h = −ωrλ′
m[ Σ

n=5,7,11,13
han sin(nθa − n

2
3

π + δan)]

ec−h = −ωrλ′
m[ Σ

n=5,7,11,13
han sin(nθa + n

2
3

π + δan)]

(1)

ex−h = −ωrλ′
m[ Σ

n=5,7,11,13
hxn sin(nθx + δxn)]

ey−h = −ωrλ′
m[ Σ

n=5,7,11,13
hxn sin(nθx − n

2
3

π + δxn)]

ez−h = −ωrλ′
m[ Σ

n=5,7,11,13
hxn sin(nθx + n

2
3

π + δxn)]

(2)

In this context, θx = θa − 1
6 π, han, and hxn represent the harmonic content of the

a-phase and x-phase, respectively, with n indicating the order of the harmonics. These
values reflect the percentage of harmonic components relative to the fundamental wave.
δan andδxn denote the harmonic phase angles of a-phase and x-phase in degrees (°). For n,
values of 5, 7, 11, and 13 are considered to obtain the six-phase back-EMF.

The 5th, 7th, 11th, and 13th harmonic components, when transformed into the dq-axes
via Clarke and Park transformations, correspond to the 6th- and 12th-order harmonics.
Appendix A Equation (A7) shows the transformation process. These harmonics align
with the natural frequency characteristics of a three-phase system. In a six-phase PMSM,
which can be modeled as two independent three-phase subsystems with a 120° phase
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shift, the presence of 6th-order harmonics can induce interactions between the subsystems,
complicating the composite waveform and destabilizing the electromagnetic torque. The
12th-order harmonics, as the second harmonic multiple of the 6th order, exacerbate these
issues by interacting with the spatial harmonics of the winding structure, leading to addi-
tional torque ripple and increased vibration. Although the dq-axes transformation simplifies
control by converting three-phase AC currents into DC currents on direct and quadrature
axes, the 6th- and 12th-order harmonics introduce coupling effects that compromise the
accuracy of decoupling, ultimately degrading control performance.

The compensation strategy for the harmonics in back-EMF along dq-axes are as follows:

edqa−h = ωrλ′
m

[
−hd6 sin(6θa + δd6)− hd12 sin(12θa + δd12)
−hq6 cos(6θa + δq6) + hq12 cos(12θa + δq12)

]
edqx−h = ωrλ′

m

[
hd6 sin(6θa + δd6)− hd12 sin(12θa + δd12)
hq6 cos(6θa + δq6) + hq12 cos(12θa + δq12)

] (3)

edqa−h and edqx−h represent the back-EMF harmonic components for the abc and xyz phases,
respectively. Given that the harmonic components of the six-phase back-EMF exhibit
similar characteristics, the harmonics of the sixth and twelfth orders on the dq-axes are
denoted as hd6, hd12, hq6, and hq12. Similarly, δd6, δd12, δq6, and δq12 represent the phase
angles of the sixth and twelfth-order harmonics on the dq-axes.

2.2. Measurement of Back-EMF

In Figure 1, the operation of the six-phase PMSM is driven by the Dynamometer. The
MCU reads the angle and voltage information, which is then transmitted to the PC via USB.
LabVIEW processes the data and extracts the harmonic content of the six-phase back-EMF.
Figure 2 illustrates the analysis results for 600 rpm, respectively.

During testing, measurements were conducted across a range of speeds from 100 rpm
to 1200 rpm. Theoretically, the magnitude of back-EMF is proportional to rotational speed.
Consequently, the ratio of harmonic magnitudes to the fundamental back-EMF, as well as
their phases, remains consistent across varying speeds. This observation aligns with the
experimental results obtained at various speeds. Therefore, 50% of the rated speed was
selected to present the findings.

Figure 1. Six-phase PMSM back-EMF measurement system block diagram.
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Figure 2. Phase-a and phase-x back-EMF measurement.

The FFT analysis results from Figure 2 are summarized in Table 1. After simplification
using a polar coordinate system, the magnitudes and phases of the 6th and 12th harmonic
of dq-axes back-EMF are shown in Table 2. These parameters were used in both the
experimental measurements and simulations.

Table 1. Back-EMF harmonic parameters based on phase voltage harmonic distribution.

h5 (%)/δ5 (°) h7 (%)/δ7 (°) h11 (%)/δ11 (°) h13 (%)/δ13 (°)

2.72/185.4 1.58/5.6 0.72/347.9 0.27/173.5
The fundamental peak value of the back-EMF is 118.1 V.

Table 2. Back-EMF harmonic parameters based on dq-axes harmonic distribution.

hd6 (%)/δd6 (°) hd12 (%)/δd12 (°) hq6 (%)/δq6 (°) hq12 (%)/δq12 (°)

1.03/5.7 0.48/165.1 3.94/94.7 0.95/260.5

2.3. Back-EMF Reconstruction

To expand upon the current analysis, it is crucial to further discuss the role of har-
monic components in the back-EMF reconstruction process. The presence of 6th and 12th
harmonics in the dq-axes plays a significant role in influencing the waveform accuracy of
back-EMF. These harmonic components are primarily caused by the spatial distribution of
stator windings and the magnetic flux within the motor. By analyzing the harmonics in the
dq-axes, the method of reconstructing back-EMF can be made more efficient and accurate,
which is essential for improving overall system performance in PMSM.

Through Equation (3), we reconstructed the back-EMF and compared it with the
measured back-EMF in phases-a and phase-x. As shown in Figure 3, the results align,
confirming the accuracy of the equation. In the next section, we convert this equation into
common-mode and differential-mode forms to further simplify the expressions.

In Figure 3b, it can be clearly observed that phase-x lags phase-a by 0.00139 s. At
a speed of 600 rpm and with a motor pole count of 12, the electrical frequency is 60 Hz.
Therefore, a lag of 0.00139 s corresponds to an electrical angle of 30 degrees, which verifies
that the phase voltage of phase-x lags behind that of phase-a.
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(a)

(b)
Figure 3. The waveform of the measured and reconstructed phase-a and phase-x back-EMF:
(a) phase-a and phase-x back-EMF waveform; (b) zoomed-in waveform.

3. Incorporate the Back-EMF Harmonics into the Six-Phase PMSM Motor Model

When formulating the dq-axes flux linkage equations for the six-phase PMSM while
neglecting the zero-sequence current.

λda = Ldida + Mdidx + λ′
m

λdx = Ldidx + Mdida + λ′
m

λqa = Lqiqa + Mqiqx

λqa = Lqiqx + Mqiqa

(4)

The dq-axes voltage equations of the six-phase PMSM, incorporating the effects of
back-EMF harmonics, are presented below in a simplified form.

vda = Rsida +
d
dt

λda − ωrλqa + eda−h

vqa = Rsiqa +
d
dt

λqa + ωrλda + eqa−h

vdx = Rsidx +
d
dt

λdx − ωrλqx + edx−h

vqx = Rsiqx +
d
dt

λqx + ωrλdx + eqx−h

(5)

The transformation matrix equations for common-mode and differential-mode can be
found in Appendix A.
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λ+
d =

1
2
(λda + λdx) = L+

d i+d + λ′
m

λ+
q =

1
2
(λqa + λqx) = L+

q i+q

λ−
d =

1
2
(λda − λdx) = L−

d i−d

λ−
q =

1
2
(λqa − λqx) = L−

q i−q

(6)

With the inclusion of the dq-axes voltage equations of the six-phase PMSM consid-
ering the back-EMF harmonics, the equations can be transformed into common-mode
and differential-mode voltage equations through common-mode and differential-mode
transformations.

v+d =
1
2
(vda + vdx) = Rsi+d +

d
dt

λ+
d − ωrλ+

q + e+d−h

v+q =
1
2
(vqa + vqx) = Rsi+q +

d
dt

λ+
q + ωrλ+

d + e+q−h

v−d =
1
2
(vda − vdx) = Rsi−d +

d
dt

λ−
d − ωrλ−

q + e−d−h

v−q =
1
2
(vqa − vqx) = Rsi−q +

d
dt

λ−
q + ωrλ−

d + e−q−h

(7)

The definitions of common-mode and differential-mode inductances are L+
d = Ld + Md,

L+
q = Lq + Mq, L−

d = Ld − Md, L−
q = Lq − Mq. The definitions of common-mode and

differential-mode currents are i+d = 1
2 (ida + idx), i+q = 1

2 (iqa + iqx), i−d = 1
2 (ida − idx), i−q =

1
2 (iqa − iqx).

e+d−h =
1
2
(eda + edx) = ωrλ′

m[−hd12 sin(12θa + δd12)]

e+q−h =
1
2
(eqa + eqx) = ωrλ′

m[hq12 cos(12θa + δq12)]

e−d−h =
1
2
(eda − edx) = ωrλ′

m[−hd6 sin(6θa + δd6)]

e−q−h =
1
2
(eqa − eqx) = ωrλ′

m[−hq6 cos(6θa + δq6)]

(8)

After converting the back-EMF harmonics equations to common-mode and differential-
mode forms, these parameters are used in feed-forward compensation. Additionally, the
back-EMF was reconstructed using this equation, yielding results consistent with those in
Section 2. Figure 3 further validates the reliability of this approach. The overall control
block diagram is shown in Figure 4.

v+d
∗
= u+

d
∗ − ωrλ+

q + e+d−h

v+q
∗
= u+

q
∗
+ ωrλ+

d + e+q−h

v−d
∗
= u−

d
∗ − ωrλ−

q + e−d−h

v−q
∗
= u−

q
∗
+ ωrλ−

d + e−q−h

(9)

u+
d
∗
= G+

d (s) ◦ △i+d
u+

q
∗
= G+

q (s) ◦ △i+q

u−
d
∗
= G−

d (s) ◦ △i−d
u−

q
∗
= G−

q (s) ◦ △i−q

(10)

The current control loops are implemented with a PI controller. The symbol “^” within
the diagram represents the measured feedback value, and “*” represents the commands.
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The errors between the commands and feedback are represented as △i+d , △i+q , △i−d , and
△i−q . The gains of the current regulators are defined as G+

d (s), G+
q (s), G−

d (s), and G−
q (s).

Figure 4. Six-phase PMSM common-mode and differential-mode current closed-loop control block.

4. Result

Appendix A, Table A1 shows that the rated motor speed is 1200 rpm. To evaluate
performance across a range of operating conditions, tests were conducted at speeds of 300,
600, 900, and 1200 rpm, corresponding to 25%, 50%, 75%, and 100% of the rated speed.
The current THD results from both simulation and experimental measurements at the
aforementioned speeds are comprehensively summarized in Table 3.

Table 3. Current harmonic reduction with back-EMF compensation (simulation and actual result).

Speed (rpm) Im (A) THD-No Comp. (%) THD-Comp. (%) Reduction (%)
Simulation/Actual Simulation/Actual Simulation/Actual

300 100 8.16/9.08 3.64/4.01 55.39/55.84

300 200 3.59/4.91 1.71/2.86 52.37/41.75

600 100 16.33/15.00 7.50/4.11 54.07/72.60

600 200 7.05/8.34 3.55/4.90 49.65/41.25

900 100 21.90/19.99 12.80/5.15 41.55/74.24

900 200 9.93/11.86 6.68/6.83 32.73/42.41

1200 100 25.74/25.31 19.35/7.14 24.83/71.79

1200 200 12.40/15.98 10.32/9.46 16.77/40.80

The inverter operated at a switching frequency of fs = 10 kHz with a dead time of
2 µs, and currents for comparison include i∗da = i∗dx = −50

√
2 A , i∗qa = i∗qx = 50

√
2 A, and

i∗da = i∗dx = −100
√

2 A , i∗qa = i∗qx = 100
√

2 A, resulting in the peak phase currents Im of 100 A
and 200 A. With 12 poles, the motor completes one mechanical rotation every six electrical
cycles, and results are shown for six steady-state electrical cycles. The waveform for
900 rpm is specifically highlighted in the results, as this speed exhibited the most significant



Energies 2024, 17, 6280 8 of 14

performance in terms of motor operation and harmonic analysis. This observation was
consistent across tests, irrespective of whether the peak phase current was 100 A or 200 A,
further reinforcing the importance of this operating point for detailed analysis.

4.1. Simulation Result

Figure 5a shows the simulation results at 900 rpm with a peak phase current Im of
200 A, without back-EMF harmonic compensation, revealing current waveform distor-
tion. In contrast, Figure 5b shows improved waveform quality with back-EMF harmonic
compensation under the same conditions. Figure 6 summarizes and compares the THDs
of all scenarios, demonstrating the effectiveness of back-EMF harmonic compensation in
reducing current harmonic distortion and enhancing motor drive stability.

(a)

(b)

Figure 5. Simulated phase-a current waveform and harmonic histogram: (a) Without compensation.
(b) With compensation.

Figure 6. Histogram of the THD reduction in simulation result.
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4.2. Actual Result

Figure 7a shows an actual photograph of the experimental setup where the dynamome-
ter drives the six-phase PMSM. Figure 7b presents the housing of the actual drive system,
along with the control and feedback circuits. Real-time voltage and current data are sam-
pled at a 10 kHz sampling frequency on the driver and then transmitted to PC. The data
are recorded and subsequently processed using MATLAB/Simulink for FFT analysis.

(a)

(b)

Figure 7. Photos of the six-phase PMSM testbench: (a) Setup with the dynamometer driving the
six-phase PMSM. (b) Six-phase PMSM drive system.
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Figure 8a illustrates the actual performance without the incorporation of back-EMF
harmonic compensation, demonstrating the effects of harmonics on the system’s response.
Conversely, Figure 8b presents the performance under identical speed and current com-
mands but with harmonic compensation applied, highlighting the improvement in wave-
form fidelity. The THD of the current is summarized and compared in Figure 9, providing
quantitative evidence of the effectiveness of harmonic compensation in reducing distortions
and enhancing system performance. This comparison clearly demonstrates the positive
impact of back-EMF harmonic compensation on system stability and control precision.

Energies 2024, 1, 0 10 of 14

Figure 8a illustrates the actual performance without the incorporation of back-EMF
harmonic compensation, demonstrating the effects of harmonics on the system’s response.
Conversely, Figure 8b presents the performance under identical speed and current com-
mands but with harmonic compensation applied, highlighting the improvement in wave-
form fidelity. The THD of the current is summarized and compared in Figure 9, providing
quantitative evidence of the effectiveness of harmonic compensation in reducing distortions
and enhancing system performance. This comparison clearly demonstrates the positive
impact of back-EMF harmonic compensation on system stability and control precision.

(a)

(b)

Figure 8. Actual phase-a current waveform and harmonic histogram: (a) Without compensation. (b)
With compensation.

Figure 9. Histogram of the THD reduction in actual result.

Figure 8. Actual phase-a current waveform and harmonic histogram: (a) Without compensation.
(b) With compensation.

Figure 9. Histogram of the THD reduction in actual result.
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5. Discussion

In Section 4, as shown in Figures 6 and 9 , the summarized data indicate that as the
rotational speed increases, the current harmonic component in the six-phase PMSM rises
as well. The primary reason for this is that the rotor frequency of the PMSM increases
with speed, while the switching frequency of the inverter typically remains constant.
Consequently, the ratio between the rotor frequency and the inverter’s switching frequency
decreases, making it more challenging for the inverter to follow the rapidly changing
commands effectively. This results in less smooth current waveforms at higher speeds
compared with lower speeds, thereby leading to an increase in harmonic content. Therefore,
under the same speed and current command conditions, increasing the inverter’s switching
frequency could reduce the current harmonic content. Additionally, as the rotor frequency
rises, higher-order harmonics further exacerbate the challenge for the inverter to track the
rapidly varying voltage commands due to the static switching frequency, which may pose
certain challenges for this compensation method at higher rotational speeds.

When operating at the same speed but with a lower current, the current waveform
shows greater improvement. This is because, at lower currents, the waveform is more
susceptible to electromagnetic interference, resulting in higher inherent THD in the current
when back-EMF harmonic compensation is not applied. Additionally, when the current
is lower, the internal resistance voltage drop and inductive voltage drop are also smaller
compared with higher currents, causing the back-EMF generated within the motor to domi-
nate the voltage equation. This explains why back-EMF harmonic compensation results in
a more significant improvement in the current waveform under lower current conditions.

The results show that, although the compensation is effective, there is still room for
improvement. In addition to the back-EMF harmonic compensation, future work will
incorporate other current harmonic suppression strategies to further reduce low-order
current harmonics and enhance motor performance.

6. Conclusions

The core focus of this paper is back-EMF harmonic compensation; however, the
procedure behind implementing this compensation is crucial. The first step involves the
analysis of back-EMF, where not only the harmonic magnitude but, more importantly, the
phase of the harmonics must be taken into account. Accurate phase alignment and correct
harmonic magnitude are essential to reconstruct the original back-EMF waveform. Once
this waveform is obtained, the compensation strategy can be integrated into the controller
to realize the back-EMF harmonic compensation.

This study addresses the issue of low-order current harmonic distortions caused by
the coupling between two sets of three-phase windings in a six-phase PMSM, a challenge
that represents a significant drawback of six-phase motors compared with their three-
phase counterparts. However, the method proposed in this paper offers a substantial
improvement by effectively mitigating these distortions, thus enhancing the performance
and broadening the applicability of six-phase PMSM. The dual three-phase configuration
is primarily adopted to provide redundancy, ensuring continuous operation even if one
set of windings fails. This feature is particularly advantageous for electric vehicle (EV)
applications, where system reliability is critical. By addressing both harmonic distortion
and fault-tolerant operation, the proposed approach not only strengthens the robustness
of EV systems but also demonstrates its potential for broader applications across various
fields requiring high reliability and fault tolerance.

In the experimental results, the THD reduction ratio ranged from 40.80% to 74.24%.
The THD with back-EMF harmonic compensation was significantly lower compared with
that without compensation. These results clearly demonstrate that this compensation
strategy effectively enhances the performance of the six-phase PMSM.
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Appendix A

Table A1. Motor Specifications.

Parameter Value

DC link voltage (V) 600

Rated Speed (rpm) 1200

Poles Np 12

Phase resistance Rs (mΩ) 23.14

d-axis self inductance Ld (µH) 309.9

q-axis self inductance Lq (µH) 743.2

d-axis mutual inductance Md (µH) 260.3

q-axis mutual inductance Mq (µH) 706.1

Flux linkage λ
′
m (Wb) 0.313

Tαβa =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
, T−1

αβa =

 1 0
− 1

2

√
3

2

− 1
2 −

√
3

2

 (A1)

Tαβx =
2
3

[√
3

2 −
√

3
2 0

1
2

1
2 −1

]
, T−1

αβx =


√

3
2

1
2

−
√

3
2

1
2

0 −1

 (A2)

Tθ =

[
cos θa sin θa
− sin θa cos θa

]
, T−1

θ =

[
cos θa − sin θa
sin θa cos θa

]
(A3)
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Tdqa = TθTαβa =
2
3

[
cos θa cos(θa − 2

3 π) cos(θa +
2
3 π)

− sin θa − sin(θa − 2
3 π) − sin(θa +

2
3 π)

]

T−1
dqa = T−1

αβaT−1
θ =

 cos θa − sin θa
cos(θa − 2

3 π) − sin(θa − 2
3 π)

cos(θa +
2
3 π) − sin(θa − 2

3 π)

 (A4)

Tdqx = TθTαβx =
2
3

[
− sin(θa − 2

3 π) − sin(θa +
2
3 π) − sin θa

− cos(θa − 2
3 π) − cos(θa +

2
3 π) − cos θa

]

T−1
dqx = T−1

αβxT−1
θ =

− sin(θa − 2
3 π) − cos(θa − 2

3 π)
− sin(θa +

2
3 π) − cos(θa +

2
3 π)

− sin θa − cos θa

 (A5)

Tpn =
1
2

[
1 1
1 −1

]
, T−1

pn =

[
1 1
1 −1

]
(A6)

edqa−h = Tdqaeabc−h

edqx−h = Tdqxexyz−h
(A7)
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