
Citation: Liu, S.; Su, H.; Mao, W.; Li,

M.; Zhang, J.; Bao, H. Substation

Abnormal Scene Recognition Based

on Two-Stage Contrastive Learning.

Energies 2024, 17, 6282. https://

doi.org/10.3390/en17246282

Academic Editor: Tek Tjing Lie

Received: 12 October 2024

Revised: 9 December 2024

Accepted: 10 December 2024

Published: 13 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Substation Abnormal Scene Recognition Based on Two-Stage
Contrastive Learning
Shanfeng Liu 1, Haitao Su 2, Wandeng Mao 1, Miaomiao Li 1, Jun Zhang 3 and Hua Bao 3,*

1 State Grid Henan Electric Power Research Institute, Zhengzhou 450199, China;
liushanfeng1985@163.com (S.L.); 18568250226@163.com (W.M.); 18790027303@163.com (M.L.)

2 State Grid Henan Electric Power Company, Zhengzhou 450052, China; suht2006@126.com
3 School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, China;

junzhang@ahu.edu.cn
* Correspondence: baohua@ahu.edu.cn

Abstract: Substations are an important part of the power system, and the classification of abnormal
substation scenes needs to be comprehensive and reliable. The abnormal scenes include multiple
workpieces such as the main transformer body, insulators, dials, box doors, etc. In this research
field, the scarcity of abnormal scene data in substations poses a significant challenge. To address
this, we propose a few-show learning algorithm based on two-stage contrastive learning. In the first
stage of model training, global and local contrastive learning losses are introduced, and images are
transformed through extensive data augmentation to build a pre-trained model. On the basis of the
built pre-trained model, the model is fine-tuned based on the contrast and classification losses of
image pairs to identify the abnormal scene of the substation. By collecting abnormal substation images
in real scenes, we create a few-shot learning dataset for abnormal substation scenes. Experimental
results on the dataset demonstrate that our proposed method outperforms State-of-the-Art few-shot
learning algorithms in classification accuracy.

Keywords: substation abnormal scenarios; contrastive learning; few-shot learning; pre-trained model

1. Introduction

Substations are an indispensable part of the power system, and their normal opera-
tion is crucial for the stability and safety of the power system [1]. However, substation
equipment is usually exposed to the open environment and is subject to natural weather
conditions, leading to issues such as rust, aging, and component detachment. Additionally,
staff non-compliance with operational standards and disturbances from the natural envi-
ronment, such as bird nests on transformers, are common occurrences. These abnormal
situations pose potential threats to the operational safety of substations, necessitating timely
detection and identification of abnormal scenarios within substations. With the continuous
expansion of substation scales, traditional manual inspection methods for power inspection
tasks are facing challenges, the most significant of which is the low efficiency and sus-
ceptibility to environmental influences. Moreover, manual inspections are also limited by
subjective judgments [2]. The subjective judgment of inspectors can be easily influenced by
various factors, such as fatigue, visual limitations, and personal biases, thereby increasing
potential safety risks. Ensuring the safe inspection of substation systems has become an
important issue that needs to be addressed urgently. Given the limitations of traditional
manual inspection methods, there is an urgent need to introduce new technologies and
methods to improve inspection efficiency and accuracy.

Currently, substation equipment can be inspected by using inspection robots to collect
images on-site, followed by applying machine learning algorithms for abnormal scenario
recognition. Kong et al. [3] were the first to apply pattern recognition technology for the
video monitoring of unattended substations, using the AdaBoost algorithm for weighted
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voting to detect moving targets, successfully achieving recognition of abnormal envi-
ronments. Wu et al. [4] introduced the concept of a fault detection algorithm based on
improved YOLO5 that sets a hyperparameter at each layer according to the recognition
situation to re-extract features for substation equipment. Gao et al. [5] combined YOLOX
with higher-order gated convolution to enhance the interaction capability in feature space,
improving detection accuracy and robustness. However, the number of images for abnor-
mal scenarios in substations is relatively small, resulting in an imbalance between positive
and negative samples. Researchers have proposed innovative solutions for this issue, such
as augmenting the training set with virtual abnormal samples generated using generative
adversarial networks [6] to achieve a numerical balance between positive and negative
samples. Additionally, techniques like transfer learning and semi-supervised learning can
be employed to train with a few labeled abnormal samples [7]. However, the field primarily
faces two challenges: (1) a large number of abnormal scenario categories with significant
differences between each scenario and (2) the difficulty in collecting abnormal scenario
samples, resulting in a limited number of samples. In fact, abnormal scenario recognition
in substations is a typical few-shot learning problem. The backgrounds and objects to be
identified in different abnormal situations exhibit distinct differences, which leads to poor
generalization capabilities of existing models and difficulties in accurately identifying new
abnormal scenarios.

Numerous scholars have conducted related research to address the challenges of
machine learning in substation abnormal scene recognition with small sample sizes. In
the field of few-shot learning, the researchers divided the dataset into a base set and a
support set. The base set is used to train a foundational model with a limited number of
labeled samples, and the support set is employed to evaluate and further fine-tune the
model’s performance. The support set consists of a small number of support samples
and query samples; support samples are used for model evaluation, and query samples
are utilized for performance measurement. Small-sample models aim to classify query
samples using support samples. To cope with few-shot learning scenarios, metric learning
methods [8,9] are widely used to learn the feature space of samples in the base set, which
is then applied to classify query samples in the support set. However, when recognizing
abnormal scenes in substations, these methods face challenges due to the large differences
in sample morphology, the scarcity of samples for certain defects, and large numbers of
unlabeled samples. Therefore, some researchers have adopted self-supervised learning to
perform the task. Usually, they use data augmentation on the base dataset to construct a
pre-trained model and then fine-tune the pre-trained model with the support set to build a
classifier. Nevertheless, existing algorithms neglect the distinctiveness and diversity among
samples when handling abnormal scene samples in substations, resulting in poor classifi-
cation performance. The abnormal scenarios in substations significantly differ in sample
morphology, with specific categories of defects encompassing very few samples, and many
samples are without annotated labels. Constructing a model that correctly identifies each
defective instance under small-sample conditions poses a significant challenge. Inspired by
self-supervised learning, this paper proposes a novel two-stage contrastive learning (2-SCL)
method for identifying abnormal scenes in substations. It combines contrastive learning
with various data augmentation techniques in the first stage to construct a pre-trained
model, aiming to minimize the distance between original and augmented samples, thereby
enhancing sample distinctiveness and improving the model’s inter-class discrimination and
generalization ability. At the same time, to prevent the distance between similar samples
from becoming too far, this paper proposes supervised contrastive learning for fine-tuning
to further improve performance, effectively addressing the problems existing research in
this field faces.

To implement self-supervised tasks, it is necessary to perform data augmentation on
the original image [10]. In fact, data augmentation of samples is crucial for improving the
algorithm’s performance. In the proposed algorithm, various complex transformations are
used to generate multiple transformations and utilize self-supervised objectives to learn
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rich representations, thereby enabling the model to have better discrimination for different
category samples. Furthermore, based on the pre-trained model, the support set enables
the learned model to use fewer samples and classify query samples more accurately. The
main contributions of this paper are as follows:

1. A novel few-shot learning method, which utilizes two-stage contrastive learning
(2-SCL) to construct the learning objective, is proposed. In the first stage, a pre-trained
model is constructed through self-supervised learning, thereby enhancing the model’s
inter-class discrimination ability.

2. Supervised contrastive learning is introduced in the second stage of the model, further
fine-tuning the pre-trained model within a supervised framework to improve sample
identification capability and model generalization ability.

3. In the self-supervised phase, multiple data augmentation methods are proposed to
enhance sample diversity, thereby obtaining more generalized feature representations.

4. A large-scale dataset of substation abnormal scenarios has been constructed, which
can provide better data support for subsequent research.

2. Related Work

This section introduces some existing work on small-sample learning and self-supervised
learning algorithms.

2.1. Few-Shot Learning

The primary objective of few-shot learning is to train a model that can classify the
samples of unseen classes with limited training samples. Many researchers have proposed
methods based on metric learning to address the few-shot learning problem. Early studies
utilized Siamese neural networks [11] to recognize the similarity between support and
query samples through the L1 distance (The distance measures the sum of the absolute
differences between the coordinates of the feature vector). MatchingNet [12] employed
different networks to extract features from support and query samples and calculated their
similarity using cosine distance. In recent years, attention mechanisms have also been
widely applied to few-shot learning. For instance, Ref. [13] introduced a cross-attention
module to improve detection performance by capturing the accurate target area, while the
self-attention mechanism [14] was used to explore task-specific information. Moreover,
building a pre-trained model on a large dataset without class labels and then fine-tuning it
on small-sample data [15] has been proven effective in enhancing recognition performance.
RelationNets [16] first uses a Relation Network (RN) that learns an embedding and a deep
non-linear distance metric for comparing query and sample items through end-to-end and
episodic training. In contrast, RelationNets2 [17] learns multiple non-linear distance metrics
for few-shot learning and achieves State-of-the-Art results. A prototypical network [18] is
proposed for few-shot and zero-shot learning, which learns a metric space by computing
distances to prototypes, achieving excellent results with a simpler design. Ref. [19] uses
ridge regression as the main adaptation mechanism for few-shot learning to enable deep
networks to quickly adapt to novel data, achieving competitive performance.

2.2. Self-Supervised Learning

Self-supervised learning is a method that constructs a pre-trained model in a super-
vised manner by introducing self-supervised objectives. Early studies [20] used a set of
image-augmented samples to predict categories; while ref. [21] employed the model to
predict the rotation angle of images to better extract features and improve classification
performance. Self-supervised learning [22] has also been used to predict the position of
patches after random cropping of images, thus enhancing model performance. Building
on this, some studies generate missing images by adding random noise, cropping, or
removing parts of the color channels in images, and using self-supervised learning [23,24]
to restore images for better image representation. Contrastive learning is another typical
self-supervised technique [25] that achieves this by minimizing the embedding distance of
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images from the same category and maximizing the embedding distance of images from
different categories. Early studies [26] introduced negative samples from different cate-
gories into image construction to learn embedded features through a triplet loss function.
Meanwhile, subsequent research [9] introduced multiple-pair losses to extract optimal
embedded features.

Self-supervised learning is also widely applied in few-shot learning. Some researchers [10]
regard self-supervised learning as a regularization method and learn based on specific weight
selection of samples; others enhance sample labels through [27] a method to learn the joint
distribution of small samples and self-supervised tasks. Since self-supervised learning does
not require class labels, constructing a pre-trained model with a large amount of unlabeled
data and then fine-tuning it with small samples to adapt to specific tasks [28] has been proven
to be effective. Based on this idea, researchers have also proposed models based on con-
trastive learning [29], which greatly enhances the model’s generalization ability by utilizing
supervised contrastive learning from different views.

3. Materials and Methods

The classification task in few-shot learning further divides a dataset into training,
validation, and test sets by splitting each set into a support set Ds and a query set Dq for
each meta-learning task. In a standard N-way, K-shot meta-learning task, each iteration
selects N classes from the dataset to construct Ds and Dq, which includes K samples from
each class for category feature extraction. The purpose is to correctly categorize the query
set Dq into N classes. Here we provide the definitions:

Assuming the meta-training set Dtr = {(xi, yi)|yi ∈ Cbase} contains samples from the
base categories Cbase, and the meta-test set Dtest = {(xi, yi)|yi ∈ Cnew} contains samples
from new categories Cnew, where yi is the category label of the sample xi. The goal of small-
sample learning is to learn a model based on the training set Dtr and apply it to the test set
Dt, where the meta-training set and the meta-test set have no intersection. In this paper, we
adopt a simulated evaluation design. The specific implementation process is as follows:
First, M categories are randomly sampled from the base categories for meta-training, and
K instances are sampled from each category to obtain the support set: S = {(xi, yi)|

M*K
i=1 .

Based on this, we sample Q instances from each selected category to obtain the query set:
Dq = {(xi, yi)|

M*Q
i=1 . The category labels yi ∈ {1, 2, . . ., M}, Ds and Dq have no intersection.

During the training process, the samples are classified into categories corresponding to the
samples in the set. Figure 1 shows the distribution of samples in the feature space after
contrastive learning, which can make it easier to classify the samples into the specified
classes in the feature space.
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In response to few-shot learning, this paper proposes a Two-stage Contrastive Learn-
ing algorithm (2-SCL), which applies contrastive learning in two phases to obtain more
generalized representations. The overall framework of our proposed Two-stage Contrastive
Learning algorithm (2-SCL) is illustrated in Figure 2. The proposed framework consists of
two distinct yet complementary stages: the pre-training stage and the fine-tuning stage.
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The first phase, the pre-training stage, is designed to build a strong foundation
for the model. By applying contrastive learning without needing sample labels, we
can avoid overfitting and leverage the vast amount of unlabeled data. The global and
local contrastive losses work together to enhance the model’s feature representation,
making it more discriminative and generalizable. This stage is shown in Figure 2a;
samples are transformed into images through different data augmentation methods
(data augmentation method 1, DA1, and data augmentation method 2, DA2). These
augmented samples are then input into a convolutional neural network, which extracts
their feature representations that are further processed through a pooling layer and a
fully connected layer to output feature vectors. These feature vectors are used to calculate
global contrastive loss. Simultaneously, after passing through a fully connected layer, the
feature maps are input into a locally mapped layer proposed in this paper. This layer is
designed to calculate the local contrastive loss, which helps capture local discriminative
information that the global loss function might overlook. Through self-supervised loss,
the model is guided to produce more generalized representations.

The second phase, the fine-tuning stage, is designed to use a pre-trained model for
the classification task. In the fine-tuning phase of the network, as shown in Figure 2b,
different data augmentations and sample pairs are input. These inputs are then encoded
to extract relevant features. The extracted features are used to calculate the contrastive
loss and the final classification loss. The contrastive loss is calculated by considering two
images from the same category as positive pairs and two images from different categories
as negative pairs. This helps the model to overcome biases from defective image samples.
The classification loss is calculated based on the probability that an image belongs to a
particular category. By jointly training with these two losses, the model is able to achieve
good generalization performance across small-sample practical tasks. This two-stage
process enables the model to better identify substation abnormal scenes compared to
State-of-the-Art methods.

3.1. Global Self-Supervised Contrastive Loss

Global contrastive loss is utilized to enhance the similarity between different views of
the same image while minimizing the similarity between views of different images. Assum-
ing that two data augmentation methods are randomly applied to N samples {xi, yi}|

N
i=1

in the meta-training set Dt, generating 2N augmented samples
{∼

xi,
∼
yi

}
|
N

i=1
,
{
∼
x
′

i,
∼
y
′

i

}
|
N

i=1
,

where
∼
xi and

∼
x

‘
i represent two different views of the original sample xi and are consid-

ered as positive pairs. Here, we define f∅ as the feature extractor, which can transform

the samples xi into feature maps x̂i = f∅

(∼
xi

)
∈ RC×H×W and x̂

′
i = f∅

(
∼
x
′

i

)
∈ RC×H×W
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according to the learned parameters ϕ, and further obtain global features hi and h
′
i ∈ RC

through a pooling layer. A multi-layer perception is used to convert the global features into
a vector, generating the projected vector zi = FC(hi), z

′
i = FC

(
h
′
i

)
∈ RD. Then, the global

self-supervised contrastive loss can be calculated as:

Lglobal = −
N

∑
i=1

log
exp

(
zi·z

′
i/τ

)
∑N

j=1 exp
(

zi·z
′
j /τ

) (1)

In the given context, the operation “·” represents the dot product after L2 normal-
ization (The L2 norm is the square root of the sum of squares for absolute differences
between feature vector coordinates.), where N is the number of images in a batch, τ is a
temperature parameter used to control the penalty on negative samples, and the positive
pair z

′
i and zi consists of feature vectors extracted from the same sample xi through different

augmentation methods.

3.2. Local Self-Supervised Contrastive Loss

Although the global loss function based on the global feature vector hi is beneficial for
obtaining a global representation, it may overlook some local discriminative information
in the feature maps, which can be more effective in small-sample learning. Therefore, this
paper proposes a local self-supervised contrastive loss. Unlike previous methods, we utilize
a local mapping module (referred to as Loc Map in Figure 2a) to enhance the robustness
and generalization ability of the representation, with the specific module shown in Figure 3.
Here, three spatial projection heads fq, fk, fv are used to project the local feature maps x̂i
into queries qi = fq(x̂i), keys ki = fk(x̂i), and values vi = fk(x̂i), respectively, where qi,
ki, vi ∈ RHW×D. For a pair of local feature maps x̂a and x̂b, we align x̂a and x̂b to obtain

v
′
a|b = softmax( qbkT

a√
d
)va, and align x̂b with x̂a to obtain v

′
b|a = softmax( qakT

b√
d
)va. After

L2 normalizing each position (i, j) in the aligned results, we can calculate the similarity
between the two local feature maps, x̂a and x̂b, defined as follows:

sim(x̂a, x̂b) =
1

HW

i=H,j=W

∑
i=1,j=1

(
v
′
a|b

)T

ij

(
v
′
b|a

)
ij

(2)
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The above formula calculates the similarity between two feature maps v
′
a|b and v

′
b|a

(both belonging to RHW×D). The self-supervised contrastive loss for the pair of feature
maps can be computed as follows:

Llocal = −
N

∑
i=1

log
exp

(
sim

(
x̂i·x̂

′
j

)
/τ1

)
∑N

j=1 exp
(

sim
(

x̂i·x̂
′
j

)
/τ1

) (3)

Here, (x̂i·x̂
′
j ) is a positive pair, i ̸= j, and τ1 represents the temperature parameter. At

the same time, we employ a local module to further mine the local contrastive information
between instances, as shown in Figure 3. During the pre-training phase, we minimize the
following loss:

Lstage1 = α1Lglobal + α2Llocal (4)

where α1 and α2 are weight factors that balance the global and local losses. By optimizing
Lstage1, the model’s feature representation is enhanced in terms of discriminability and
generalization, further preparing it for the next step of supervised fine-tuning.

3.3. Supervised Fine-Tune

In the first stage, through self-supervised learning, the model effectively utilizes a
large number of unlabeled abnormal image samples. In the second stage, the model is
provided with a limited number of samples, for example, only one sample or five samples
per substation anomaly sample image. To better recognize substation anomaly samples,
we employ a supervised contrastive learning approach and train it in conjunction with the
image classification loss. We consider two images from the same category as positive pairs
and two images from different categories as negative pairs for contrastive learning. The
corresponding loss is as follows:

Lcon = − 1
T∑N

i=1 ∑N
j=1 1yi = yjlog

exp
(
cos

(
hi, hj

)
/τ

)
∑N

k=1 exp(cos(hi, hk)/τ)
(5)

where T is the number of sample pairs from the same category within a batch. cos() refers to
the cosine similarity between two vectors. The classification loss for the abnormal images
is as follows:

Lcls = − 1
N∑C

j=1 ∑N
i=1 logP

(
Cj
∣∣xi

)
(6)

where P
(
Cj
∣∣ui

)
is the probability that the i-th image is predicted to have the j-th category.

We jointly train these two losses in each batch:

Lstage2 = β1Lcon + β2Lcls (7)

where β1 and β2 are weight factors serving as hyperparameters.

4. Experimental Results and Discussion
4.1. Dataset of Abnormal Scenes in Substation

This study creates a dataset of abnormal scenarios encountered in substations, cap-
turing instances of blurred dials, damaged dials, fractured insulators, ground oil contami-
nation, closed cabinet doors, bird nests, damaged cover plates, abnormal meter readings,
and discolored silicone, as illustrated in Figure 4. The other six classes include broken
dial, discoloration of silica gel, broken insulator, abnormal closure of the cabinet door,
suspended objects in the air, and not wearing a safety helmet. The dataset comprises a total
of 3000 images, with each anomaly class containing 200 images. For the experimental setup,
ten classes are chosen for the training set, and five classes are designated for the test set.
No labels were used when constructing the pre-trained model.
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4.2. Experimental Setup

In this experiment, Conv-4 [16] and ResNet-12 [8], widely used as backbone net-
works by researchers, are adopted for feature extraction. Conv-4 consists of four repeated
convolutional blocks, each with a kernel size of 3, stride of 1, padding of 1 for convolu-
tional layer, a BatchNorm layer, a ReLU function, and a size of 2 for max pooling layer.
ResNet-12 has four residual blocks, each containing three convolutional layers, where “12”
means a total of twelve convolutional layers. To prevent the impact of size differences on
model performance, the image size in both the training and test sets is set to the same
number of pixels. The network is trained using the Stochastic Gradient Descent (SGD)
optimizer in the pre-training and meta-training fine-tuning stages. During pre-training
(first stage) and meta-training (second stage), the weight decay and momentum are set
to 4 × 10−4 and 0.8, respectively. During pre-training, the learning rate is initialized to
0.1 and adjusted using a cosine learning rate scheduler after a warm-up period. The
training lasts for 20 epochs with a batch size of 64. The temperature parameters τ and
τ1 are both set to 0.1. The weight factors α and β are set to 0.7 and 0.3, respectively,
allowing the model to focus more on the global loss during the first pre-training stage.
For different meta-learning fine-tuning tasks, the pre-trained model is fine-tuned with
a 5-way 5-shot (5 training samples per class) and a 5-way 1-shot setting, with a batch
size of 16 for a total of 30 epochs. The weight factors β1 and β2 are set to 0.2 and 0.8,
respectively, with the loss function focusing more on the classification loss in the second
stage. The entire model training is conducted on a single NVIDIA 3090 GPU with 24 GB
of video memory. Data augmentation: for the constructed dataset, during the pre-training
stage, various data augmentation strategies are used for contrastive learning, including
image transformations such as random resized cropping, color jittering, and random
horizontal flipping, as well as random grayscale conversion. In the second stage, during
the fine-tuning of supervised contrastive learning, data augmentation is combined with
data pairing strategies due to the limited amount of data.

4.3. Evaluation Metrics

In our experiment, the created dataset is a multi-class classification problem. The
multi-class distribution of the test dataset cannot reflect the effect of the classificaton of
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few-shot learning. Therefore, binary classification experiments were carried out on the
created dataset to make the evaluation fairer. The final classification results are divided
into four states: TP (true positive), FP (false positive), TN (true negative), and FN (false
negative). These are also four basic metrics of the confusion matrix. TP is the number
of normal images classified in the normal scene. FP is the number of abnormal images
incorrectly classified in the normal scene. TN is the number of abnormal images classified
correctly. FN is the number of normal images classified in abnormal scenes. To evaluate the
performance of the proposed method, four states—the accuracy, precision, detection rate,
and false alarm rate—and F-measure are defined below:

Accuracy =
TP + TN

TP + TN + FN + FP
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 − Score =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(11)

4.4. Experimental Results

In this research, the binary classification, which has only two categories, namely
normal and abnormal, is used to calculate the evaluation metrics. All evaluation metrics
are reported as averaged results with 95% confidence intervals based on 30 experiments.
This subsection presents the conducted meta-learning experiments, including 5-way 1-shot
and 5-way 5-shot experiments, and reports the classification accuracy, precision, F1-score,
and recall in percentage form. The feature extraction backbone networks are Conv-4
and ResNet-12. The detailed evaluation metric is calculated as shown in Tables 1 and 2.
Compared to other methods, 2-SCL significantly improves classification performance across
various metrics. Since the data are balanced, in terms of accuracy, when Conv-4 and ResNet-
12 are employed as the feature extraction backbone network, 2-SCL achieves a 12% and
10.57% improvement over RelationNet [16] in the 5-way 1-shot task and an 11.17% and
7.19% improvement in the 5-way 5-shot task. Under Conv-4, compared with the current
top algorithm, 2-SCL improves accuracy by 1.64% in 5-way 1-shot and 1.21% in 5-way
5-shot. ResNet-12 improves accuracy by 0.52% in 5-way 1-shot and 1.53% in 5-way 5-shot.
Other performance indicators also verify the same result. This indicates that 2-SCL can
effectively enhance classification accuracy by utilizing the similarity of different attributes
for classification. Although MatchingNets [12] and PrototypicalNets [18] are much better,
their classification performance is not as good as that of 2-SCL. These results further
demonstrate the proposed method’s effectiveness and superiority and the important role
of two-stage training in meta-learning tasks. Additionally, as shown in Table 2, replacing
the feature extraction network with a deeper network, ResNet-12, effectively improves
classification accuracy. In the 5-way 5-shot task, 2-SCL can achieve an accuracy rate of
93.12%. This suggests that 2-SCL can effectively classify images to new categories under
conditions of scarce samples, thus better adapting to the complex and variable environment
of substations and being able to timely identify anomalies to prevent potential problems.
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Table 1. Results of substation anomaly detection with Conv-4 as the backbone.

Backbone Methods
5-Way 1-Shot 5-Way 5-Shot

Accuracy Precision F1-Score Recall Accuracy Precision F1-Score Recall

Conv-4

RelationNets
[16] 61.76 ± 0.48 58.32 ± 0.81 57.5 ± 0.43 56.71 ± 0.54 77.59 ± 0.73 68.27 ± 0.78 70.52 ± 0.81 72.93 ± 0.76

MatchingNets
[12] 64.52 ± 0.67 56.14 ± 0.63 59.13 ± 0.52 62.45 ± 0.7 80.63 ± 0.53 73.37 ± 0.54 72.55 ± 0.65 71.76 ± 0.64

PrototypicalNets
[18] 67.67 ± 0.58 56.21 ± 0.59 60.84 ± 0.59 66.31 ± 0.63 82.39 ± 0.42 74.15 ± 0.61 73.32 ± 0.73 72.5 ± 0.75

R2D2 [19] 69.56 ± 0.42 62.6 ± 0.53 64.94 ± 0.72 67.47 ± 051 87.65 ± 0.63 64.86 ± 0.65 73.9 ± 0.72 85.89 ± 0.76

RelationNets2
[17] 72.12 ± 0.82 64.9 ± 1.21 67.66 ± 0.93 70.67 ± 0.36 85.49 ± 0.59 79.5 ± 0.63 76.39 ± 0.58 73.52 ± 0.65

2-SCL (ours) 73.76 ± 0.56 67.85 ± 0.48 69.64 ± 0.51 71.54 ± 0.46 88.76 ± 0.56 82.54 ± 0.55 84.29 ± 0.54 86.13 ± 0.51

Table 2. Results of substation anomaly detection with ResNet-12 as the backbone.

Backbone Methods
5-Way 1-Shot 5-Way 5-Shot

Accuracy Precision F1-Score Recall Accuracy Precision F1-Score Recall

ResNet-12

RelationNets
[16] 72.56 ± 0.63 61.67 ± 0.75 65.23 ± 0.67 69.23 ± 0.59 85.93 ± 0.49 74.75 ± 0.77 70.67 ± 0.72 67.02 ± 0.74

MatchingNets
[12] 75.91 ± 0.49 72.18 ± 0.47 71.87 ± 0.46 71.58 ± 0.53 88.37 ± 0.69 82.18 ± 0.61 80.37 ± 0.63 78.64 ± 0.64

PrototypicalNets
[18] 76.43 ± 0.52 77.12 ± 0.43 75.08 ± 0.48 73.15 ± 0.51 89.61 ± 0.83 85.12 ± 0.72 82.82 ± 0.76 80.64 ± 0.81

TADAM [8] 81.72 ± 0.67 74.32 ± 0.68 77.19 ± 0.59 80.3 ± 0.57 90.72 ± 0.72 77.11 ± 0.67 80.62 ± 0.63 84.46 ± 0.66

R2D2 [19] 82.61 ± 0.73 81.23 ± 0.78 79.5 ± 0.72 77.85 ± 0.71 91.59 ± 0.51 85.18 ± 0.58 82.83 ± 0.56 80.6 ± 0.54

2-SCL (ours) 83.13 ± 0.49 84.35 ± 0.48 82.77 ± 0.46 81.25 ± 0.42 93.12 ± 0.64 86.6 ± 0.52 87.97 ± 0.5 89.39 ± 0.48

4.5. Ablation Experiments

We conducted ablation studies to investigate the effects of self-supervised contrastive
pre-training and supervised contrastive fine-tuning. Table 3 shows the test results of
the proposed model on the constructed dataset. The experimental results indicate that
both stages are necessary, and the model can only achieve optimal performance by fine-
tuning the pre-trained model. The self-supervised contrastive pre-training conducted in
the first stage is indispensable, as all datasets have a significant drop in performance. The
experiments demonstrate that contrastive pre-training algorithm with unlabel data, helps
the model distinguish images with similar defects. Furthermore, performance also declines
if supervised contrastive learning is not included in the small-sample fine-tuning phase.
Specifically, in the 1-shot and 5-shot experiments, classification performance decreased
by 4.56% and 3.32%, respectively; this is because the constructed dataset includes some
similar defect images, where supervised contrastive learning can clearly differentiate
images that are semantically similar but have limited training samples. The experiment
also attempted to train the first and second stages together; however, compared to the
proposed model structure, there was almost no improvement in recognition performance.
Additionally, the experiment studied whether contrastive pre-training without including
the test dataset aids in defect image recognition. Specifically, we performed pre-training
using the training dataset in the first stage and used the test data for small-sample learning
in the second stage. Compared to the model that did not undergo contrastive pre-training
in the first stage, performance improved by 8.15% and 6.13% in the 1-shot and 5-shot
settings, respectively. These improvements suggest that contrastive pre-training enhances
recognition performance on the test dataset.
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Table 3. Testing accuracy (×100%) under different settings.

Model 5-Way 1-Shot 5-Way 5-Shot

(ours) 83.83 ± 0.57 93.12 ± 0.43
w/o Contrastive pre-training −8.15 −6.13

w/o Supervised contrastive learning −4.56 −3.32
w/o Contrastive pre-training + w/o

Supervised contrastive learning −9.35 −7.69

The proposed method can be abstracted into a multi-label classifier based on super-
vised contrastive meta-learning in the second stage, capable of simultaneously recognizing
multiple attribute features within an image. Two loss functions are employed during
training to enhance the model’s generalization and adaptability: the contrastive loss and
the classification loss. The contrastive loss measures the model’s performance across all
meta-learning tasks by calculating the discrepancy between the model’s predictions and the
true labels, allowing the model to learn common features among different meta-learning
tasks, thereby improving its generalization and adaptability. The classification loss, on
the other hand, measures the model’s performance on each meta-learning task, enabling
the model to learn the commonalities and differences between different samples and to
understand the relationships between the intrinsic attribute features of each sample. Sub-
sequently, ablation studies were conducted to explore the roles of these two losses. The
model’s accuracy on the test set was observed when the contrastive and classification losses
were removed separately. As shown in Table 4, the removal of either loss led to a decrease
in accuracy to varying degrees. Taking the Conv-4 backbone as an example, the accuracy
dropped by approximately 10% when only the contrastive loss was included. However,
relying solely on contrastive loss is insufficient because it overlooks the mutually exclusive
attribute features between different samples, leading to decreased accuracy. Meanwhile,
including only the classification loss causes the network to focus solely on the attribute
feature relationships between categories within each meta-learning task, failing to learn
broader feature relationships based on global features. Although this allows the model
to learn the relationships between each sample’s intrinsic attribute features, improving
its accuracy and sensitivity, the global features are neglected, resulting in the failure to
further enhance the recognition performance.The contrastive features are shared across
all meta-learning tasks, enabling the model to learn a wider range of feature relationships
and thus enhancing its generalization ability. Additionally, the same pattern applies to the
ResNet-12 backbone, which once again confirms the effectiveness of using both contrastive
loss and classification loss during training.

Table 4. Results of ablation experiments of different loss components.

Backbone Contrastive Loss Classification Loss 5-Way 1-Shot 5-Way 5-Shot

Conv-4
×

√
62.43 ± 0.96 75.32 ± 0.87√

× 71.29 ± 0.42 85.91 ± 0.62√ √
73.76 ± 0.56 88.76 ± 0.56

ResNet-12
×

√
73.89 ± 0.45 82.19 ± 0.61√

× 79.47 ± 0.68 88.40 ± 0.55√ √
83.83 ± 0.57 93.12 ± 0.43

“×” and “
√

” indicate that the model does not contain and contain the corresponding loss respectively.

4.6. Parameter Sensitivity Experiment

In this subsection, we also investigated the impact of hyperparameters in contrastive
learning, specifically the temperature parameters τ and τ1, as well as the weight factors
α and β. We set τ and τ1 to be within the range {0.05, 0.1, 0.3, 0.5} {0.05, 0.1, 0.3, 0.5} and
α1 + α2 = 1. Experimental results showed that τ and τ1 significantly affect the performance
during the first stage of self-supervised contrastive pre-training. Additionally, we found
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that a batch size greater than 32 performs well in the pre-training phase. However, in the
few-shot fine-tuning phase, setting τ to a smaller value of 0.05, which strongly increases the
penalty on hard negative samples, β1 + β2 = 1, β1 to a smaller value, and β2 to a larger one
significantly improves the model’s classification performance. This is because it increases
the weight of the supervised contrastive learning loss. Moreover, the batch size also affects
performance in this stage. Therefore, when the number of training samples is limited, the
supervised contrastive loss is sensitive to hyperparameters. In the fine-tuning stage of
model training, β1 was set to 0.2, 0.4, 0.6, and 0.8 to explore its role as a hyperparameter.
Table 5 summarizes the results of the few-shot learning classification. The choice of β1 has
a certain impact on the classification results. Taking the Conv-4 backbone as an example,
the highest classification accuracy was achieved when β1 was set to 0.4, with the 5-way
1-shot experimental result being 73.76%. As β1 increases, the experimental results gradually
deteriorate, which may be due to overfitting. The backbone ResNet-12 also shows the same
trend, achieving the best performance when β1 is 0.4, followed by a decline in classification
accuracy as β1 increases. In this study, β1 is set to 0.4 by default, and β2 is set to 0.6.

Table 5. Results of different coefficient β1 for 2-SCL.

Backbone β1 5-Way 1-Shot 5-Way 5-Shot

Conv-4

0.2 72.53 ± 0.82 86.37 ± 0.63
0.4 73.76 ± 0.56 88.76 ± 0.56
0.6 71.61 ± 0.42 84.30 ± 0.67
0.8 72.66 ± 0.15 85.81 ± 0.72

ResNet-12

0.2 80.18 ± 0.49 89.29 ± 0.54
0.4 83.83 ± 0.57 93.12 ± 0.43
0.6 83.44 ± 0.58 92.89 ± 0.50
0.8 83.01 ± 0.60 91.94 ± 0.49

5. Conclusions

This research presents a two-stage contrastive learning model (2-SCL) for abnormal
substation scene identification. We constructed a dataset covering diverse abnormal condi-
tions to address the scarcity of abnormal scene data in substations. 5-way 1-shot and 5-way
5-shot meta-learning experiments were conducted on this dataset, and the model perfor-
mance was evaluated using metrics based on the confusion matrix. Experimental results
show that the proposed 2-SCL method is superior. When using Conv-4 and ResNet-12 as
the backbone network, 2-SCL improves accuracy over RelationNet by 12% and 10.57% in
5-way 1-shot and 11.17% and 7.19% in 5-way 5-shot. Even when compared with State-of-
the-Art algorithms, 2-SCL exhibits better classification performance across all evaluation
metrics. Ablation experiments confirm the importance of both pre-training and fine-tuning
stages. The experimental results show that contrastive pre-training improves recognition
performance on the test dataset, and using both contrastive loss and classification loss in
training enables the model to learn a broader range of feature relationships, thus enhancing
its generalization ability. This research advances State-of-the-Art substation abnormal de-
tection and provides a feasible solution for the automated detection of substation abnormal
scenes. Enhancing the accuracy and reliability of abnormal scene recognition contributes to
the overall safety and stability of substation operations.
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