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Abstract: The paper describes low-cost hardware-based analog and digital real-time circuit simulators
for the development of power electronics control circuits. During the process of designing and
developing digital control circuits for power electronics systems, preliminary verification of control
algorithms is required. For this purpose, software simulators such as Pspice, Psim, Matlab-Simulink,
and many others are commonly used. Afterward, the developed control algorithm is implemented in
the digital control system. For further verification of the implemented control algorithms, a hardware-
based analog or digital simulator can be utilized. The paper presents the author’s proposed analog
simulators. In the digital version of the simulator, TMS320F28388D microcontroller with 200 MHz
clock was used. These simulators have demonstrated their usefulness in the development of power
electronics systems.

Keywords: power electronics; real-time systems; simulation; dynamic systems; embedded systems;
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1. Introduction

The design of power electronics systems requires significant knowledge in fields
such as electrical engineering, electronics, power electronics, digital signal processing,
automation, control techniques, embedded systems programming, and more. Errors made
during the design and development of power electronics systems can lead to the destruction
of expensive power electronics devices. Therefore, during the development and testing of
digital control systems for power electronics, preliminary verification of control algorithms
is essential. Commonly, software simulators such as Pspice, Psim, Matlab-Simulink, and
many others are used for this purpose. After such software-based verification of the control
algorithm, the developed algorithm is implemented using a microcontroller, enabling
further testing within the power electronics system. However, even minor errors in the
control system that are not revealed during computer simulations can result in the failure
of the (often expensive) power electronics system. For this reason, an additional stage of
testing is conducted using a hardware simulator.

Hardware-In-the-Loop (HIL) testing utilizes the simulation of real signals necessary
for the fully functional operation of the system under test. HIL testing involves connecting
actual hardware with a virtual simulation environment. This allows for realistic testing of
the hardware’s functionality and performance without the risk of damage, and it enables
the creation of test scenarios that are very difficult or even impossible to replicate in the
real world. This tool is widely used across various industries, helping to shorten product
development time and eliminate errors at the design stage.

Currently, companies like OPAL-RT Technologies [1], Typhoon HIL [2], National
Instruments [3], Imperix [4], Simintech, and Delta Design provide hardware and software
tools for the verification of power electronics control systems. It should be noted that the
need for testing digital systems and algorithms in the industry is growing, and consequently,
the range of testing systems offered by companies is expanding. The topic of testing power
electronics circuits using HIL systems is widely covered in the literature [5–16].
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Unfortunately, such professional HIL systems are very expensive. In this paper,
low-cost hardware-based analog and digital real-time simulators for developing power
electronics control circuits, proposed by the author, are described. Both analog and digital
systems are discussed. In the case of digital systems, the hardware simulator of power
electronics circuits was implemented using the TMS320F28388D microcontroller from Texas
Instruments, Dallas, TX, USA [17]. A three-phase shunt Active Power Filter (APF) was
used as a sample power electronics circuit for the developed hardware simulator.

2. Power Electronics Circuits

Power electronics systems are extensively employed for the control and conversion
of electrical energy. A typical schematic representation of such a system is depicted in
Figure 1. The system comprises a power electronic circuit, which incorporates components
such as electronic switches (e.g., IGBTs, MOSFETs), capacitors, magnetic elements, and a
digital controller. The control algorithm, executed within the digital controller, governs
the functioning of the power electronic circuit [18–27]. In Figure 1, the placement of the
power electronics circuit simulator is also shown; this simulator replaces the actual power
electronics circuit during development work.
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Figure 1. Block diagram of power electronics system. 
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Figure 1. Block diagram of power electronics system.

The digital controller employs digital signal processing techniques to analyze input
signals, generate control signals, and regulate the output of the power electronic circuit
in alignment with specific performance criteria. This enables precise control of the power
electronic circuit and efficient electrical power conversion across various applications,
including motor drives, renewable energy systems, and power supplies.

The integration of digital controllers in power electronic systems has significantly
enhanced their performance, reliability, and flexibility, facilitating the implementation of
advanced control strategies and extending system functionalities.

A block diagram of the considered simulation circuit of the power electronic system
is depicted in Figure 2. The circuit consists of a simulator of the power electronics circuit
(analog or digital), a control circuit power electronics circuit, an arbitrary signal generator,
and an oscilloscope.
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3. Typical Output Circuits of Inverters

One of the main tasks of the simulation system is to replicate the operation of the
power stage. Therefore, this section will present typical output circuits of inverters. These
can be divided into two basic types: voltage outputs and current outputs. Figure 3 shows
three circuits with first-order, second-order, and third-order voltage outputs. Voltage
sources UDC1 and UDC2 supply power to the inverter, resistor R1 represents the output
resistance of the inverter and inductor L1, while RL represents the load resistance. In the
case of the third-order circuit, R2 represents the resistance of inductor L2.

Energies 2024, 17, x FOR PEER REVIEW 3 of 22 
 

 

Analog signals

Simulator of Power 
Electronics CircuitControl Circuit Digital signals

Oscilloscope

Arbitrary Signal 
GeneratorUSB

USB
USB

 
Figure 2. Block diagram of a considered simulation circuit. 

3. Typical Output Circuits of Inverters 
One of the main tasks of the simulation system is to replicate the operation of the 

power stage. Therefore, this section will present typical output circuits of inverters. These 
can be divided into two basic types: voltage outputs and current outputs. Figure 3 shows 
three circuits with first-order, second-order, and third-order voltage outputs. Voltage 
sources UDC1 and UDC2 supply power to the inverter, resistor R1 represents the output re-
sistance of the inverter and inductor L1, while RL represents the load resistance. In the case 
of the third-order circuit, R2 represents the resistance of inductor L2. 

L1

UDC1

UDC2 uL(t)

i1(t)
S1

S2

L1

UDC1

UDC2

i2(t)
S1

S2 C 

(a)

(b)

iCC(t)

i1(t)
u1(t)

u1(t)
R1

R1

RL

uL(t)RL

L1

UDC1

UDC2

i2(t)
S1

S2

L2

C 

(c)

iCC(t)

i1(t)
u1(t)

uCC(t)R1 R2

uL(t)RL

+−

+−

+−

+−

+−

+−

 
Figure 3. Examples of typical output circuits of inverters for voltage output: first-order (a), second-
order (b), third-order (c). 
Figure 3. Examples of typical output circuits of inverters for voltage output: first-order (a), second-
order (b), third-order (c).



Energies 2024, 17, 6359 4 of 20

The transfer function of the system from Figure 3a is:

H(s) =
U1(s)
UL(s)

=

RL
R1 + RL

1 + s L1
R1+RL

(1)

The transfer function of the system from Figure 3b is:

H(s) =
U1(s)
UL(s)

= − 1

1 + R1
RL

+ s
(

C1R1 +
L1
RL

)
+ s2C1L1

(2)

The transfer function of the system from Figure 3c is:

H(s) =
U1(s)
UL(s)

=
RL

R1 + R2 + RL + s(L1 + L1 + C1R1R2 + C1R1R3) + s2(L2R1 + L1R2 + L1RL)C1 + s3C1L1L2
(3)

Figure 4 shows two circuits with first-order and third-order current outputs. The
voltage eM(t) represents the supply network voltage. In the case of the first-order circuit
(Figure 4a), L1 represents the inductance of the inductor and the supply network, while R1
represents the output resistance of the inverter, the inductor L1, and the supply network.
For the third-order circuit (Figure 4b), the situation is similar for L2 and R2.
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The current transfer function of the system from Figure 4a is:

H(s) =
I1(s)

U1(s)− EM(s)
=

1
R1 + sL1

(4)

The current transfer function of the system from Figure 4b is:

H(s) =
I2(s)

U1(s)
=

1
R1 + R2 + s(L1 + L1 + C1R1R2) + s2(L2R1 + L1R2)C1 + s3C1L1L2

(5)

For the first-order output systems depicted in Figures 3a and 4a, L1 represents the
inductance of the coil and the power supply line, while R1 represents the resistance of
the coil and the power supply line. In the case of the third-order systems shown in
Figures 3c and 4b, the situation is analogous for L2 and R2.

The inverter output circuits presented above do not cover all possible load combina-
tions. For other types of output filters, the author recommends using computer software to
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symbolically determine the transfer function. Examples of such software include SapWin 4
or Tina 6.02.

In Figure 5, a sample simplified schematic of an Active Power Filter (APF) is presented,
which has been a subject of interest in previous studies by the author [23,28]. The APF is
equipped with an LCL low-pass filter at the inverter output. This configuration was tested
by the author using both analog and digital simulation tools, initially employing an L filter
and subsequently an LCL filter. For improved stabilization of output currents iC1(t), iC2(t),
and iC3(t), an algorithm version was adopted that requires additional feedback from the
currents of the capacitors iCC1(t), iCC2(t), and iCC3(t) in the LCL output system.
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In the APF, coherent signal sampling is employed; thus, during signal sampling, a
complete number of samples N is captured within one period of the power grid. For the
selected value of N = 1024 and a grid frequency f M = 50 Hz, the sampling frequency is
f s = N·f M = 51,200 Hz. To increase the number of processed analog signals, they are
sampled every other cycle. Consequently, the effective sampling frequency is reduced to
25,600 Hz.

To avoid the occurrence of beat frequency components, the switching frequency of the
inverter f c was set to half the sampling frequency, resulting in a value of f c = 25,600 Hz.
For this purpose, high-speed IGBT modules of the type FF100R12RT4 from Infineon Tech-
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nologies AG, Munich, Germany were utilized. The signal temp(t) represents the radiator
temperature and is used for controlling fan speed.

The constructed APF serves as a platform for testing algorithms in our laboratory;
thus, it has been equipped with a complete set of current and voltage sensors. In some
industrial applications, however, the number of sensors can be reduced to two per phase.

Currents in the APF are measured using current transducers of type ACS770LCB-
050B from Allegro MicroSystems, Inc., Manchester, NH, USA while voltages are measured
with AMC1311 galvanically isolated amplifiers from Texas Instruments, Dallas, TX, USA.
Additionally, transistors are triggered using 2ED020I12FA galvanically isolated drivers
from Infineon Technologies AG, Munich, Germany.

4. Analog Simulators

Analog simulators, in contrast to digital ones, are very simple in design and effectively
replicate the simulated power elements. Therefore, in the author’s opinion, their use is still
recommended even when access to advanced HIL systems is available.

Figure 6 shows a very simple RC low-pass filter circuit designed for observing PWM
signals that control the gate of the inverter transistors. The cutoff frequency of the RC
filters should be selected based on the switching frequency of the transistors. In the
author’s practice, such circuits are incorporated into every control system he develops.
This configuration allows for the rapid verification of waveforms generated by the PWM
outputs using an oscilloscope.
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Figure 6. Simple RC low-pass filter.

Issues related to the analysis and design of analog circuits are extensively covered
in the literature. Among many available sources, the author recommends the following
book [29].

The diagram of the proposed first-order simulator is shown in Figure 7. Depending
on the position of switch S1, the circuit can operate as either an integrator or an averaging
circuit. Potentiometers R12 and R21 allow for the adjustment of the desired time constant.
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To avoid expanding the transfer function equations, simplifications were applied in
Figures 8–10. For example, in Figure 7, the value of resistor R1 (in red) represents the sum of
resistors R11 and R12, and the value of resistor R2 (in red) represents the combined values of
resistors R21 and R22. The transfer functions refer specifically to the values of the resistors
shown in red.
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The transfer function of the system when switch S1 is in the OFF position is given by:

H(s) =
Y(s)
X(s)

= − 1
sR1C1

, (6)

the transfer function of the system when switch S1 is in the ON position is given by:

H(s) =
Y(s)
X(s)

= − R2

R1 + sR1R2C1
. (7)
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The second-order analog simulator using the Sallen–Key configuration is shown in
Figure 8. When switch S1 is in the OFF position, the circuit provides a unity gain for DC
signals, while in the ON position, it offers adjustable gain. The transfer function of the
system when switch S1 is in the OFF position is given by:

H(s) =
Y(s)
X(s)

= − R2 + R3

R3 + s(R3R2C1 + R1R3C1 − R1R4C2) + s2(R1R2R3C1C2)
, (8)

the transfer function of the system when switch S1 is in the OFF position is given by:

H(s) =
Y(s)
X(s)

= − 1
1 + s(R2C1 + R1C1) + s2(R1R2C1C2)

. (9)

Figure 9 presents the second version of the second-order analog simulator (state-
variable). The transfer function of the second-order analog circuit is given by:

H(s) =
Y(s)
X(s)

= − R2R5R6

R1R2R5 + s(C2R1R3R4R6) + s2(C1C2R1R2R3R4R6)
(10)

Higher-order circuits are created by cascading lower-order circuits. Figure 10 shows
the schematic of a sample third-order circuit. The transfer function of the third-order analog
circuit can be expressed as follows.

H(s) =
Y(s)
X(s)

= − 1
1 + s(R2C1 + R1C1 + R5C3) + s2(R1R2C1C2 + R2R5C3C2 + R1R5C3C1) + s3(R1R2R5C3C2C1)

. (11)

The author constructed three single-phase, first-order analog simulators designed for
three-phase applications. The diagram and a detailed view of the proposed solution are
presented in Figures 11 and 12. The circuit incorporates two versatile fiber-optic receivers,
U1 and U6 HFBR-2522Z from Micro-Semiconductor, Hong Kong, China, at the input;
alternatively, binary inputs can be used.
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Figure 11. The detailed diagram of the analog simulator designed by the author.
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An integrator circuit, U2A, identical to the one shown in Figure 7, is employed as the
object simulator. The circuit is equipped with switches S1 and S2 to adjust the time constant.
When switch S3 is in the OFF position, the circuit operates as an integrator; otherwise, it
functions as a first-order inertial system. Resistor R7 allows for offset voltage adjustment of
the integrator.

Additionally, an analog input has been incorporated to interface with a signal cor-
responding to the power grid voltage. The output can be configured as a current signal,
providing ±50 mA or ±100 mA, similar to the output of a current transducer (e.g., LA–55-P
from LEM International SA, Meyrin Switzerland), or as a voltage signal. The output circuit
includes DIP switches (S4–S7) for configuration adjustments.

The entire simulator circuit is powered by ±8 V and 5 V supplies. This setup has
proven effective in the development and testing of power electronics circuits.

A schematic of a simplified version of the first-order simulator designed for an analog
voltage range of 0 to 3 V is shown in Figure 13.
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Figure 13. The diagram of an analog simulator.

The time constant values in analog simulators should be selected to appropriately
represent the output system of the power electronics circuit. The adjustment of the time
constant is carried out using potentiometers. Additionally, the capacitance values of the
capacitors must be chosen to achieve the required range for setting the time constants.

The aforementioned analog circuits can be modified by replacing traditional poten-
tiometers with electronic ones. This modification would enable programmability for
the circuits.

5. Selected Methods of Discretization of Analog Model

Traditionally, power electronics circuits and their control circuits are described in the
analog domain. Consequently, a significant portion of the digital control circuits discussed
in the literature [18–28] are still represented using analog transfer functions, H(s), rather
than digital transfer functions, H(z). Therefore, to implement a digital simulator, it is
essential to convert the analog circuit to a digital circuit. Several transformation techniques
can be employed for this conversion, including bilinear, matched bilinear, impulse invariant,
matched pole-zero, backward integration, and forward integration methods [23,28–44].
The specific characteristics of the resulting digital circuit depend on the method selected.
Among the aforementioned techniques, the bilinear method is the most versatile and
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flexible, as it utilizes a first-order approximation to map the analog transfer function onto
the digital domain. The bilinear transform employs first-order approximation to map the
analog transfer function to a digital one.

Hd(z) = Ha(s)|s= 2
Ts

z−1
z+1

= Ha

(
2
Ts

z − 1
z + 1

)
. (12)

The bilinear transformation introduces a nonlinear distortion between the analog
frequency f a and the digital frequency f d. This distortion becomes more significant at higher
frequencies, particularly near f s/2, where the frequency response undergoes compression.
The nonlinear relationship between the analog and digital frequencies is mathematically
expressed as:

fd =
1

πTs
arctan(π faTs). (13)

Figure 14 illustrates the process of converting a third-order analog circuit into a third-
order digital circuit. The transfer function of the analog system is described by the equation:

Ha(s) =
R2

R2 + R1 + (C1R1R2 + L1 + L2)s + (C1L2R1 + C1L1R2)s2 + (C1L1L2)s3 . (14)Energies 2024, 17, x FOR PEER REVIEW 13 of 22 
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Figure 14. An example of converting a third-order analog circuit to a digital one.

The example considers a third-order Butterworth filter with a cutoff frequency of
f g = 50 Hz. The circuit element values are R1 = 1 Ω, R2 = 1 Ω, L1 = 3.183 mH, L2 = 3.183 mH,
and C1 = 6.366 mF. For these parameters, the transfer function of the analog system is
given by:

Ha(s) =
R2

2 + 0.01273s + 4.053·10−5s2 + 6.45·10−8s3 . (15)

Subsequently, the analog system is converted into a digital system using bilinear
transformation with a sampling frequency of f s = 1 kHz. The transfer function of the
resulting digital system is given by the equation:

Hd(z) =
0.001449 + 0.004348z−1 + 0.004348z−2 + 0.001449z−3

1 − 2.374z−1 + 1.929z−2 − 0.5321z−3 . (16)
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Figure 15 illustrates the frequency responses of the analog and digital circuits. Specifi-
cally, Figure 15a compares the magnitude frequency responses of the analog circuit and
its digital equivalent, while Figure 15b presents their phase responses. The analog circuit
exhibits a frequency response extending from zero to infinity, whereas the frequency re-
sponse of the digital circuit is constrained to the range of zero to f s/2. Consequently, the
characteristics of analog and digital circuits diverge, particularly near f s/2. As shown in
the figure, the analog circuit demonstrates distinct behavior compared to its digital coun-
terpart, with the differences becoming more pronounced as the frequency approaches f s/2.
However, these discrepancies may be negligible if the sampling frequency f s and/or the
power transistor switching frequency f c are significantly higher than the highest frequency
component of interest.
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Figure 15. Frequency responses of the analog circuit and the digital circuit: (a) magnitude, (b) phase.

An alternative representation of the analog circuit is the well-known description [45–49]
in the form of continuous state space (S-domain). In this framework, the system is described
by the following: {

dx(t)
dt = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(17)

To implement the digital version, Equation (12) must be discretized for a sampling
period Ts. It is assumed that the sampling period is constant. The discrete state space is
obtained from the continuous state space.{

x(n + 1) = ADx(n) + BDu(n)
y(n) = CDx(n) + DDu(n)

, (18)

where AD, BD, CD, DD—discrete version of A, B, C, D.
To determine AD, BD, CD, and DD, typical methods for converting analog systems to

digital systems can be applied: Euler’s method, bilinear transformation, backward integra-
tion, and forward integration, among others. The most universal method of discretization
is bilinear transformation.
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The coefficients AD, BD, CD, DD can be determined from the equations:

AD =
(

I + ATs
2

)(
I − ATs

2

)−1

BD =
(

I − ATs
2

)−1
B
√

Ts

CD =
(

I − ATs
2

)−1
C
√

Ts

DD = D + C
(

I − ATs
2

)−1
B
√

Ts

. (19)

After establishing the digital model, it is advisable to verify its performance using
programs such as MATLAB, Octave, Scilab, or Python with libraries like Matplotlib and
NumPy. The proposed microcontroller, equipped with a built-in IEEE 754 double-precision
unit enables reliable comparisons of simulation results.

6. Digital Simulators

To simplify the construction of the simulator circuit, it has been assumed that the input
and output voltage ranges will correspond to those available in the microcontroller module,
specifically 0 to 3.3 V for digital signals and 0 to 3 V for analog signals. This necessitates
connecting the signals directly to the control microcontroller. While it is possible to expand
the simulator circuit with appropriate interface circuits (similar to the configuration shown
in Figure 11), doing so at this stage of the project would significantly complicate the design.
It has been assumed that a typical F28388D evaluation module MCU controlCARD from
Texas Instruments, Dallas, TX, USA [50] is utilized without any modifications.

The block diagram of the proposed digital simulator is depicted in Figure 16. The
microcontroller is equipped with four 16/12-bit A/D converters with simultaneous sam-
pling and analog multiplexers at the inputs, allowing for the processing of more than four
analog signals. For converting PWM signals into digital words, seven Enhanced Capture
(eCAP) modules are utilized for duty cycle measurements of pulse train signals, with
high-resolution capture (HRCAP) available on two of the seven eCAP modules. The output
signals are processed by three 12-bit D/A converters. If there is a need to expand the
number of outputs, an additional 16-bit D/A converter, specifically the DAC80504 from
Texas Instruments, Dallas, TX, USA with an SPI interface, is used.
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In the digital simulator system, proper signal sampling is essential. In the proposed
solutions, a constant sampling period (uniform sampling) has been adopted. For the
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system with analog inputs and outputs, one of the microcontroller’s timers is utilized to
generate sampling pulses that trigger the A/D and D/A converters. Upon completion of
the conversion, one of the A/D converters generates an interrupt during which data are
collected from the A/D converters and calculations are performed. Subsequently, new data
are sent to the D/A converters. The entire process is executed within the interrupt service
routine. The timing of the analog input for the digital simulator is shown in Figure 17.
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It should be noted that when simulating the output stages of the inverter, the input
signal is a PWM signal, which must be converted into a digital signal. For this purpose, the
eCAP modules, integrated into the TMS320F28388D microcontroller, are used.

In the case of the simulator with a PWM input, it has been assumed that one of the
PWM inputs triggers the A/D converters on the rising edge. Upon completion of the
processing by the A/D converter, it generates an interrupt, during which data are collected
from the A/D converters and the eCAPs, and all calculations are performed. Subsequently,
new data are sent to the D/A converters. Interrupts from the eCAPs are also enabled in
the microcontroller to transmit data regarding the PWM pulse widths. The timing of the
digital simulator for PWM input is shown in Figure 18. In this configuration, the sampling
period of the signals is equal to the period of the PWM signals. It is also assumed that the
periods of the PWM signals are equal to one another.
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To test the digital simulator, four exemplary eighth-order digital IIR filters were im-
plemented: Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic, with a cutoff 
frequency of fg = 50 Hz and a sampling frequency of fs = 10,000 Hz. 
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The implemented solutions help reduce the impact of jitter and the occurrence of
ringing, which can degrade the quality of the simulation [49]. Assuming, of course, that
the PWM signal generated by the control system is stable, in such a system, the sampling
moment is also stable.

To verify the correct operation of the proposed digital system, laboratory tests were
conducted. The schematic of the testing circuit for the digital simulator is shown in
Figure 19. An AP×515 Audio Analyzer from Audio Precision, Beaverton, OR, USA was
used to test the simulator, enabling efficient evaluation of the frequency response. Since the
analyzer has analog outputs, an analog-to-PWM converter was necessary. This converter
was constructed using the TMS320F28388D microcontroller as well.
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To test the digital simulator, four exemplary eighth-order digital IIR filters were im-
plemented: Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic, with a cutoff 
frequency of fg = 50 Hz and a sampling frequency of fs = 10,000 Hz. 
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To test the digital simulator, four exemplary eighth-order digital IIR filters were
implemented: Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic, with a
cutoff frequency of f g = 50 Hz and a sampling frequency of f s = 10,000 Hz.

To improve the accuracy of calculations, the filters were implemented using a cas-
caded connection of four second-order filter stages. The block diagram of this filter im-
plementation is shown in Figure 20. The frequency response characteristics of the filters,
implemented in MATLAB R2022B, are illustrated in Figure 21.
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Figure 20. Block diagram of eighth-order IIR filter, cascaded connection of four second-order filter stages.

In the next step, the above filters were implemented using the TMS320F28388D micro-
controller. As previously mentioned, the entire algorithm is executed during an interrupt.
In this case, the interrupt is generated by the eCAP module. Listing 1 presents the C
program that implements the aforementioned filters.
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Figure 21. Numerically calculated frequency response of the exemplary object, eighth-order IIR filters,
for f g = 50 Hz, and f s = 10,000 Hz; Butterworth (orange), Chebyshev Type 1 (green), Chebyshev Type
2 (red), Elliptic (blue).

Subsequently, the implemented filters were tested in the test setup shown in Figure 19.
The frequency response characteristics of the implemented filters are illustrated in Figure 22.
As shown in the graph, an excellent match was achieved between the characteristics of the
digital filters and those presented in Figure 21.
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Listing 1. An eighth-order IIR filter, implemented during an interrupt generated by the
A/D converter.

1. x = (float) (adc_val);//data from A/D converter or eCAP
2. //stage 0
3. y0 = x*b0[0] + q0[3];
4. q0[2] = x*b0[1] − y0*a0[1] + q0[1];
5. q0[3] = q0[2];
6. q0[0] = x*b0[2] − y0*a0[2];
7. q0[1] = q0[0];
8. //stage 1
9. y1 = y0*b1[0] + q1[3];
10. q1[2] = y0*b1[1] − y1*a1[1] + q1[1];
11. q1[3] = q1[2];
12. q1[0] = y0*b1[2] − y1*a1[2];
13. q1[1] = q1[0];
14. //stage 2
15. y2 = y1*b2[0] + q2[3];
16. q2[2] = y1*b2[1] − y2*a2[1] + q2[1];
17. q2[3] = q2[2];
18. q2[0] = y1*b2[2] − y2*a2[2];
19. q2[1] = q2[0];
20. //stage 3
21. y = y2*b3[0] + q3[3];//output signal
22. q3[2] = y2*b3[1] − y*a3[1] + q3[1];
23. q3[3] = q3[2];
24. q3[0] = y2*b3[2] − y*a3[2];
25. q3[1] = q3[0];

Returning to the APF system shown in Figure 2, Figure 23 presents the schematic
of the simulation for the output stage with the LCL filter. In the APF control circuit, two
analog signals are processed: one from the capacitor current iCC(t) and the other from the
output current i2(t). Additionally, the circuit is synchronized with the supply voltage eM(t).
The control system generates two signals, G1 and G4 which control the power transistors of
the inverter. A simplified analog model of the output circuit is depicted in Figure 24 [51–54].
This model has been discretized and implemented in the TMS320F28388D microcontroller
of the digital simulator.
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Laboratory tests of the simulator system (Figure 25) were conducted, confirming its
utility for the developing and testing of the control system.

7. Conclusions

This paper presents a low-cost alternative for power electronics circuit simulators.
Analog systems have a relatively simple structure, but are not suitable for simulating more
complex circuits. The accuracy of representing simple circuits with analog systems is
relatively good. Additionally, analog systems do not require programming skills from the
user, and their operation is straightforward. In contrast, the proposed concept of using a
popular microcontroller as a digital simulator for power electronics circuits necessitates
knowledge in programming and signal processing.

While this low-cost circuit simulator has limited capabilities compared to commercial
HIL solutions and is not as user-friendly, I believe that an experienced embedded systems
programmer can create an efficient simulation environment. The proposed solution utilizes
the TMS320F2388D microcontroller due to its advanced eCAP systems, which allow for
precise measurement of the duty cycle of the control pulses for the inverter’s power
transistors. An additional advantage of the microcontroller is its IEEE 754 double-precision
(64-bit) Floating-Point Unit (FPU), which enables the use of programs like Matlab, Octave,
Scilab, and Python, with libraries Matplotlib and NumPy, for verifying implemented
simulation algorithms.
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It is important to note that using an advanced programmable device like an FPGA, as
seen in commercial HIL systems, could provide higher system functionalities. However,
this requires the designer to possess a strong understanding of programming such systems.

However, it is important to note that, as with any simulation, the results should be
approached critically and continuously verified.

The analog simulators presented in the paper are a simple alternative to digital simulators.
Based on the author’s experience, they perform excellently for simulating simpler cases.

The proposed solution, of course, cannot replace professional simulators with exten-
sive capabilities. However, it can serve as an excellent solution for simplified applications,
offering a fraction of the cost compared to professional alternatives. An additional advan-
tage is the high degree of flexibility in creating custom simulation algorithms.
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7. Pop, A.A.; Ruba, M.; Nemeş, R.O.; Raia, R.; Mart, is, , C.; Husar, C. Benchmarking methods for parameters identification of
supercapacitors using Typhoon HiL. In Proceedings of the 2022 IEEE 20th International Power Electronics and Motion Control
Conference (PEMC), Brasov, Romania, 25–28 September 2022; pp. 167–173. [CrossRef]
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