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Abstract: Hydrogen fuel cell vehicles (HFCVs) are a promising technology for reducing vehicle
emissions and improving energy efficiency. Due to the ongoing evolution of this technology, there
is limited comprehensive research and documentation regarding the energy modeling of HFCVs.
To address this gap, the paper develops a simple HFCV energy consumption model using new
fuel cell efficiency estimation methods. Our HFCV energy model leverages real-time vehicle speed,
acceleration, and roadway grade data to determine instantaneous power exertion for the computation
of hydrogen fuel consumption, battery energy usage, and overall energy consumption. The results
suggest that the model’s forecasts align well with real-world data, demonstrating average error rates
of 0.0% and −0.1% for fuel cell energy and total energy consumption across all four cycles. However,
it is observed that the error rate for the UDDS drive cycle can be as high as 13.1%. Moreover, the
study confirms the reliability of the proposed model through validation with independent data.
The findings indicate that the model precisely predicts energy consumption, with an error rate
of 6.7% for fuel cell estimation and 0.2% for total energy estimation compared to empirical data.
Furthermore, the model is compared to FASTSim, which was developed by the National Renewable
Energy Laboratory (NREL), and the difference between the two models is found to be around 2.5%.
Additionally, instantaneous battery state of charge (SOC) predictions from the model closely match
observed instantaneous SOC measurements, highlighting the model’s effectiveness in estimating
real-time changes in the battery SOC. The study investigates the energy impact of various intersection
controls to assess the applicability of the proposed energy model. The proposed HFCV energy model
offers a practical, versatile alternative, leveraging simplicity without compromising accuracy. Its
simplified structure reduces computational requirements, making it ideal for real-time applications,
smartphone apps, in-vehicle systems, and transportation simulation tools, while maintaining accuracy
and addressing limitations of more complex models.

Keywords: hydrogen; fuel cell vehicle; energy modeling; HFCV energy

1. Introduction

Hydrogen fuel cell vehicles (HFCVs) are electric vehicles that generate electricity for
their motors by harnessing the power of hydrogen gas through a chemical process called
fuel cell electrochemistry. These vehicles store compressed hydrogen in high-pressure
tanks, and this hydrogen is then fed into the fuel cell stack, where it undergoes a reaction
with atmospheric oxygen, producing electrical energy to power the vehicle’s electric motors.
The sole byproduct of this process is water vapor, making HFCVs a particularly clean and
environmentally friendly transportation option. Along with battery electric vehicles (BEVs),
HFCVs are considered among the most promising solutions for mitigating greenhouse gas
emissions and other harmful pollutants associated with traditional internal combustion
engine vehicles (ICEVs).

Due to the ongoing evolution of this technology, there is limited comprehensive re-
search and documentation regarding the performance of fuel cell vehicles. However, based
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on the existing body of research, it is anticipated that fuel cell vehicles will deliver an
exceptionally energy-efficient and emission-free driving experience. In particular, in com-
parison to traditional vehicles, fuel cell vehicles are expected to provide several advantages,
including enhanced fuel efficiency, improved engine efficiency, reduced emissions, and a
decrease in greenhouse gas (GHG) emissions. Furthermore, fuel cells can achieve efficiency
levels ranging from 40% to 70%, representing a significant improvement over the most
efficient ICEVs, which typically operate at around 30% efficiency [1].

The efficiency of an HFCV refers to the amount of energy that is converted from hy-
drogen to electricity, taking into account the energy losses that occur during the conversion
process. The overall efficiency of an HFCV includes the efficiency of several subsystems.
(1) Hydrogen storage and delivery: Hydrogen must be stored on board the vehicle and
delivered to the fuel cell stack. This process incurs energy losses due to compression and
cooling. (2) Fuel cell stack: This stack transforms hydrogen and oxygen into electricity,
typically achieving an efficiency rate of approximately 50–60%. (3) Power electronics: The
power electronics convert the electricity from the fuel cell stack to a form that can be used
to power the vehicle’s electric motor. This process also incurs energy losses.

HFCVs can have a range of up to 300 miles and can be refueled in minutes, similar to
gasoline or diesel vehicles. However, the availability of hydrogen refueling infrastructure
is currently limited in many regions. This is a major challenge for HFCV adoption. HFCVs
are considered an alternative to BEVs. They offer the advantages of long range and rapid
refueling, but they are not as widely available as BEVs. The future of HFCVs depends on
the development of a more robust hydrogen refueling infrastructure. If this can be achieved,
HFCVs could become a more viable option for transportation. HFCVs are considered to
be zero-emission vehicles, as the only byproduct of the fuel cell reaction is water vapor.
HFCVs are more expensive than BEVs, but the cost of hydrogen fuel is expected to come
down in the future. HFCVs are still under development, but they have the potential to be a
major player in the transportation sector in the near future.

The aim of this study is to establish an energy consumption model for HFCVs that is
suitable for real-time applications that can estimate fuel cell and battery energy consump-
tion rates. A novel energy consumption model for HFCVs utilizes operational inputs like
current speed and road gradient to calculate energy usage, leveraging data easily accessible
from mobile applications and other sources. This model addresses a gap in the current
State-of-the-Art by providing a simple model that can be employed in vehicle applications,
smartphone apps, and traffic simulation programs. Recently, authors have formulated
an energy consumption model tailored for HFCVs [2]. The model evaluates both the
immediate fuel cell and the overall energy consumption by utilizing the operational data of
the vehicle. This research contributes to the advancement of prior studies by integrating a
technique to gauge the efficiency of the fuel cell driveline and providing estimates for the
SOC of the battery system.

This paper is structured as follows: The subsequent section provides an overview of
current efforts in modeling energy consumption for HFCVs. Following that, this paper
details the fuel consumption data specific to HFCVs used in this research. Subsequent
sections delve into the development of the proposed model and present the validation
results. Then, this paper demonstrates the case study of various intersection controls
to assess the applicability of the proposed model. The concluding part of the paper
summarizes the key findings.

2. Literature Review

HFCVs are frequently highlighted as critical components in the drive towards decar-
bonizing transportation systems. Despite their extensive history, these vehicles are currently
regarded primarily as a long-term solution compared to other transportation options. A
recent study [3] investigated the principal obstacles hindering the widespread adoption
of HFCVs. This study identified three major challenges for these vehicles: (i) economic
factors, (ii) infrastructure limitations, and (iii) deficiencies in the policy framework. The
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affordability of HFCVs stands out as a significant impediment to their broader acceptance
and swifter integration. The cost of mobility provided by fuel cell vehicles and hydrogen
remains comparatively high, rendering them less competitive against conventional cars and
other alternatives, such as hybrid or battery electric vehicles. To advance the widespread
deployment of fuel cell vehicles, a crucial focus should be on diminishing investment costs.
An additional significant hurdle in the acceptance of fuel cell vehicles is the demand for
novel and costly infrastructure. Presently, there are limited hydrogen refueling stations
globally. The study underscores the necessity of establishing stable, long-term policy condi-
tions and recommends harmonizing efforts across regions to achieve full benefits of HFCVs
in the transport sector.

Research by Liu et al. [4] revealed that integrating fuel cell vehicles into China’s
road transport could cut GHG emissions by 13.9% and lower heavy-duty truck emissions
by almost 20% under an optimistic scenario. The intensity of GHG emissions during
hydrogen production becomes a pivotal factor in calculating the fuel cycle GHG emissions
of fuel cell vehicles. Consequently, the study demonstrated that the pathways used for
hydrogen production would be of utmost importance in shaping the future landscape of
GHG emissions.

Aminudin et al. [5] examined the advantages and disadvantages of HFCV technology.
Furthermore, the authors examined recent challenges associated with the existing fuel cell
technology within the automotive sector. The study concluded that HFCVs face notable
limitations and hurdles. Collaborative efforts among various stakeholders are essential
to surmount these obstacles for the future advancement of HFCVs. The utilization of
hydrogen fuel cells is anticipated to exert a significant influence on the transportation
sector, leading to cost-effective mass production and commercial availability of fuel cells in
the near future.

Acar and Dincer [6] conducted a study to assess hydrogen’s role as an environmentally
friendly transportation fuel, targeting lower emissions in transportation. They conducted a
comparison of diverse vehicle types, encompassing ICEVs, BEVs, hybrid electric vehicles
(HEVs), HFCV, and biofuel vehicles. The analysis encompassed CO2 and SO2 emissions,
carbon’s societal costs, energy and exergy efficiencies, fuel usage, pricing, and range
limitations. The results revealed that, on average, HFCVs stood out as the most sustainable
transportation option. The authors underscored the necessity for environmentally friendly
hydrogen production, emphasizing the importance of minimal or zero emissions and high
efficiency to genuinely qualify hydrogen as a clean and sustainable fuel.

Kurtz et al. [7] conducted a review of hydrogen transportation infrastructure consider-
ing operational difficulties, technical issues, and expenditures. The research pinpointed
substantial obstacles to the widespread commercialization of hydrogen systems, including
elevated maintenance costs and the restricted accessibility of hydrogen fueling stations.
The research proposed immediate infrastructure challenges by establishing cost-effective,
dependable hydrogen fueling stations for the extensive adoption of hydrogen-powered
transportation.

Li et al. [8] introduced the KBCO algorithm, a Kriging-based bi-objective optimization
technique, to optimize energy efficiency in hydrogen fuel cell vehicles. HFCVs have
complex control systems with various parameters, and the KBCO algorithm optimizes
these parameters to enhance HFCV performance. The research used ADVISOR, created by
the National Renewable Energy Laboratory (NREL), to analyze HFCV performance. The
proposed algorithm was found to be effective in solving complex energy control strategies
of hydrogen fuel cells and batteries, while reducing hydrogen consumption within velocity,
acceleration, and battery state constraints.

Xu et al. [9] proposed a dynamic HFCV model incorporating fuel economy and system
durability. Their research optimized powertrain parameters for a specified driving cycle,
focusing on fuel efficiency and durability through a Pareto-optimal two-loop framework
using dynamic programming. For each powertrain parameter combination, a global
optimum energy management strategy was utilized. Optimization of coefficients for
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the dynamic programming algorithm was performed to reduce calculation time while
maintaining accuracy. Then, the study compared the results across all parameter sets and
selected the Pareto-optimal solution, balancing fuel economy and system durability.

Kaya and Hames [10] examined control strategies for fuel cell vehicles to save fuel
consumption. They compared two distinct control strategies developed for HFCVs with the
conventional control approaches. The research investigated system efficiency, technology
lifespan, fuel consumption, and vehicle operations for various HFCV control methods.
Due to their simplicity and flexible parameters, the proposed control strategies can be
seamlessly applied to different HFCV models.

Shusheng et al. [11] conducted a comparative study on hybrid and pure fuel cell drive
models for onboard hydrogen-producing fuel cell EVs using ADVISOR. The results demon-
strated efficient fuel cell and lithium battery operation, with hybrid fuel cells showing
reduced power fluctuations, leading to enhanced energy efficiency and extended lifespan.

Caux et al. [12] introduced a novel combinatorial approach for the optimal manage-
ment of HEV energy distribution. This system comprises two energy sources: a fuel cell as
the primary source and a supercapacitor for energy storage. A new mathematical model
was developed to accurately represent the operation of the HEV energy chain, and the
method was employed to derive an optimal solution aligned with hydrogen consumption.
Simulations were conducted on diverse realistic mission profiles, revealing a substantial
improvement in solution quality and computation time compared to alternative approaches
found in the literature.

FASTSim (Future Automotive Systems Technology Simulator) [13,14] is a vehicle
simulation platform created by NREL (National Renewable Energy Laboratory). It is
designed to quantify the energy consumption, performance, and cost of various vehicle
types, including ICEVs, HEVs, BEVs, and HFCVs. FASTSim allows users to simulate real-
world driving conditions and assess how different vehicle configurations and technologies
impact fuel efficiency, emissions, and overall energy consumption. FASTSim is widely used
to model vehicle technologies and their potential benefits in terms of energy savings and
emission reductions. FASTSim estimates the energy consumption of HFCVs by simulating
their operation over specific driving cycles, such as city or highway driving, to reflect
real-world conditions. It models the vehicle’s powertrain, including the fuel cell stack,
electric motor, and battery, and calculates the energy flow within the system by tracking
how much hydrogen is consumed to generate power. Based on the total energy demand
from the driving cycle, FASTSim estimates hydrogen consumption by converting electrical
energy needs into hydrogen usage, considering the fuel cell’s efficiency.

Autonomie [15–17], a comprehensive vehicle system simulation tool developed by
Argonne National Laboratory, can estimate the energy consumption of HFCVs. Autonomie
enables researchers and engineers to simulate and analyze diverse advanced vehicle tech-
nologies, assessing energy usage, performance, and costs across various powertrain setups.
Autonomie simulates the entire vehicle system, incorporating detailed models of the fuel
cell stack, electric motor, hydrogen storage, and other key components. By using control
algorithms and real-world driving conditions, Autonomie can accurately predict the energy
usage of HFCVs across different driving cycles and operational scenarios. This makes it a
valuable tool for assessing the efficiency and viability of hydrogen fuel cell technology in
transportation applications.

Both FASTSim and Autonomie are capable of estimating hydrogen fuel cell vehicle
(HFCV) energy consumption. FASTSim is particularly well-suited for users who need
quick estimates over standard driving cycles with minimal setup, making it ideal for
rapid fleet-level comparisons or assessing the impact of technological improvements on
vehicle efficiency. In contrast, Autonomie is designed for more advanced users who require
detailed simulations of HFCV systems. It offers extensive customization at the component
level and delivers high-fidelity results, making it highly effective for optimizing control
strategies or designing new vehicle architectures with a focus on precision and flexibility.
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Previous studies highlighted the development of a hydrogen fuel cell system and
the control strategies for HFCVs. Currently, there are few HFCV energy models, and few
HEV energy consumption models that are eligible for real-time connected and automated
vehicle (CAV) applications. A previous study [18] proposed four essential prerequisites for
measuring fuel/energy consumption: real-time computation, precision, simplicity in model
structure, and ease of calibration. The energy model should provide accurate results with
minimal input variables and be applicable to general vehicle operations. To satisfy real-
time applications in CAV transportation applications, an optimal fuel/energy consumption
model must fulfill various criteria. This paper aims to create an HFCV energy model
that adheres to these specified criteria. Authors [2] recently developed a simple energy
consumption model for hydrogen fuel cell vehicles. This model assesses the instantaneous
fuel cell and overall energy consumption based on the operational data of the vehicle. This
research effort enhances the previous study by incorporating a method to estimate the
efficiency of the fuel cell driveline and estimating the SOC of the battery system.

The primary contribution of this study lies in the creation of a detailed energy con-
sumption model tailored specifically for HFCVs. This model quantifies the energy impact
of HFCVs in real-time CAV transportation operations embedded within various applica-
tions. Diverging from previous research, the HFCV energy consumption model utilizes
readily accessible data, such as instantaneous speed, acceleration, and roadway grades.
Key parameters can be easily accessible from GPS loggers or smartphone apps, enabling
seamless integration into traffic simulation models, smartphones, and in-vehicle systems
for accurate HFCV energy consumption analysis. Also, we developed a fuel cell driveline
efficiency method using a function based on the vehicle’s power at the wheels relative to
the maximum vehicle power. Our research indicates that this technique is the most efficient
and practical approach to estimate fuel cell driveline efficiency.

3. Hydrogen Energy Consumption Data

To develop an HFCV energy model that can quantify the impact of automated vehicle
(AV) and/or CAV operations, we utilized a disaggregate energy consumption dataset that
includes instantaneous energy consumption data and vehicle operational data. In partic-
ular, we used a 2017 Toyota Mirai energy consumption dataset that was collected by the
Fuel Cell Technologies Office at the Argonne National Laboratory with Transport Canada’s
Innovation Centre. This dataset includes 10 Hz energy consumption data with various ve-
hicle operational information, including time, dynamometer speed, tractive force, distance,
temperature, etc. The data are currently available at the Downloadable Dynamometer
Database. The test vehicle was operated with a hydrogen fuel cell stack (114 kW) and a
nickel–metal hydride battery (1.6 kWh). The test vehicle can store compressed hydrogen
gas at 10,000 psi in a 5 kg H2 fuel tank. The data include multiple test results, including
various temperature testing results. This study utilized standard temperature test results,
for which the data were collected at a specific temperature of 22.2 ◦C (72 ◦F). Further, we
did not include any tests that included cold or warm starts.

This study utilized the four driving cycles. The four driving cycles were the Urban
Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy Test (HWFET), the
New European Driving Cycle (NEDC), and the speed cycle. The table below shows the
driving characteristics of the four driving cycles. The driving cycles cover a wide range
of real-world driving conditions, involving idling, low speed, high speed, and aggressive
acceleration conditions. The UDDS cycle typically represents low-speed city driving
conditions with multiple stop and go behaviors. The average speed of the trip is 38.9 km/h,
and the maximum speed is 91.3 km/h. The freeway cycle, HWFET, was used to determine
the highway fuel economy rating and represent a typical highway driving scenario. The
average speed of the HWFET is 77.2 km/h, and the maximum speed is 96.0 km/h.

The NEDC serves as a driving cycle designed to evaluate emission levels and fuel
efficiency in passenger cars (excluding light trucks and commercial vehicles). Also known
as the Motor Vehicle Emissions Group cycle, the NEDC attempts to represent typical
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European car usage. The cycle comprises four repeated ECE-15 urban driving cycles and
one extra-urban driving cycle. The NEDC test procedure is employed for measuring CO2
and fuel consumption, as well as electric energy consumption and range in hybrid and
fully electric vehicles. The speed drive cycle is employed to assess the effects of different
constant speeds, encompassing 15 km/h, 30 km/h, 45 km/h, 60 km/h, and 75 km/h. The
study utilized data from two repeated driving cycles of the HWFET cycle and the NEDC
cycle. We only used data gathered under hot, stabilized conditions, without utilizing
air-conditioning test data. Neither cold-start data nor hot or cold weather-condition data
were included in the study. Figure 1 shows the speed profiles of the four driving cycles.
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4. HFCV Energy Consumption Modeling

Determining the fuel efficiency of HFCVs is complex due to their sophisticated fuel cell
and battery systems. An HFCV’s powertrain includes a fuel cell stack, a power electronics
controller, a battery pack, a DC/DC converter, and an electric traction motor. The fuel
cell stack is composed of individual fuel cells that generate electricity from hydrogen
and oxygen. The battery pack stores energy recovered through regenerative braking and
provides additional power to the electric traction motor. The power electronics controller
manages the flow of electrical energy from the fuel cell and the traction battery, regulating
the speed and torque output of the electric traction motor. The electric traction motor drives
the vehicle using power from both the fuel cell and the battery pack. Additionally, the
DC/DC converter converts high-voltage DC power from the traction battery pack to the
low-voltage DC power needed for vehicle accessories and auxiliary battery charging.

The rates at which vehicles consume fuel or energy are usually determined by ana-
lyzing the relationship between instantaneous fuel consumption or energy consumption
rates and instantaneous measurements from various factors like vehicle power, force (or
tractive effort), acceleration, speed, and road conditions. Figure 2 illustrates the relation-
ship between HFCV energy consumption and the power at the wheels from the Toyota
Mirai data. The figure illustrates a strong correlation between the power generated at
the vehicle’s wheels and the energy consumption of the HFCV. Figure 2c shows the total
energy consumption, which combines the battery-generated energy (shown in Figure 2a)
and the fuel cell-generated energy (shown in Figure 2b). The figure shows that the total
energy consumption is positively correlated with the required vehicle power, and the fuel
energy consumption in Figure 2b is significantly higher than the battery-generated energy
in Figure 2a.

After analyzing the HFCV energy consumption data, we found four operational
modes, namely idling mode, regenerative braking mode, fuel cell mode, and battery mode.
The idle mode is when the vehicle is in idle mode and only minimal auxiliary or idling
power is required. We found that the test vehicle normally consumed 0.45 kWh/s during
the idling mode. The regenerative braking mode is typically observed during deceleration
events. The energy recovery system allows vehicles to convert kinetic energy from braking
into electrical power to charge the vehicle’s battery. The regenerative braking system is the
most popular feature of BEVs and hybrid electric vehicles. During the regenerative braking
mode, the test vehicle recharges the battery and slightly increases the SOC. The fuel cell
mode comprises a fuel cell main mode, in which most of the energy is generated from the
fuel cell module, and a fuel only mode, in which all energy is generated by the fuel cell
module. Similarly, the battery model contains a battery main mode, in which most of the
energy is generated by the battery unit, and a battery-only mode, in which all energy is
generated by the battery unit.
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This research determined the subsequent energy consumption patterns in HFCVs for
four operational modes. We found that when the HFCV is in idling mode, a fixed energy
consumption rate is utilized from the battery; and that during the regenerative braking
mode, the HFCV does not consume any energy from either the fuel cell or battery, and it
charges the battery based on a regenerative energy efficiency relationship [19]. In this study,
we utilized vehicle speed and vehicle power to determine the fuel cell mode and the battery
mode. We found that the battery mode is in operation when the vehicle power and vehicle
speed is relatively low. In particular, when the speed is lower than a specific speed (va) at a
vehicle power at the vehicle wheels (Pwheels), the HFCV utilizes the battery mode. Figure 3
illustrates the boundary conditions for the battery mode using a linear relationship of a
specific speed (va = 1.86 × Pwheels + 18.8) and a vehicle power at the vehicle wheels (Pwheels).
Finally, the HFCV utilizes the fuel cell mode when the speed is greater than a specific speed
(vb) and the power at the wheels is greater than Pa. During the fuel cell mode, the fuel cell
provides the main power, and the vehicles utilize supplemental power generated by the
battery. The proposed HFCV energy consumption model is formulated in Equations (1)
through (7). The power at the wheels (Pwheels) is computed using Equation (1):
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Pwheels(t) = max

0,

(
ma(t) + mg Cr

1000 (c1v(t) + c2) +
1

2×3.62 ρAir A f CDv2(t) + mg θ
)

v(t)

3.6

, (1)

Pbattery(t) = Pidle for PWheels(t) = 0 and v(t) = 0 (idling mode), (2)

Pbattery(t) = Pwheels(t)ηrb(t) + Pidle for Pwheels(t) < 0 (regenerative braking mode), (3)

Pbattery(t) =
{

(Pwheels(t) + Pidle)ηbatt for Pwheels(t) > 0, (t) ≤ va (battery mode)
(Pwheels(t) + Pidle)ηsuppleηbatt for Pwheels(t) > 0, v(t) > va (supplemental power) , (4)

PFuelCell(t) = Pwheels(t) ∗ η f uelcell for Pwheels > Pa and v(t) > vb ( f uel cell mode), (5)

Pbattery_Crate(t) = Crate ∗ Max Battery Capacity ∗ ∆t /3600 (6)

Pbattery(t) =
{

Pbattery_Crate(t) for Pbattery_crate ≤ Pbattery
Pbattery(t) for Pbattery_crate > Pbattery

, (7)

PHFCV(t) = Pbattery(t) + PFuelCell(t), (8)

EC(t) = PHFCV(t)× ∆t (9)
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The suggested model is universal and was employed for illustrative purposes using
the 2017 Toyota Mirai as an example. Here, m is the vehicle mass (m = 1928 kg for the curb
weight of the test Toyota Mirai); a(t) = dv(t)/dt is the acceleration of the vehicle in m/s2

after ensuring that the vehicle speed is converted to m/s (a(t) takes negative values when
the vehicle decelerates); g = 9.8066 m/s2 is the gravitational acceleration; θ is the road
grade; and Cr = 1.75, c1 = 0.0328, and c2 = 4.575 are the rolling resistance parameters
that vary as a function of the road surface type, road condition, and vehicle tire type. The
typical values of vehicle coefficients are reported in [19]. ρAir = 1.2256 kg/m3 is the air
mass energy density of hydrogen, which is equal to 33.6 kWh of usable energy per kg;
A f = 2.3316 m2 is the frontal area of the vehicle; CD is the aerodynamic drag coefficient of
the vehicle (taken to be 0.28); and v(t) is the vehicle speed in km/h [20].

PBattery and PFuelCell represent the power produced by the battery and the fuel cell, re-
spectively. PBattery is estimated based on operational mode, as described in Equations (2)–(4).
Pidle is a fixed idling power consumption rate, 0.45 kW, which is computed as the average
idling power consumption of the dataset. ηrb is a regenerative braking energy efficiency,
which is a function of vehicle deceleration. The detailed description is found in [19]. ηbatt
represents battery efficiency, and we adopted an efficiency value of 93% based on a recent
reference [21]. ηsupple is a supplemental power efficiency of battery. ηsupple = 0.216% was
estimated empirically using data comparing fuel cell power consumption data and the
battery supplemental power consumption data.
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The power consumed by the fuel cell is computed using Equation (5). Various effi-
ciency factors are considered to estimate the power consumption of the fuel cell unit. We
tested numerous methods for assessing fuel cell driveline efficiency and found that using
a function based on the vehicle’s power at the wheels relative to the maximum vehicle
power is the most accurate and straightforward method for estimating fuel cell driveline
efficiency. This study utilizes fuel cell driveline efficiency, η f uelcell , which is computed as
a function of the vehicle power at the wheels relative to the maximum vehicle power, as
illustrated in Figure 4. Also, statistical analysis found that vb is 23 km/h and Pa is 0.2 kW
for the specific test vehicle. In Figure 4, it is observed that there are fewer data points in the
0.3–0.5 range of the current power/maximum power ratio in our fuel cell efficiency curve.
This scarcity of data points in this range is not considered problematic for our analysis. In
our approach, we treated these sparse data points as potential outliers, based on the typical
efficiency characteristics of HFCVs. Generally, HFCVs exhibit efficiency values less than
0.7 under normal operating conditions. By focusing on the more densely populated regions
of the efficiency curve, we aimed to create a model that accurately represents the efficiency
characteristics of HFCVs in their most frequent operating scenarios. This approach allows
us to provide a robust and reliable efficiency estimation for the majority of HFCV operating
conditions.
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Figure 4. Fuel cell driveline efficiency estimation.

The C-rate of an electric vehicle battery refers to the rate at which a battery is charged
or discharged relative to its capacity. The C-rate is typically expressed as a multiple of
the battery’s capacity. For example, if a battery has a capacity of 1 kWh, and it is charged
or discharged at a rate of 1C, this means that the battery can be charged or discharged in
one hour. The C-rate is important because it helps to quantify how quickly energy can be
delivered to or drawn from the battery. Higher C-rates generally mean faster charging or
discharging, but they can also impact the overall lifespan and efficiency of the battery. The
C-rate is variable based on the battery characteristics and the SOC. This research found
charging and discharging C-rates of 19.7 and 11.0, respectively, as indicated by the collected
data. Equation (6) outlines the estimation of PBattery_Crate using the C-rate. In cases where
PBattery is greater than PBattery_Crate, Equation (7) is employed to substitute the value of
PBattery with PBattery_Crate.

In this study, we assume the vehicle weight is a constant variable. The proposed
model estimates the vehicle’s energy consumption (EC) (kWh/s) over a time step, ∆t
(Equation (9)); the instantaneous power consumed (kW); and hydrogen consumed (kg).
The hydrogen storage of the test Toyota Mirai is 5 kg.
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5. Model Test and Validation

The model validation results demonstrate that the proposed model estimated fuel
cell and battery energy consumption with reasonable accuracy for four representative
driving cycles. In particular, the model estimated the fuel cell energy consumption with
errors of 13.1%, 1.1%, 2.1%, and −10.0% for the UDDS, HWFET, NEDC, and speed cycles,
respectively, as demonstrated in Table 1. We found that the model overestimated the fuel
cell energy consumption for the UDDS cycle and underestimated for the speed cycle. It
seems the model was not accurately calibrated for slow-speed driving conditions for the
UDDS and speed cycles. The results showed that the overall model accuracy combining all
urban and freeway driving cycles was −0.0%.

Table 1. Model estimation results.

Fuel Cell Energy Estimation

Raw Data (kWh/km) Estimated (kWh/km) Error Rate (%)

UDDS 0.132 0.149 13.1%
Highway 0.278 0.281 1.1%

NEDC 0.295 0.301 2.1%
Speed 0.223 0.200 −10.0%
Total 0.234 0.234 0.0%

Battery Energy Estimation

Raw Data (kWh/km) Estimated (kWh/km) Error Rate (%)

UDDS 0.062 0.061 −0.5%
Highway 0.028 0.034 18.1%

NEDC 0.079 0.076 −3.7%
Speed 0.030 0.026 −15.3%
Total 0.047 0.046 −0.7%

Fuel Cell and Battery Estimation

Raw Data (kWh/km) Estimated (kWh/km) Error Rate (%)

UDDS 0.193 0.210 8.8%
Highway 0.306 0.314 2.7%

NEDC 0.374 0.377 0.9%
Speed 0.253 0.226 −10.7%
Total 0.280 0.280 −0.1%

The table provides an estimate for battery energy consumption. The outcomes indicate
that the battery energy consumption had errors of −0.5% 18.1%, −3.7%, and −15.3% for
the UDDS, HWFET, NEDC, and speed cycles, respectively. The results demonstrated
that the accuracy of the overall battery model, when encompassing all driving conditions,
was −0.7%.

The research also found that the suggested model predicted the combined energy
consumption of the fuel cell and battery, with errors of 8.8%, 2.7%, 0.9%, and −10.7%
for the UDDS, HWFET, NEDC, and speed cycles, respectively. These findings show that
the proposed model provides accurate energy consumption estimates, with only a −0.1%
deviation, when compared to experimental data for the total energy consumption across all
drive cycles.

Figure 5 depicts a comparison between the NEDC driving cycle’s instantaneous fuel
cell energy consumption rate and the overall energy consumption rate, which combines
both fuel cell and battery energy usage, in relation to the measured instantaneous energy
consumption rate of the test vehicle. The graph also illustrates the vehicle energy con-
sumption rate estimates generated by the proposed model, relying on instantaneous power
and vehicle speed. As shown in the figure, the projected energy consumption generally
mirrored the peaks and valleys observed in the measured vehicle energy consumption. The
results clearly highlight a strong alignment between the instantaneous energy consump-
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tion predictions and the measurements obtained in the laboratory. However, it is worth
noting that the proposed model occasionally slightly overestimated or underestimated
certain fuel consumption rates during the NEDC. Notably, the model underestimated fuel
consumption rates in the initial and final segments of the driving cycle, at times 26 s and
2369 s. The observed underestimation of energy consumption rates in the initial and final
segments of the driving cycle can be attributed to data-collection errors in these specific
portions. Despite these minor discrepancies, the overall prediction pattern of our model
demonstrates reasonable accuracy and consistency throughout the entire driving cycle. The
localized deviations at the beginning and end of the cycle are considered negligible when
evaluating the model’s performance holistically.
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The proposed model was validated using an independent dataset, employing data
from the Japanese JC08 cycle (JC08). These data were gathered at the Argonne National
Laboratory, utilizing the 2017 Toyota Mirai as the test vehicle. For result validation, we
specifically chose the Japanese JC08 cycle (JC08). This selection was made because the
JC08 cycle data were not utilized in the development of our model, thus serving as an
independent dataset. By using JC08 data for validation, we were able to assess the model’s
performance on a completely separate and unbiased set of driving conditions. This ap-
proach allows us to demonstrate the model’s robustness and generalizability beyond the
specific cycles used in its development.
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The JC08 drive cycle is a set of testing procedures and conditions used in Japan to
evaluate the fuel efficiency and emissions of vehicles. It is one of the testing protocols
employed by the Japanese Ministry of Land, Infrastructure, Transport, and Tourism (MLIT)
for certification purposes. The JC08 drive cycle is designed to simulate typical driving
conditions in Japan. It represents a specific driving pattern with defined speed profiles,
acceleration, and deceleration characteristics. The cycle takes into account various driving
scenarios, such as city driving, suburban roads, and highway conditions. While the
JC08 drive cycle was developed and used in Japan, the drive cycle is widely utilized in
other regions and countries, such as the EPA cycle in the United States or the NEDC (New
European Driving Cycle) in Europe. The JC08 cycle lasts for 1204 s, covering a total distance
of 8.17 km. The average speed during the cycle is 24.4 km/h (or 34.8 km/h when excluding
idle periods), with a maximum speed reaching 81.6 km/h.

Figure 6 illustrates a comparison between the projected energy consumption rates
of the hydrogen fuel cell vehicle (HFCV) and the data obtained from laboratory testing
using the JC08 cycle. According to the proposed model, the fuel cell estimation yielded a
predicted consumption of 4.22 kWh, while the actual test vehicle consumed 3.95 kWh in
the laboratory, resulting in a 6.7% error. In terms of total energy consumption, the model
forecasted 5.70 kWh, and the test vehicle consumed 5.69 kWh, with a 0.2% error. Figure 6b
provides a comprehensive second-by-second analysis of both fuel cell estimation and total
energy consumption, demonstrating the proposed model’s accurate prediction of fuel cell
energy consumption and overall energy consumption during the JC08 trip, in comparison
to the measured energy consumption rate of the test vehicle. These results highlight the
effectiveness of the proposed model in accurately estimating HFCV energy consumption for
various driving scenarios, such as city driving, suburban roads, and highway conditions.

While the proposed model simplifies the conditional battery mode, the battery mode
also depends on the battery’s SOC. SOC f , a final SOC, is estimated based on the total
SOC changes during the trip using Equations (8) and (9). The capacity of the test vehicle’s
battery, BatteryCapacity, is 1.6 kWh. PBattery in Equation (7) is utilized to estimate the SOC
changes over a time step, ∆t.

SOC f (t) = SOC0 − ∑ n
i=0∆SOCi(t), (10)

∆SOCi(t) = SOC(i−1)(t)−
Pbattery(t)

3600 ∗ BatteryCapacity
(11)

The SOC model findings revealed that the proposed model reasonably approximates
the final SOC values for three typical driving cycles. Specifically, the model predicted SOC
values with errors of 8.5%, −11.9%, and 3.0% for the UDDS, HWFET, and NEDC cycles,
respectively. The speed cycle results are not presented in the table due to the unavailability
of SOC data for this particular cycle. The SOC model presented in Equations (10) and
(11) serves as an independent validation tool rather than an integral component of the
proposed HFCV energy consumption model. The SOC model does not directly influence
or integrate with the energy calculations. Its primary function is to provide a comparative
analysis between estimated and actual SOC values, offering insights into the model’s
temporal performance.

In Figure 7, the model’s SOC predictions are illustrated, and they closely align with the
observed instantaneous SOC measurements, demonstrating the model’s effectiveness in
estimating real-time changes in SOC. The figure also displays real-time vehicle acceleration
measurements. Notably, the model effectively captured a consistent SOC reduction between
887 s and 1126 s, followed by a sudden SOC increase from 1127 s to 1153 s. In summary, the
model accurately predicted energy consumption and SOC for hydrogen fuel cell vehicles
with errors within a reasonable range compared to actual data. This feature empowers
the model to evaluate the effects of transportation initiatives, such as eco-friendly driving
practices and real-time applications and CAVs.
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6. Model Comparison with FASTSim

FASTSim [13,14], developed by the National Renewable Energy Laboratory (NREL),
is a widely used vehicle simulation tool designed to estimate energy consumption, perfor-
mance, and cost for various vehicle types under real-world driving conditions. It simulates
vehicle powertrains, including fuel cells, electric motors, and batteries, to calculate energy
flow and hydrogen consumption in HFCVs. It is a lightweight, physics-based vehicle simu-
lation tool designed to evaluate vehicle energy consumption. FASTSim and the proposed
model employ different approaches to estimate vehicle energy consumption, particularly
regarding motor efficiency. FASTSim relies on detailed motor efficiency maps or lookup
tables that define the relationship between motor speed, torque, and efficiency. In contrast,
the proposed model calculates the power required at the wheels and determines how the
vehicle delivers that power based on a fuel cell driveline efficiency estimation method. This
approach eliminates the need for specific motor efficiency data, which are often difficult to
obtain for individual vehicles. By avoiding this requirement, the proposed model offers a
more flexible solution for estimating HFCV energy consumption, especially in scenarios
where detailed component-level data are unavailable or hard to access.

Figure 8 offers a visual comparison between the FASTSim results and the model
estimates for energy consumption over time for three driving cycles (UDDS, HWFET, and
NEDC). In this figure, both FASTSim and the proposed model follow similar overall trends
in terms of when energy consumption increases or decreases over time. Peaks and lows
occur at roughly the same points across all three driving cycles. The proposed model shows
slightly more frequent fluctuations compared to FASTSim’s smoother results.
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Table 2 provides a comparison of energy consumption estimates (in kWh) between
the collected data, the proposed model, and FASTSim across three driving cycles: UDDS,
highway, and NEDC. For UDDS, the proposed model overestimates the energy consump-
tion by 13.50%, whereas FASTSim has a much smaller error rate of 2.10%. For HWFET, the
proposed model performs very well in this cycle, with an error rate of only −0.40%, indi-
cating a slight underestimation, while FASTSim overestimates energy consumption with a
higher error rate of 3.90%. For NEDC, both models underestimate energy consumption
for this driving cycle, but FASTSim has a larger underestimation (−9.50%) compared to
the proposed model (−6.30%). When considering all cycles together, both models perform
well, with low overall error rates. The proposed model slightly overestimates total energy
consumption by 1.70%, while FASTSim slightly underestimates it by 0.80%. The overall
difference between the two models is small, at just 2.50%, indicating that both models are
reasonably close in their total predictions.

Table 2. Energy consumption comparison of FASTSim and the proposed model.

Raw Data
(kWh)

Proposed
Model (kWh)

Proposed
Model Error

Rate (%)

FASTSim
(kWh)

FASTSim Error
Rate (%)

Proposed Model
vs. FASTSim

Difference (%)

UDDS 1.58 1.80 13.5% 1.62 2.1% 11.2%
HWFET 2.31 2.30 −0.4% 2.40 3.9% −4.1%
NEDC 1.75 1.64 −6.3% 1.59 −9.5% 3.6%
Total 5.65 5.74 1.7% 5.60 −0.8% 2.5%

7. Traffic Simulation Model Test Using HFCV Energy Model

This section evaluates how the developed HFCV model can estimate energy consump-
tion and the effects of energy consumption on various transportation operations.

Expanding on prior research [22], the authors assessed the impact of intersection
controls on energy consumption across various powertrain types (BEV, ICEV, HFCV, and
HEV). INTEGRATION software version 2.40 [23–25], a validated microscopic traffic simu-
lation platform, facilitated realistic modeling of vehicle behavior under diverse intersec-
tion controls.

The case study focused on the intersection of Ariane Way and Virginia 606 in Loudoun
County, Virginia, serving as a crucial alternative route for travelers accessing Washington
Dulles Airport. The speed limits are 88 km/h for eastbound and westbound traffic and
40 km/h for northbound and southbound traffic, with two-way stop signs controlling
traffic flow. Notably, traffic volume remains relatively low during non-peak hours but
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significantly increases during peak hours, resulting in congestion and lengthy queues on
Ariane Way, typically ranging from 10 to 15 vehicles.

To simulate traffic flow, we leveraged existing simulation models incorporating field-
derived parameters: speed, volume, saturation flow rate, jam density, lanes, and striping
data. Base saturation flow rates and jam densities were set at 1800 vehicles/hour/lane and
120 vehicles/km/lane, except for northbound approaches, which accounted for aggressive
driving (2000 vehicles/hour/lane). Gap times ranged from 3 to 4 s. The model was
calibrated and validated against field data. Signalized intersections featured two-phase
movements with 35 s cycles, while roundabouts used 50 km/h entry speeds and 60 m
diameters, as recommended in “Roundabouts: An Information Guide” [26].

The energy and fuel consumption for HFCVs, BEVs, HEVs, and ICEVs were estimated
using second-by-second vehicle speed profiles generated by the INTEGRATION software.
We used this detailed speed and acceleration data to calculate energy consumption rates
for each second for HFCVs, ICEVs, BEVs, and HEVs. To estimate the energy and fuel
consumption results for BEVs, HEVs, and ICEVs, we employed the VT-CPEM [19], VT-
HEV [18], and VT-CPFM [27] models, respectively. The impact of different approach speeds
was assessed using three scenarios: 56 km/h (35 mph), 72 km/h (45 mph), and 89 km/h
(55 mph).

Figure 9 evaluates energy consumption and fuel efficiency at three distinct intersection
types (roundabouts, signalized intersections, and two-way stop signs) for different ap-
proach speeds: 56 km/h, 72 km/h, and 89 km/h. The figure reveals that HFCVs and ICEVs
exhibit similar energy/fuel consumption patterns, while BEVs and HEVs show different
patterns. Specifically, for HFCVs, the roundabout control results in the highest energy
consumption, and the two-way stop-sign control results in the lowest energy consumption
across all approach speeds. For ICEVs, the signal control consumes the most fuel at an
approach speed of 56 km/h, whereas the roundabout consumes the most fuel at speeds
of 72 km/h and 89 km/h. For BEVs, the energy/fuel differences among the three traffic
controls are minor, with less than 1% variation. At an approach speed of 56 km/h, the signal
control consumes the least energy, and the roundabout consumes the most. At 72 km/h,
the signal control consumes the least energy, while the stop control consumes the most. At
88 km/h, the stop control consumes the least energy, and the signal control consumes the
most. For HEVs, the stop control consumes the least energy at all three speeds, while the
roundabout consumes the most energy at 56 km/h and 72 km/h, and the signal control
consumes the most energy at 89 km/h.

Energies 2024, 17, x FOR PEER REVIEW  21  of  24 

(a)  (b) 

(c) (d) 

(e)

Figure 9. Simulation test results. (a) HFCV, (b) ICEV, (c) BEV, and (d) HEV. (e) Average delay per 

vehicle. 

The figure also demonstrates that roundabouts and signal controls reduce delays by 

up to 71% and 60%, respectively, compared to stop-sign controls. This suggests that traffic 

control designs that minimize delays may lead to increased energy/fuel consumption for 

vehicles. For this case study, the results indicate that the most energy/fuel-efficient traffic 

controls vary for HFCVs, BEVs, HEVs, and ICEVs. Considering these findings, traffic plan-

ners and engineers should carefully balance improvements in both energy/fuel consump-

tion and traffic delays.

Figure 9. Cont.



Energies 2024, 17, 6360 18 of 21

Energies 2024, 17, x FOR PEER REVIEW  21  of  24 

(c)  (d) 

(e)

Figure 9. Simulation test results. (a) HFCV, (b) ICEV, (c) BEV, and (d) HEV. (e) Average delay per 

vehicle. 

The figure also demonstrates that roundabouts and signal controls reduce delays by 

up to 71% and 60%, respectively, compared to stop-sign controls. This suggests that traffic 

control designs that minimize delays may lead to increased energy/fuel consumption for 

vehicles. For this case study, the results indicate that the most energy/fuel-efficient traffic 

controls vary for HFCVs, BEVs, HEVs, and ICEVs. Considering these findings, traffic plan-

ners and engineers should carefully balance improvements in both energy/fuel consump-

tion and traffic delays.

Figure 9. Simulation test results. (a) HFCV, (b) ICEV, (c) BEV, and (d) HEV. (e) Average delay
per vehicle.

The figure also demonstrates that roundabouts and signal controls reduce delays by
up to 71% and 60%, respectively, compared to stop-sign controls. This suggests that traffic
control designs that minimize delays may lead to increased energy/fuel consumption
for vehicles. For this case study, the results indicate that the most energy/fuel-efficient
traffic controls vary for HFCVs, BEVs, HEVs, and ICEVs. Considering these findings,
traffic planners and engineers should carefully balance improvements in both energy/fuel
consumption and traffic delays.

8. Conclusions

In this work, a novel energy model for HFCVs was developed. The findings indicate
a strong alignment between the model’s predictions and real-world data, with average
error rates of 0.0% and −0.1% for fuel cell and total energy consumption across all four
cycles. However, it was noted that the error rate for a specific cycle, like the UDDS, could
be as high as 13.1%. Additionally, the study affirmed the reliability of the proposed model
through validation using independent data. The results revealed that the innovative model
accurately forecasted energy consumption, with error rates of 6.7% for fuel cell estimation
and 0.2% for total energy estimation compared to empirical data. The study also presented
SOC estimation results, demonstrating the model’s accuracy in predicting real-time SOC
changes by closely aligning with observed measurements. The study also included a
comparison with FASTSim results. When looking at all driving cycles combined, both
models demonstrate good performance, showing low overall error rates. The proposed
model slightly overpredicts total energy consumption by 1.70%, while FASTSim slightly
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underpredicts it by 0.80%. The overall difference between the two models is minimal, at just
2.50%, indicating that both models are reasonably close in their total predictions. The study
investigated the energy impact of various intersection controls, including roundabouts,
traffic signals, and stop signs, to assess the applicability of the proposed energy model.
The model’s design made it simple to calculate energy consumption by utilizing data from
traffic simulation software.

The proposed model offers significant advantages over FASTSim or other HFCV
energy models, primarily due to its simplified structure. The structure of our model
significantly reduces computational requirements through several key features. By utilizing
simple input variables instead of complex vehicle input variables or engine map data, our
model minimizes data processing and memory allocation needs. The absence of torque-
versus-speed models and complex component interactions enables more straightforward
mathematical operations, substantially reducing the number of calculations required per
simulation step. Furthermore, the model’s design, with fewer interdependencies between
variables, avoids recursive calculations and iterative processes that typically increase
computational load. These streamlined aspects contribute to a more computationally
efficient model, making it particularly suitable for applications where processing power
or memory might be limited. This approach likely results in reduced computational
requirements, making it particularly beneficial for real-time applications or scenarios with
limited computational resources. By prioritizing simplicity without compromising accuracy,
the proposed model addresses limitations of more complex systems like other models,
offering a practical and versatile alternative for HFCV modeling.

While the proposed model currently relies on data from a single vehicle, the use of
data from only one vehicle in developing the HFCV energy model is a necessary step given
the significant challenges and costs associated with obtaining comprehensive data. This
preliminary study serves to validate the model’s framework and demonstrate its potential,
using high-quality data from a representative vehicle to ensure accurate performance
metrics. While the current model is based on limited data, it is designed to be scalable and
refined with additional data in future research. The research team plans to incorporate more
data as they become available to enhance the model’s accuracy and robustness. Further,
temperature effects play a crucial role in HFCV energy modeling. In our future research, we
will focus on developing methodologies to accurately model the impact of temperature on
HFCV energy consumption, including cold and warm starts. This approach will enhance
the model’s accuracy and applicability across various operating conditions, providing a
more comprehensive understanding of HFCV performance in real-world scenarios

In conclusion, this research suggests that HFCVs have the potential to serve as a
more efficient and environmentally friendly option compared to traditional vehicles. The
outcomes offer a valuable resource for policymakers, transportation and environmental en-
gineers, and auto manufacturers, and a reliable means to quantify the energy consumption
impact of HFCVs in transportation projects.
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Nomenclature
a(t) Acceleration of the vehicle
A f Frontal area of the vehicle
CD Aerodynamic drag coefficient of the vehicle
Cr, c1 and c2 Rolling resistance parameters
EC(t) Energy consumption
g Gravitational acceleration
m Vehicle mass
Paux Power due to the auxiliary systems
Pa Specific power
Pb Specific power
Pidle Idle power
Pbattery(t) Power from battery
Pbattery_Crate(t) Battery C-rate
PFuelCell(t) Power from fuel cell
PHFCV(t) Power from fuel cell and battery
PWheels(t) Power at the wheels
v(t) Vehicle speed
va Specific vehicle speed
α, β Vehicle-specific parameters
ρAir Air mass density
ηrb Regenerative braking energy efficiency
ηbatt Battery efficiency
ηsupple Supplemental power efficiency
θ Road grade

References
1. U.S. Environmental Protection Agency. Fuel Cells & Vehicles—Basic Information. Available online: https://archive.epa.gov/

fuelcell/web/html/basicinfo.html (accessed on 1 October 2023).
2. Ahn, K.; Rakha, H.A. Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation

Applications. Energies 2022, 15, 529. [CrossRef]
3. Ajanovic, A.; Haas, R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int. J. Hydrogen

Energy 2021, 46, 10049–10058. [CrossRef]
4. Liu, F.; Zhao, F.; Liu, Z.; Hao, H. The impact of fuel cell vehicle deployment on road transport greenhouse gas emissions: The

China case. Int. J. Hydrogen Energy 2018, 43, 22604–22621. [CrossRef]
5. Aminudin, M.A.; Kamarudin, S.K.; Lim, B.H.; Majilan, E.H.; Masdar, M.S.; Shaari, N. An overview: Current progress on hydrogen

fuel cell vehicles. Int. J. Hydrogen Energy 2023, 48, 4371–4388. [CrossRef]
6. Acar, C.; Dincer, I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming. Int. J. Hydrogen

Energy 2020, 45, 3396–3406. (In English) [CrossRef]
7. Kurtz, J.; Sprik, S.; Bradley, T.H. Review of transportation hydrogen infrastructure performance and reliability. Int. J. Hydrogen

Energy 2019, 44, 12010–12023. (In English) [CrossRef]
8. Li, Y.H.; Wu, Y.Z.; Zhang, Y.M.; Wang, S.T. A Kriging-based bi-objective constrained optimization method for fuel economy of

hydrogen fuel cell vehicle. Int. J. Hydrogen Energy 2019, 44, 29658–29670. (In English) [CrossRef]
9. Xu, L.F.; Mueller, C.D.; Li, J.Q.; Ouyang, M.G.; Hu, Z.Y. Multi-objective component sizing based on optimal energy management

strategy of fuel cell electric vehicles. Appl. Energy 2015, 157, 664–674. (In English) [CrossRef]
10. Kaya, K.; Hames, Y. Two new control strategies: For hydrogen fuel saving and extend the life cycle in the hydrogen fuel cell

vehicles. Int. J. Hydrogen Energy 2019, 44, 18967–18980. (In English) [CrossRef]
11. Shusheng, X.; Qiujie, S.; Baosheng, G.; Encong, Z.; Zhankuan, W. Research and development of on-board hydrogenproducing

fuel cell vehicles. Int. J. Hydrogen Energy 2020, 45, 17844–17857. [CrossRef]
12. Caux, S.; Gaoua, Y.; Lopez, P. A combinatorial optimisation approach to energy management strategy for a hybrid fuel cell vehicle.

Energy 2017, 133, 219–230. (In English) [CrossRef]
13. Baker, C.; Moniot, M.; Brooker, A.; Wang, L.; Wood, E.; Gonder, J. Future Automotive Systems Technology Simulator (FASTSim)

Validation Report—2021. National Renewable Energy Laboratory, 2021. Available online: https://www.nrel.gov/docs/fy22osti/
81097.pdf (accessed on 23 October 2024).

14. Brooker, A.; Gonder, J.; Wang, L.; Wood, E.; Lopp, S.; Ramroth, L. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and
Performance; SAE International: Warrendale, PA, USA, 2015.

15. Islam, E.S.; Moawad, A.; Kim, N.; Rousseau, A. Energy Consumption and Cost Reduction of Future Light-Duty Vehicles Through
Advanced Vehicle Technologies: A Modeling Simulation Study Through 2050; Argonne National Lab. (ANL): Argonne, IL, USA, 2020.

https://archive.epa.gov/fuelcell/web/html/basicinfo.html
https://archive.epa.gov/fuelcell/web/html/basicinfo.html
https://doi.org/10.3390/en15020529
https://doi.org/10.1016/j.ijhydene.2020.03.122
https://doi.org/10.1016/j.ijhydene.2018.10.088
https://doi.org/10.1016/j.ijhydene.2022.10.156
https://doi.org/10.1016/j.ijhydene.2018.10.149
https://doi.org/10.1016/j.ijhydene.2019.03.027
https://doi.org/10.1016/j.ijhydene.2019.04.094
https://doi.org/10.1016/j.apenergy.2015.02.017
https://doi.org/10.1016/j.ijhydene.2018.12.111
https://doi.org/10.1016/j.ijhydene.2020.04.236
https://doi.org/10.1016/j.energy.2017.05.109
https://www.nrel.gov/docs/fy22osti/81097.pdf
https://www.nrel.gov/docs/fy22osti/81097.pdf


Energies 2024, 17, 6360 21 of 21

16. Argonne National Laboratory. Autonomie. Available online: https://www.autonomie.net/ (accessed on 11 September 2015).
17. Argonne National Laboratory. Autonomie Suite. Available online: https://vms.taps.anl.gov/tools/autonomie/ (accessed on

30 October 2024).
18. Ahn, K.; Rakha, H.A. A Simple Hybrid Electric Vehicle Fuel Consumption Model for Transportation Applications; Electric and Hybrid

Vehicles; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2019.
19. Fiori, C.; Ahn, K.; Rakha, H.A. Power-based electric vehicle energy consumption model: Model development and validation.

Appl. Energy 2016, 168, 257–268. [CrossRef]
20. Rakha, H.; Lucic, I.; Demarchi, S.H.; Setti, J.R.; Van Aerde, M. Vehicle dynamics model for predicting maximum truck acceleration

levels. J. Transp. Eng.-Asce. 2001, 127, 418–425. (In English) [CrossRef]
21. Buchmann, I. BU-1003a: Battery Aging in an Electric Vehicle (EV). Available online: https://batteryuniversity.com/article/bu-10

03a-battery-aging-in-an-electric-vehicle-ev (accessed on 15 October 2023).
22. Ahn, K.; Park, S.; Rakha, H. Impact of Intersection Control on Battery Electric Vehicle Energy Consumption. Energies 2020, 13,

3190. [CrossRef]
23. Van Aerde, M.; Hellinga, B.; Baker, M.; Rakha, H. INTEGRATION: An overview of traffic simulation features. In Proceedings of

the 75th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 7–11 January 1996.
24. Rakha, H.; Crowther, B. Comparison and calibration of FRESIM and INTEGRATION steady-state car-following behavior. Transp.

Res. Part A Policy Pract. 2003, 37, 1–27. (In English) [CrossRef]
25. Dion, F.; Rakha, H. Integration of Transit Signal Priority within Adaptive Signal Control Systems. In Proceedings of the 84th

Annual Meeting of the Transportation Research Board, Washington, DC, USA, 9–13 January 2005.
26. Kittelson & Associates Inc. Roundabouts: An Information Guide; Kittelson & Associates Inc.: Portland, OR, USA, 2000.
27. Rakha, H.; Ahn, K.; Moran, K.; Saerens, B.; Bulck, E.V.D. Virginia Tech Comprehensive Power-Based Fuel Consumption Model:

Model development and testing. Transp. Res. Part D Transp. Environ. 2011, 16, 492–503. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.autonomie.net/
https://vms.taps.anl.gov/tools/autonomie/
https://doi.org/10.1016/j.apenergy.2016.01.097
https://doi.org/10.1061/(ASCE)0733-947X(2001)127:5(418)
https://batteryuniversity.com/article/bu-1003a-battery-aging-in-an-electric-vehicle-ev
https://batteryuniversity.com/article/bu-1003a-battery-aging-in-an-electric-vehicle-ev
https://doi.org/10.3390/en13123190
https://doi.org/10.1016/S0965-8564(02)00003-4
https://doi.org/10.1016/j.trd.2011.05.008

	Introduction 
	Literature Review 
	Hydrogen Energy Consumption Data 
	HFCV Energy Consumption Modeling 
	Model Test and Validation 
	Model Comparison with FASTSim 
	Traffic Simulation Model Test Using HFCV Energy Model 
	Conclusions 
	References

