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Abstract: This paper proposes a novel distributed control strategy for DC microgrids using a convex
relaxation method to ensure the system operates at the optimal power flow solution. Initially, a
suitable convex relaxation technique is applied to transform the non-convex optimal power flow
problem into a convex form, with the accuracy of this method being rigorously demonstrated. Next,
the Karush–Kuhn–Tucker (KKT) optimality conditions of the relaxed problem are equivalently
transformed, and a synchronization term is derived to facilitate the distributed control, thereby
ensuring operation under optimal power flow. This paper also analyzes the impacts of communication
delay and network structure on the performance of the proposed control strategy. Finally, simulations
and numerical experiments are presented to validate the effectiveness of the proposed method.

Keywords: DC microgrid; distributed control; optimization; convex relaxation; second-order cone
programming; stability

1. Introduction

In recent decades, to address the depletion of fossil fuels and reduce excessive reliance
on them, efforts have been made to aggressively develop various emerging renewable
energy sources, with solar and wind energy showing particularly promising growth. Unlike
conventional power generation systems, renewable energy systems exhibit distinctive char-
acteristics, complicating their integration into AC microgrids. In contrast, DC microgrids,
with their advantages—such as the absence of reactive power, elimination of harmonics,
simplified control, and reduced losses—are better suited for renewable energy systems [1–3].

The optimization control strategies for DC microgrids are primarily categorized into
three types: decentralized, centralized, and distributed. In decentralized control, each
node operates based on its own local information, resulting in a relatively simple control
mechanism [4]. A common example of decentralized control is droop control [5]. The
decentralized method avoids solving optimization problems that require real-time load
information. Instead, it only needs to equalize the incremental cost using droop control. As
a result, decentralized optimization methods can reduce costs without communication and
achieve plug-and-play functionality. However, they are limited to simplified optimization
models, such as neglecting cable resistance and the complex nature of currents. Further-
more, because they rely on droop control, these methods can result in significant deviations
from the optimal operating point, particularly in large, complex systems, where the precise
equalization of incremental costs is not achievable.

The centralized optimization control usually includes two core processes: The first is
the centralized information processing process, in which the central controller collects data
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from each controlled object or sensor for unified analysis and processing. The second is the
decision-making and execution process; based on the processed information, the central
controller formulates the control strategy, and issues specific control instructions to each
controlled object to achieve the overall goal and performance requirements of the system [6].
When solving these optimization problems, centralized optimization methods often rely on
traditional technical means, such as convex optimization methods [7] and heuristic opti-
mization strategies. Due to low power constraints and voltage and current constraints, the
ED problem is usually non-convex. To overcome this problem, some convex relaxation meth-
ods, such as the semi-definite programming [8] and second-order cone programming [9],
are proposed. For the ED problem with more non-convex and stringent constraints, the
heuristic optimization methods, such as the ant colony optimization [10], particle swarm
optimization [11,12] and the deep neural network approach [13], are proposed to find the
solution of the ED problem. The centralized control system relies on a central controller to
interact with each node, enhancing system controllability and observability. However, this
approach introduces challenges such as high communication load and reduced reliability.

Under distributed control, adjacent nodes communicate with each other to exchange
information. This approach merges the benefits of both decentralized and centralized
control while mitigating their respective drawbacks, resulting in improved performance.
Several distributed consensus optimal methods are proposed to solve the ED problem, such
as the distributed lambda-consensus algorithm [14,15], the distributed projected gradient
method [16] and the alternating direction method of multipliers (ADMM) method [17,18].
Most of these methods turn the optimization problem into a convex problem by ignoring the
complex characteristics of the power flow, and the obtained lambda-consensus conditions
are not accurate and cannot reach the optimal solution. However, current distributed control
strategies still fall short of achieving optimal control [19–21]. The distributed optimization
method requires only low-bandwidth communication and is suitable for microgrids. The
existing distributed optimization methods are more suitable for simple ED model distributed
optimization methods, and ignore the complex power flow characteristics. Therefore, to
achieve global economical dispatch, a more accurate optimal power flow model needs to be
proposed by taking into account the characteristics of complex power flow.

This paper studies the optimal power flow of a DC microgrid model with resistive
loads and proposes a distributed optimal control method to achieve optimal operation. Its
main contributions are as follows:

(1) A semi-definite programming convex relaxation technique is proposed to transform
the non-convex optimal power flow problem into a convex one, and it is proven that
this convex relaxation is exact.

(2) The KKT condition is derived using the Lagrange multiplier method. Additionally, we
convert the KKT optimality condition into a synchronization term that can be incorpo-
rated into the distributed control, ensuring the system operates at the optimal power
flow solution.

(3) To achieve global optimality, global information is required, including all line resis-
tances, loads, cost parameters, and so on. To further reduce communication costs, this
paper proposes a distributed cost-optimization control strategy based on distributed
observers. By using the distributed observer to obtain the global information, the
method enables the calculation of optimal factors, allowing the controller to achieve
voltage restoration and global optimal scheduling with only a sparse communication
network. The impact of communication delays and the structure of the communication
network on the performance of the proposed control strategy is also analyzed.

The paper is organized as follows: Section 2 introduces the key notations and defines
the problem. Section 3 presents the main methodology and provides the relevant proofs.
Section 4 discusses the simulations and validation of the proposed approach. Section 5
concludes the paper.
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2. Related Works and Problem Formulations

Let Rn, Rn
+, and Rn×n represent the sets of n-dimensional real vectors, n-dimensional

positive real vectors, and n × n real matrices, respectively. For a vector x ∈ Rn, [x] denotes
the corresponding diagonal matrix, while x2 represents the element-wise square of x. The
vector 1n is an n-dimensional column vector of ones, and 0n is an n-dimensional column
vector, of zeros. If x ∈ Rn satisfies x ≥ 0n, it means that all elements of x are non-negative.
For two vectors x, y ∈ Rn, x ≤ y indicates that each element of x is less than or equal to
the corresponding element of y. For a matrix A ∈ Rn×n, A > 0 and A ≥ 0 imply that A is
positive definite and positive semi-definite, respectively, while A < 0 and A ≤ 0 indicate
that A is negative definite and negative semi-definite, respectively.

2.1. The Existing Distributed Control Strategy in Microgrid

Consider a microgrid that comprises n dispatchable DGs. Typically, the operation cost
function for the DC microgrid is expressed as follows:

f (p) =
n

∑
i=1

fi(pi), f (pi) = ai p2
i + bi pi + ci (1)

where pi and fi(pi) represent the output power and the operation cost function of the i-th
DG, respectively. ai , bi and ci are coefficients that are all positive numbers. Subsequently,
the optimization model for the ED adopts the following formulation:

min
pi

f (p)

s.t.
n

∑
i=1

pi = pload + ploss

(2)

where p is the vector of pi, ploss is the line loss, and pload is the equivalent total load power.
Then, the Lagrangian operator for the optimization model is given by

L(p, λ) = f (p) + λ(pload + ploss −
n

∑
i=1

pi) (3)

where λ is the Lagrangian multiplier about the equality constraint. Therefore, the KKT
optimality condition of the optimization problem can be deduced as follows:

∂ fi(pi)

∂pi
− λ

(
1 − ∂pload

∂pi
− ∂ploss

∂pi

)
= 0,

ploss + pload −
n

∑
i=1

pi = 0
(4)

Then, assuming the dynamic value of load power and line loss power to each node
power is 0, that is, ∂pload/∂pi = 0 and ∂ploss/∂pi = 0, the following KKT conditions
are obtained: 

∂ f1(p1)

∂p1
=

∂ f2(p2)

∂p2
= · · · = ∂ fn(pn)

∂pn
= λ

ploss + pload −
n

∑
i=1

pi = 0
(5)

Then, if (5) holds in the steady-state, the global optimal dispatch is achieved. Based on
this idea, the λ-consensus [19] method is proposed in a distributed manner as follows:

ui =
∫

∑ aij(λj − λi)dt +
∫

ure f − ūdt (6)
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here, ui denotes the instantaneous voltage of each distributed generator (DG), while
λi =

∂ fi
∂pi

represents the sub-gradient of the cost function. The symbol ū refers to the average
node voltage, and ure f signifies the reference voltage value. It is evident that when the sys-
tem reaches the steady-state under λ-consensus control, the condition λ1 = λ2 = · · · = λn
is satisfied, indicating that optimal power dispatch is achieved.

However, both ploss and pload are actually functions of u; that is, ∂ploss
∂pi

̸= 0 and
∂pload

∂pi
̸= 0. The condition in (5) is not the optimal condition of the economic dispatch

problem, but can only be called the suboptimal condition. In fact, the vast majority of
models in existing distributed optimization research make such assumptions, and as a
result, these methods cannot achieve global optimality [22].

In summary, to simplify the optimization model, existing distributed optimization
methods ignore complex power flow characteristics, resulting in a deviation between the
operating point and the optimal point. In this paper, a more accurate optimal power flow
model is proposed by taking into account the characteristics of complex power flow.

2.2. The Optimization Model of DC Microgrid Considering Power Flow Constraints

Consider a generalized DC microgrid comprising n power nodes and m load nodes,
which can be represented as a graph. The power sources and loads correspond to the
graph’s nodes, while the transmission lines are modeled as edges, with each line having
an associated resistance. Let Y represent the admittance matrix, where the off-diagonal
elements are defined as yij = − 1

rij
if there is a line between nodes i and j (with rij being the

line resistance), and yij = 0 otherwise. The diagonal elements are given by yii = −∑j yij.
Assuming the graph is connected, any principal submatrix of Y is positive definite. The
load nodes are modeled as constant impedance nodes, with RL being the diagonal matrix
whose diagonal elements correspond to the load resistances. Let u ∈ R+n and uL ∈ R+m

denote the voltages at the power and load nodes, respectively.
According to Kirchhoff ’s law and Ohm’s law, we obtain[

i
iL

]
= Y

[
u

uL

]
=

[
YSS YSL
YLS YLL

][
u

uL

]
(7)

iL = −R−1
L uL (8)

Combining (7) and (8), we obtain

i =
(

YSS − YSL(R−1
L + YLL)

−1
YLS

)
u (9)

Define Yeq = YSS − YSL

(
YLL + R−1

L

)−1
YLS, we have

p = [u]Yequ (10)

Since the admittance matrix Y is the Laplacian matrix [23] of a connected network, its
principal submatrix is positive definite, and then YLL + R−1

L is positive definite and invertible.
The optimal power flow problem of DC microgrid considering voltage regulation can

be described as the following form, denoted as OPF 1:

min
n
∑

i=1
fi(pi)

s.t. p = [u]Yequ
1T

n u2 = nu2
re f

u ≥ 0n

(11)
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The constraints include power flow, voltage regulation, and non-negativity of the
optimization variables. Therefore, the accurate optimization model of DC microgrid under
distributed framework is derived.

The power flow constraints in OPF 1 are nonlinear equalities, which make the opti-
mization problem non-convex. As a result, finding the optimal solution is challenging,
especially for large-scale systems. This paper focuses on the following three questions:

Q1: Is there a convex relaxation method that can convert the original non-convex problem
in (11) into a convex one while preserving the same optimal solution?

Q2: Can a consensus condition be derived from the optimality condition of the convexified
problem and integrated into the distributed control strategy to ensure global optimality?

Q3: Given that achieving global optimality requires global information, which typically
involves centralized communication, can a distributed control method be proposed
that achieves the same result using only a sparse communication network?

3. The Proposed Distributed Cost Optimization Control Strategy on Convex
Relaxation Method
3.1. The Proposed Convex Relaxation Technique

Since the power flow constraint is a quadratic equality, which is convex only when
linear, we introduce a mapping to transform it into a linear equality constraint [24,25].

Specifically, we define a new variable W ∆
=
[
wij
]
, where the elements satisfy wii = u2

i and
wij = wji = uiuj, i.e., W = uuT . Then, the optimization problem in (11) can be transformed
into the following form (denoted as OPF 2):

min
n

∑
i=1

fi(pi)

s.t. p =


p1
p2
...

pn

 =


y11w11 + y12w12 · · ·+ y1nw1n
y21w21 + y22w22 · · ·+ y2nw2n

...
yn1wn1 + yn2wn2 · · ·+ ynnwnn


w11 + w22 + · · ·+ wnn = n2u2

re f[
wii wij
wij wjj

]
≥ 0, rank

([
wii wij
wji wjj

])
= 1

(12)

In this way, the power flow constraint and the voltage regulation constraint become

linear equality constraints. Since
[

wii wij
wji wjj

]
≥ 0 is also a convex constraint; hence, only

rank
([

wii wij
wji wjj

])
= 1 is left as a non-convex constraint in the problem. By removing the

rank-one constraint, the original non-convex optimization problem is relaxed into a convex
problem as follows (denoted as ROPF 1):

min
n
∑

i=1
fi(pi)

s.t. p =
[
y1w1 y2w2 · · · ynwn

]T

w11 + w22 + · · ·+ wnn = nu2
re f[

wii wij
wij wjj

]
≥ 0

(13)

where Yeq =
[
yT

1 yT
2 · · · yT

n
]T , with yi representing the i-th row vector of Yeq, and

W =
[
w1 w2 · · · wn

]
, where wi denotes the i-th column vector of W.
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Remark 1. Although OPF 1 has been relaxed into a convex problem (ROPF 1), the feasible region
of ROPF 1 is much larger than that of the original problem, meaning its optimal solution may not
lie within the feasible region of OPF 1. We define the convex relaxation as exact if OPF 1 and ROPF
1 share the same global optimal solution.

3.2. The Exactness of the Proposed the Proposed Convex Relaxation Technique

In this section, we prove that the proposed convex relaxation method is
exact [26,27]. Specifically, the relaxation is exact if the optimal solution of ROPF 1 satisfies

rank
([

wii wij
wji wjj

])
= 1, meaning that OPF 1 and ROPF 1 share the same optimal solution.

Note that fi(pi) is a strictly increasing function of pi. Since pi = ∑n
j=1 yijwji, with

yii > 0 and yij ≤ 0, f (pi) increases with wii and decreases with wij. Therefore, ∑n
i=1 fi(pi)

achieves its minimum when wii is minimized and wij is maximized. This monotonicity
proves the exactness of the convex relaxation method.

Theorem 1. The optimal solution of ROPF 1 must satisfy that
[

wii wij
wji wjj

]
is positive semi-definite

and rank
([

wii wij
wji wjj

])
= 1.

Proof. Let (W∗, p∗) denote the optimal solution of ROPF 1, and
[

w∗
hh w∗

hk
w∗

hk w∗
kk

]
is positive

definite. We now demonstrate that there exists an alternative feasible solution
(
W̃, p̃

)
satisfying p̃ ≤ p∗ and f ( p̃) < f (p∗).

Constructing the New Solution. Let w̃hk = w∗
hk + ε, where ε is a small positive number

satisfying
(
w∗

hk + ε
)2 ≤ w∗

hhw∗
kk. This ensures that the modified matrix

[
w∗

hh w̃hk
w̃hk w∗

kk

]
remains

positive semi-definite, maintaining the feasibility of the solution with respect to any con-
straints involving this submatrix. Let the remaining elements of W̃ be identical to those
in W∗, so only w̃hk is modified from W∗. With this construction, it is straightforward to
verify that

(
W̃, p̃

)
satisfies all the constraints of ROPF 1, and thus, it is a feasible solution to

ROPF 1.
Comparing Objective Values. Define p̃ = [y1w̃1, · · · , ynw̃n]T . Since pk and ph are strictly

decreasing with whk, increasing w∗
hk by ε leads to p̃h < p∗h and p̃k < p∗k . For other indices

i ̸= h, k, p̃i = p∗i because the corresponding elements of W̃ are unchanged. Since fi(pi) is

strictly increasing with pi for all i, we obtain
n
∑

i=1
fi( p̃i) <

n
∑

i=1
fi(p∗i ). Therefore, the objective

value at
(
W̃, p̃

)
is strictly less than that at (W∗, p∗).

This contradiction indicates that the optimal solution of ROPF 1 must satisfy that[
wii wij
wji wjj

]
is positive semi-definite and rank

([
wii wij
wji wjj

])
= 1.

Remark 2. Since ROPF 1 is a relaxation of OPF 1, their optimal values must satisfy f ∗ROPF1 ≤ f ∗,
where f ∗ is the optimal value of OPF 1. Theorem 1 shows that the point at which ROPF 1 attains
its minimum also lies within the feasible region of OPF 1; then, we obtain f ∗ROPF1 = f ∗. Therefore,
the first question Q1 is resolved.

Remark 3. The convex relaxation is often achieved by simplifying or relaxing nonlinear constraints,
which can potentially lead to solutions that violate physical and operational limits. However, for
OPF 1, we have proven that the convex relaxation is exact. This means that the optimal solution
of the relaxed convex problem OPF 2 will always satisfy the original constraints. As a result, the
obtained solution will not violate any physical or operational limits, ensuring the applicability of the
method in practical scenarios.
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3.3. The Optimality Condition of OPF Problem in Distributed Framework

In this part, we derive the KKT conditions for ROPF 1. ROPF 1 can be expressed in the
equivalent form (denoted as ROPF 2):

min
n
∑

i=1
fi(yiwi)

s.t. w11 + w22 + · · ·+ wnn = nu2
re f

wiiwjj ≥ w2
ij, wii > 0

(14)

The Lagrangian function of (14) is given by

L(W, λ, µ, ν) =
n

∑
i=1

fi(yiwi)

+ λ
(

w11 + w22 + · · ·+ wnn − nu2
re f

)
+ ∑

j ̸=i
µij

(
w2

ij − wiiwjj

)
−

n

∑
i=1

νiwii

(15)

where λ, µij, and vi are Lagrange multipliers. The partial derivatives of L(W, λ, µ, ν) with
respect to W are given by

∂L
∂wii

= gi(pi)yii + λ − ∑
j ̸=i

µijwjj − vi (16)

∂L
∂wij

= gi(pi)yij + gj(pi)yij + 2µijwij (17)

where gi(pi) =
∂ fi
∂pi

= 2aiyiwi + bi. Then, the KKT conditions of ROPF 2 are obtained as

gi(pi)yii + λ − ∑
j ̸=i

µijwjj − vi = 0

gi(pi)yij + gj(pi)yij + 2µijwij = 0

w11 + w22 + · · ·+ wnn = nu2
re f

w2
ij ≤ wiiwjj

µij ≥ 0

µij

(
w2

ij − wiiwjj

)
= 0

νi ≥ 0

wii > 0

νiwii = 0

(18)

Since both ROPF 2 and ROPF 1 are convex, the KKT conditions are necessary and
sufficient for optimality, ensuring a unique global optimal solution. When ROPF 1 reaches
its optimal solution, wii > 0 must hold, and therefore its corresponding multiplier is 0, i.e.,
vi = 0. At the same time, w2

ij = wiiwjj must hold according to Theorem 1. Substituting

wij = uiuj and wii = u2
i into (18), the KKT condition can be simplified as

gi(pi)yii + λ − ∑
j ̸=i

µiju2
j = 0

(gi(pi) + gj(pj))yij + 2µijuiuj = 0

u2
1 + u2

2 + · · ·+ u2
n = nu2

re f

µij ≥ 0

(19)
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Substituting µij = − yij(gi(pi)+gj(pj))
2uiuj

into the first equation in (19), it becomes


x1 = x2 = · · · = xn = −λ

xi =
1

2ui
(gi

n

∑
j=1

yijuj +
n

∑
j=1

yijujgj(pj))

u2
1 + u2

2 + · · ·+ u2
n = nu2

re f

(20)

Notice that ii =
n
∑

j=1
yijuj, then xi becomes

xi =
1

2ui
(gi(pi)ii +

n

∑
j=1

yijujgj(pj)) (21)

The (20) is the equivalent “consensus” form of the KKT conditions for OPF 1. To
achieve (20) in the steady-state, the distributed consensus control method is designed
as follows

u̇ = −Lx +
(

u2
re f − ū

)
1n (22)

where ū = 1
n

n
∑

j=1
u2

j and L is the Laplacian matrix of the communication network. The first

term in the above distributed control method is the synchronization term that ensures
x1 = x2 = · · · = xn at the steady-state. The second item is the voltage regulation item.
These two terms together form the sufficient and necessary conditions of KKT for the
optimal solution of power flow, so the system can achieve global optimization at the steady-
state if xi can be obtained through the communication network. A distinct advantage of the
proposed method in (22) is that the system will operate automatically at the global optimal
point, eliminating the need to use interior-point methods to solve the optimization problem
ROPF 1. Therefore, the second problem Q2 has been addressed.

However, since YLL + R−1
L is a irreducible M-matrix, (YLL + R−1

L )−1 consists entirely
of positive elements, which results in all elements of Yeq being non-zero (yij ̸= 0 for all
i, j). Therefore, xi relies on global information, specifically requiring knowledge of all line
impedances, load resistances, voltages at the source nodes, and cost parameters. From this
perspective, the implementation of (22) necessitates a centralized communication network
to obtain the global information, which may lead to high communication cost. Next, we
will propose a distributed observer to acquire global information, allowing the distributed
optimization control method in (22) to be implemented through a low-bandwidth sparse
communication network.

Remark 4. Solving large-scale SOCP problems is indeed challenging although it is convex. For
the network with n nodes, the original problem involves n voltage variables (ui), but after SOCP
relaxation, the number of variables (wij) increases to n(n + 1)/2, which significantly increases the
computational burden. However, the core idea of this paper is to derive the KKT conditions of the
convex optimization problem and transform them into a consensus form (see Equation (20)). By
utilizing distributed consensus control, the system automatically operates at the optimal point when
the optimal factors xi are consensus, eliminating the need to solve the optimization problem directly.
Therefore, the proposed approach effectively addresses the scalability issue of SOCP.

3.4. The Proposed Distributed Cost Optimization Control Strategy with Distributed Observers

The sparse communication network that communicates only with a few neighboring
nodes is more suitable for DC microgrids with many distributed power sources.

In xi, all the line resistances and loads are assumed to be known, then yij is available for

any i and j. ii, ui and gi(pi) are local variables, while the term
n
∑

j=1
yijujgj(pj) involves global
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variables. Moreover, for the voltage regulation term, ū is also contains global variables. The
general distributed average state observer is proposed as follows

φ = z +
1
ε

∫
−Lφdt, φ(0) = 0n (23)

where z is the input to the distributed average state observer, which is used to observe
its average value. ε is a small positive scalar. φ is the estimate of average value of z,
which satisfies

lim
t→+∞

(
φi(t)−

1
n

n

∑
j=1

zj(t)

)
= 0 (24)

In the proposed distributed optimal control method, there are n + 1 average state
variables need to be observed, namely, ū, mi = [u][g(p)]yT

i , i ∈ 1, 2, . . . , n, where yT
i is the

i-th column vector of Yeq, and g(p) = [g1(p1), g2(p2), . . . , gn(pn)]T .
For ū, the distributed average state observer is designed as

û = −1
ε

∫
Lûdt + u2 (25)

For mi, the distributed average state observer is designed as

m̂i = −1
ε

∫
Lm̂idt + mi (26)

Then, the distributed optimal control method with distributed average state observers
are as follows.

u̇i = ∑ aij(
1
ui
(gi(pi)ii + nαi)−

1
uj
(gj(pj)ij + nαj))

+ (u2
re f − ûi)

(27)

where ai is an arbitrary element of mi.

Remark 5. To achieve global optimality, global information is necessary; however, such informa-
tion is generally difficult to obtain directly through sparse communication networks. This paper
implements the observation of global information through n + 1 distributed average state observers,
enabling the proposed distributed optimization method to be applied in a sparse communication
network. Hence, Q3 is addressed.

3.5. Stability Analysis
3.5.1. The Small-Signal Model of the System Based on Singular Perturbation Theory

Due to the presence of the distributed observers, the order of the whole system is high
and the stability is difficult to analysis. To simplify the stability analysis, we assume ε is
sufficient small. Then, the system will exhibit significant multi-time-scale characteristics;
the reduced-order system is given in (22) while the bound-layer system is given in (23).
Clearly, the bound-layer system mainly corresponds to the dynamics of the distributed
observer while the reduced-order system corresponds to the dynamics of the system under
the distributed optimal control.

The small-signal model of the reduced-order system is given by

∆u̇ = −(
2
n

1n1T
n [u

∗] + L
∂x
∂u

(u∗))∆u (28)

where u∗ is the equilibrium of the system. The small-signal model of the bound-layer
system is given by

∆φ̇ = −1
ε

L∆φ, ∆φ = ∆û, ∆m̂1, ∆m̂2, . . . , m̂n (29)

Then, main results are as follows.
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Theorem 2. If the eigenvalue of 2
n 1n1T

n [u∗] + L ∂x
∂u (u

∗) has positive real parts, then there exists a
positive scalar ε∗ such that the system is stable when 0 < ε ≤ ε∗.

Proof. According to the singular perturbation theorem, if both the reduced-order and
boundary-layer systems are stable, there exists a positive scalar ε∗ such that the original
system is stable for 0 < ε < ε∗. It can be easily shown that the reduced-order system is
stable if 2

n 1n1T
n [u∗] + L ∂x

∂u (u
∗). Based on the findings in [28], the boundary-layer system is

inherently stable. Thus, Theorem 2 is validated.

Theorem 2 provides the stability conditions for the system under the proposed dis-
tributed control strategy, thereby ensuring that the control strategy can effectively achieve
the goals of voltage recovery and power flow optimization. ε∗ in Theorem 2 can be cal-
culated using numerical methods such as the root locus method. It will be set to an
appropriate value within the stable range in the simulation, and the stability of the control
strategy will be verified under sudden load changes.

3.5.2. Stability Analysis of the System Under Communication Delays

Sparse communication networks often have certain delays, so it is necessary to study
the impact of communication delays on system stability. Let τ denote the communication
delay, then the small-signal models of the reduced-order system and bound-layer system
with delays are given by

∆u̇ = −(
2
n

1n1T
n [u

∗] + L
∂x
∂u

(u∗))∆u(t − τ) (30)

∆φ̇ = −1
ε

L∆φ(t − τ) (31)

The characteristic equations of the above systems are given by

|sI + (
2
n

1n1T
n [u

∗] + L
∂x
∂u

(u∗))e−τs| = 0 (32)

|sI +
1
ε

Le−τs| = 0 (33)

Let λ2 ≤ λ3 ≤ · · · ≤ λn be the non-zero eigenvalues of L, r1eθ1 j, r2eθ2 j, . . . , rneθn j be
the eigenvalues of 2

n 1n1T
n [u∗] + L ∂x

∂u (u
∗). Then, main results are as follows:

Theorem 3. If the eigenvalue of 2
n 1n1T

n [u∗] + L ∂x
∂u (u

∗) has positive real parts, then the system is
stable if and only if 0 < τ < τ∗ where

τ∗ = min
{

επ

2λn
,

π − 2|θ1|
2r1

,
π − 2|θ2|

2r2
, . . . ,

π − 2|θn|
2rn

}
(34)

Proof. The necessary and sufficient condition for system stability is that the roots of the tran-
scendental equations in (31) and (32) all have negative real parts. Theorems (32) and (33)
are equivalent to (35) and (36), respectively.

n

∏
i=1

(s + rieθi je−τs) = 0 (35)

s(s + λ2e−τs) . . . (s + λne−τs) = 0 (36)

Then, the system is stable if and only if the roots of all sub-equations (s + rieθi je−τs = 0
and s + λne−τs = 0) are located in the left half-plane. By invoking the existing results
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(Theorem 4 in [29]), the roots of s + rieθi je−τs = 0 are located in the left half-plane if and
only if

τri + |θi| <
π

2
(37)

Likewise, the roots of (36) has negative real parts if and only if

τ < min
{

επ

2λ2
,

επ

2λ3
, . . . ,

επ

2λn

}
=

επ

2λn
(38)

Combine (37) and (38), (34) is obtained, thus proving Theorem 3.

Since the eigenvalue of 2
n 1n1T

n [u∗] + L ∂x
∂u (u

∗) has positive real parts, which implies
|θi| < π

2 , there exists a positive scalar ε∗ that satisfies (34). On the other hand, ε should
be sufficient small to ensure the acceptable convergence rate of the distributed observers.
However, it will decrease the maximal communication delay that keep the system stable.
Since ε∗ is small, τ∗ can be regarded as τ∗ = επ

2λn
.

4. Case Studies

To verify the proposed method, a DC microgrid based on the IEEE 10-bus system is
designed, as shown in Figure 1. In this diagram, red nodes denote sources, purple nodes
represent loads, and node numbers are labeled in black. The cables are represented by
black solid lines, with the resistance values indicated by red numbers.

3

21

87

9 10

65

4

4 4
6

8 3

2 9

5
1 6

DG
Load

Figure 1. The topology of the DC microgrid with 10 nodes.

Parameter designing. For A 10-node DC microgrid system, set the parameter values
of ure f = 48 V and the objective function fi(pi) = ai p2

i + bi pi + ci as a = [2, 1, 0.5, 0.1]T ,
b = [10, 20, 5, 10]T , c = [0, 0, 0, 0]T . RL = [10, 20, 10, 30, 20, 30]. ε = 0.1.

The Laplacian matrix of the communication network is given by

L =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


4.1. Optimality Verification

This section aims to assess whether the proposed distributed control method can
achieve global optimization. The MATLAB 2018b, CVX Optimization Toolbox is used
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to compute the global optimal solution of the convex problem ROPF 2. If the system’s
steady-state under the proposed control method aligns with the global optimal solution
obtained via the MATLAB 2018b CVX Optimization Toolbox, it confirms that the method
ensures global optimal operation of the system.

The calculation results from the MATLAB CVX Optimization Toolbox are shown. Here,
the CVX built-in optimization solver MOSEK is used to solve, the core algorithm of which
is the interior-point method. Results show that the objection function converges to the
minimum value 156,708,898.75 and the global solution is

W =


2016.5 2053.2 2270.9 2281.3
2053.2 2090.6 2312.2 2322.7
2270.9 2312.2 2557.4 2569.0
2281.3 2322.7 2569.0 2580.7

 (39)

which is equivalent to u = [44.9060, 45.7228, 50.5705, 50.8007] V. The iterative convergence
process are presented in Figure 2, which shows that the voltage in the steady-state coincides
with the global optimal solution obtained by the MATLAB CVX optimization toolkit.
Therefore, simulation results verifies that the proposed distributed control method can
achieve global optimal operation of the system.
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Figure 2. Convergence iterative process for power flow optimization of the 10-node DC microgrid.

4.2. Comparisons with Existing Distributed Optimization Control Methods

In related existing works about distributed optimal control [14], the convexifi-
cation of the problem mainly relies on ignoring the flow constraints, while the pro-
posed distributed control is primarily based on the equal incremental rate criterion, i.e.,
∂ f1(p1)

∂p1
= ∂ f2(p2)

∂p2
= · · · = ∂ fn(pn)

∂pn
.

Based on the 10-node DC microgrid system, Figure 3 and Figure 4, respectively, show
the voltage waveform of each micro-source node of the system based on the control strategy
in this chapter and the comparison control strategy. The simulation results of the system
under the distributed control proposed in [14] are presented in Figure 4. In this comparison
simulation, only xi is replaced with ∂ fi(pi)

∂pi
, while all other parameters remain unchanged.

Simulation results comparing the proposed method and the existing method in [14] are
presented in Table 1. Results show that the steady-state voltages of DGs under the existing
distributed control are u = [44.9060, 45.7227, 50.5705, 50.8006] V and the objective function
is 65,509.4, while it is 62,749.3 in the proposed method. Therefore, simulation results verify
that the minimum value obtained proposed method is lower than the existing method.
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Figure 3. The voltage waveform of the 10-node DC microgrid based on the proposed method.
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Figure 4. The voltage waveform of the 10-node DC microgrid based on the existing method in [14].

Table 1. Comparison of simulation operation control strategies for 10-node DC microgrid.

Control Strategy The Proposed Method The Method in [14]

Voltage vector u u v
Optimal factor vector x x λ

Total cost function steady-state value 62,749.3 65,509.4
Is the voltage recovery condition met? Yes Yes

Is the optimal factor consistency condition
satisfied? Yes No

Is the steady-state solution optimal? Yes No
Is the steady-state value of the total cost

function optimal? Yes No

u = [44.9060, 45.7227, 50.5705, 50.8006]T V. v = [44.7902, 45.4157, 50.5194, 51.2889]T V. x = [3.1730, 3.1730, 3.1730, 3.1730]T.
λ = [137.58, 137.58, 137.58, 137.58]T .

4.3. Stability of the System Under Communication Delays

To verify the impact of communication delays on the system stability, we introduce
appropriate delay modules into the simulated communication links. According to Theorem
3, if the eigenvalues of ( 2

n 1n1T
n [u∗] + L ∂x

∂u (u
∗)) have positive real parts, then the system is

stable if and only if 0 < τ < τ∗. By calculation, the eigenvalue of ( 2
n 1n1T

n [u∗] + L ∂x
∂u (u

∗)) is
15.11, 2.16, 2.50, and 3.36. The eigenvalues of its Laplacian matrix are λ1 = 0, λ2 = λ3 = 2,
and λ4 = 4, and ε∗ is obtained as τ∗ = επ

2λ4
= 25π

2 ≈ 39.27 ms. To test the correctness of
Theorem 3, two scenarios are designed τ = 30 ms and τ = 50 ms. Clearly, the system will
be stable when τ = 30 ms and unstable when τ = 50 ms.

Simulation results for the case τ = 30 ms are presented in Figure 5a shows that the
voltage waveforms of each micro-source node show little difference compared to the case
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without communication delay, indicating that it has no significant impact on the node
voltages when τ < τ∗. The dynamics of the optimal factors are presented in Figure 5b.
It can be seen that the waveforms of the optimal factors exhibit noticeable fluctuations,
and they reach the steady-state around 0.8 s, indicating that communication delays will
slow down the convergence rate of the proposed method, though they do not affect the
steady-state. Hence, simulation results verify that the system is stable if τ < τ∗.
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Figure 5. Simulation results under the communication delay τ = 30 ms. (a) The voltage waveform of
each DG node. (b) The waveform of each optimal factor.

Simulation results for the case τ = 50 ms are presented in Figure 6b shows that the time
delay causes instability in the distributed observers, leading to a divergent oscillatory state
in the optimal factors as well. Consequently, as shown in Figure 6a, this divergent oscillation
in the optimal factors causes the DG voltages to oscillate as well. Hence, simulation results
verify that the system is unstable when τ > τ∗.

In summary, simulation results show that the system is stable if and only if τ < τ∗,
which verify the correctness of Theorem 3.
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Figure 6. Simulation results under the communication delay τ = 50 ms. (a) The voltage waveform of
each DG node. (b) The waveform of each optimal factor.

4.4. Performance Under Load Changes

This part is designed to test whether the proposed method can achieve global opti-
mization under load changes. Here, load changes are designed at t = 1 s and t = 2 s. As
can be seen from the simulation results in Figure 7, when the load changes abruptly, the
optimal factors are inconsistent, which means that the system does not work at the optimal
point. However, soon the optimal factors resynchronize and the system returns to the
optimal operating point. Therefore, the proposed method can achieve global optimization
under load variation without re-solving the power flow problem.
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Figure 7. Simulation results under load variations. (a) The voltage waveform of each DG node.
(b) The waveform of each optimal factor.

5. Conclusions

This paper presents a distributed optimization control strategy for DC microgrids that
addresses the challenges of voltage recovery and optimal power flow scheduling. First,
a semi-definite programming convex relaxation technique is developed to transform the
inherently non-convex optimal power flow problem into a convex form, with proof of
exactness ensuring consistency with the original problem.

Second, the KKT conditions are derived and reformulated as a synchronization term,
enabling integration into distributed control for achieving optimal power flow. Third, to
reduce communication costs associated with acquiring global information, a distributed
observer-based control strategy is introduced. This innovation allows the control system
to calculate optimal factors with a sparse communication network, thus making voltage
restoration and global scheduling feasible even under limited connectivity.

The proposed distributed control strategy using convex relaxation techniques offers
advantages in mathematical tractability and global optimality. However, it has limitations
in handling complex physical constraints, discrete control variables, and scalability for
large systems. Two key limitations should be noted: the method assumes linear loads,
limiting its application to nonlinear load systems, and it relies on real-time load data, which
poses practical challenges. Future work will focus on hybrid algorithms that combine
convex relaxation with Mixed-Integer Programming (MIP) to handle discrete variables,
and explore distributed optimization and parallel computing to improve scalability. Future
research will address these issues by adapting the approach for the optimization model for
more practical constraints and nonlinear loads.

In summary, this work contributes a scalable and cost-effective distributed control ap-
proach for DC microgrid optimization, paving the way for enhanced practical applications
in energy management and distributed power systems.
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