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Abstract: Battery energy storage systems (BESSs) play a crucial role in integrating renewable energy
sources into microgrids. However, robust BESS controllers are needed to carry out this function
properly. Existing controllers suffer from overshoots and slow convergence issues. Moreover, as
electrical grid networks become increasingly connected, the risk of cyberattacks grows, and traditional
physics-based anomaly detection methods face challenges such as reliance on predefined models,
high computational demands, and limited scalability for complex, large-scale data. To address the
limitations of the existing approaches, this paper first proposes a novel sigma-delta modulation
(SDM) controller for BESSs in solar photovoltaic (PV)-connected microgrids. The performance of
SDM has been compared with those of the proportional–integral (PI) controller and fuzzy logic
controller (FLC). Also, this paper proposes an improved ensemble-based method to detect the false
data injection (FDI) and denial-of-service (DoS) attacks on the BESS controller. The performance
of the proposed detection method has been compared with that of the traditional ensemble-based
method. Four PV-connected microgrid systems, namely the solar DC microgrid, grid-connected solar
AC microgrid, hybrid AC microgrid with two BESSs, and hybrid AC microgrid with a single BESS,
have been considered to show the effectiveness of the proposed control and detection methods. The
MATLAB/Simulink-based results show the effectiveness and better performance of the proposed
controller and detection methods. Numerical results demonstrate the improved performance of the
proposed SDM controller, with a 35% reduction in AC bus voltage error compared to the conventional
PI controller and FLC. Similarly, the proposed SAMME AdaBoost detection method achieves superior
accuracy with an F1 score of 95%, outperforming the existing ensemble approaches.

Keywords: battery energy storage system; sigma-delta modulation controller; cyberattacks

1. Introduction

To address the challenges of global climate change, air pollution, resource depletion
and energy security, the transition to renewable energy sources is imperative. Renewable
energy sources (RESs), including solar and wind, offer several advantages such as sus-
tainability, environmental benefits, and economic opportunities. Microgrids, especially
solar-powered microgrids, play a significant role in advancing renewable energy adoption.
Solar microgrids are a key component of the shift towards clean energy due to their ability
to harness abundant and renewable solar power [1].

While renewable energy sources offer numerous benefits, they also present challenges,
particularly due to their intermittent and variable nature. Solar and wind power generation,
for instance, depend on weather conditions and time of day, leading to periods of surplus
and deficit in energy supply [2]. This variability necessitates solutions for effective energy
management and grid stability. Battery energy storage systems (BESSs) play a critical role
in integrating renewable energy sources into the power grid. BESSs provide key benefits
such as grid stabilization, energy shifting, peak shaving, and decentralized power.
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BESS controllers are indispensable in meeting the demands of today’s energy systems,
balancing sustainability, reliability, and efficiency across diverse energy environments [3].
Numerous technologies have been used to design such BESS controllers [4]. Traditional
controllers for BESSs have demonstrated significant benefits in applications such as peak
shaving, load leveling, frequency regulation, and voltage support. In 2020, a centralized
robust H∞ mixed-sensitivity loop shaping controller was proposed to stabilize a standalone
PV-BES system [5]. However, the main drawback of this controller was that it tended to be
conservative because it was designed to handle the worst-case scenario. Next, an active
filter controller was proposed by some researchers to address this problem [6]. However,
the active filtering technique requires continuous operation, which can lead to higher
energy consumption within the BESS itself. This reduces the net energy available for
storage and increases operational costs.

In the following year, 2021, the adaptive nonlinear droop controller [7] and the adap-
tive terminal sliding mode controller [8] were proposed for PV-BESS system stabilization.
However, droop control is less effective in low-inertia systems, such as those dominated by
power electronics rather than traditional synchronous machines. BESSs typically have low
inertia, which can lead to reduced stability and slower dynamic responses under droop
control. Lastly, considering the adaptive terminal sliding mode technology, one of its most
significant and well-known drawbacks is the chattering phenomenon, which can lead to
the excessive switching of power electronics, causing increased wear and tear, reduced
efficiency, and potential damage to battery cells.

Keeping these drawbacks in mind, in 2022, an advanced multi-stage fractional order
proportional integral derivative (FOPID) control technology [9] was introduced to stabilize
the PV-BESS system. Nonetheless, the additional computational complexity brought about
latency in the control loop, potentially affecting the system’s response time, which is critical
in fast-reacting applications like BESS. In another paper, a promising model predictive
control (MPC) technology [10] was developed to mitigate the PV-BESS stabilization problem.
However, the performance of the MPC technology heavily depends on accuracy of the
dynamic model of the BESS. As the BESS ages or operates under varying conditions, its
dynamics may change, requiring frequent model updates or re-identification. This need for
ongoing model maintenance adds complexity and cost to the system.

The fuzzy control [11] technique was introduced in 2023 to stabilize the PV-BESS
system. However, fuzzy controllers are generally reactive and do not inherently incorporate
predictive capabilities. In BESS applications, where future load and generation patterns
are important for optimal energy management, this can be a significant limitation. Finally,
neural network (NN) [12]-based controllers were suggested to solve this problem. However,
NNs are often considered “black boxes” because it is difficult to understand how they make
decisions. This lack of transparency makes it challenging to diagnose issues, explain the
controller’s behavior, or gain insights into the underlying system dynamics, which can be
problematic in critical applications like energy storage.

As the complexity of power systems increases with higher RES penetration, there is a
growing need for novel control methodologies that can address the multifaceted challenges
of modern energy storage. These challenges include handling rapid fluctuations in energy
generation, ensuring seamless integration with other grid components, and maintaining
system reliability under diverse operating conditions [13]. Therefore, there is still the
need to design a BESS controller using new technology that can address the modern
grid challenges, and that is why this work has been dedicated to finding a new BESS
controller design.

It is noteworthy that cybersecurity issues in power grids are becoming increasingly
critical due to the growing reliance on digital technologies, automation, and remote control
systems [14]. Traditional power grids were built with operational efficiency in mind, not
cybersecurity, which makes them particularly vulnerable to cyberattacks [15]. Attacks on
the supervisory control and data acquisition (SCADA) systems, which monitor and control
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power distribution, are of significant concern [16]. These systems can be manipulated to
disrupt operations, leading to widespread blackouts or physical damage to the grid.

As already mentioned, BESSs play a crucial role in stabilizing the grid, but a BESS
controller serves as a critical attack point in the system, as it manages and monitors battery
operations, including the charge and discharge cycles [17]. By targeting the BESS controller,
attackers can manipulate or disrupt these control functions, leading to compromised system
performance, safety issues, and potentially severe operational failures. In the context of
grid-connected BESS, one major issue is the potential manipulation of data between the
grid and the storage system. A cyberattack could interfere with communication protocols,
causing improper charging or discharging schedules, which could destabilize the grid and
lead to power outages [18]. A cyberattack, if left undetected, at one layer of the system
would consequently negatively affect other layers. Compromised BESSs may behave in
violation of the mechanical and electrical safety protocols. Therefore, it is crucial to consider
all the layers while developing the defense strategy of a BESS, including the possibility of
integrity attacks, such as false data injection (FDI) attacks, and availability attacks such as
denial-of-service (DoS) attacks, which have a significant impact on the grid.

Regarding the attack detection methods, the model-free convolutional neural network
(CNN)- and long-short term memory (LSTM)-based approaches have been suggested
in [19]. However, LSTMs are slow when training large datasets and thus not a good option
for power system applications, while CNNs have the problem of overfitting. Another
work [20] proposed a watermarking mechanism at the inverter side to detect FDI attacks.
Nevertheless, this process involves adding a watermark signal to all the data, which is both
expensive and time-consuming. All these works have considered the inverter side of the
PV system. Not much research has been conducted on a PV system integrated with a BESS.

Studies such as [21] have used chi-squared detectors to detect FDI attacks on a PV-
integrated BESS. This technique allowed the authors to detect attacks of magnitude 20 mV.
In contrast, the paper in [22] focused on identifying intricate attacks that were tough to
identify in a noisy system, since large-magnitude attacks may be easily detected by the
system operator using bad data detectors. Here, the authors applied an extended Kalman
filter (EKF) and a cumulative sum (CUSUM) algorithm in their work, allowing them to
detect attacks of as small as 1 mV. However, to this end, all the attacks were considered on
the state-of-charge (SOC) estimations of the battery management system (BMS) or sensor-
measured values. Another machine learning (ML)-inspired method, the artificial neural
network (ANN)-based anomaly detection technique, was proposed to detect attacks on a
PV-integrated BESS in [23]. However, one limitation of this technique is that it exhibits a
high false positive rate when detecting FDI attacks on battery SOC estimation. Therefore,
an ensemble-based learning detection method has been proposed in [24].

Based on the above literature review, it appears that various controllers have been
developed to address the rapid charging and discharging of BESSs in response to the
intermittent nature of renewable energy sources, but they often suffer from issues like
overshoots, oscillations, and slow settling times. Moreover, as electrical grid networks
become increasingly connected, the risk of cyberattacks grows, and traditional physics-
based anomaly detection methods face challenges such as reliance on predefined models,
high computational demands, and limited scalability for complex, large-scale data. To
address these limitations, this paper first introduces a novel sigma-delta modulation (SDM)
controller for BESSs in microgrids, offering high-resolution capabilities, low bandwidth, and
superior noise-shaping features that outperform the existing technologies in this application.
The SDM controller achieves precise control of voltage and power fluctuations in a BESS
by leveraging high-resolution modulation, rapid sampling, and feedback mechanisms,
ensuring enhanced stability, reduced harmonics, and seamless integration within hybrid
microgrids. It dynamically adjusts the duty cycle of the buck–boost converter based on
voltage and current feedback, enabling efficient energy regulation and load balancing. The
performance of the proposed SDM controller has been compared with that of the fuzzy
logic controller (FLC) and the proportion–integral (PI) controller.



Energies 2024, 17, 6463 4 of 34

In addition, this work proposes a machine learning-based ensemble learning approach,
including the enhanced stagewise additive modeling using a multi-class exponential loss
function (SAMME) AdaBoost method, to efficiently detect critical cyberattacks like FDI and
DoS on BESS controllers in microgrid systems. The SAMME AdaBoost algorithm is superior
for cyberattack detection in multiclass problems as it extends AdaBoost to handle multiple
classes directly, with faster classifier weight updates and improved accuracy, enabling
more effective differentiation between diverse attack types compared to the traditional
one-class AdaBoost system. The proposed SAMME method is compared with that of the
ensemble-based detection method.

In this work, extensive simulations are conducted through MATLAB/Simulink R2023b
software to validate the efficacy of the proposed SDM controller and SAMME detection
method. Four microgrid systems under varying solar irradiance and wind speed conditions
are considered. A novel index-based performance comparison among BESS controllers
is made.

In summary, the novelty and major contribution of this paper stand on the following facts:

(i) This work develops a fast and sophisticated SDM controller for the optimal charging
and discharging of a BESS to maintain constant load power and load voltage despite
the intermittent tendency of the grid-connected PV system;

(ii) The proposed SDM controller has been designed for four PV-based microgrid systems;
(iii) An improved ensemble-based method (SAMME AdaBoost) for cyberattack detection

on the BESS controller has been developed.

This paper is organized as follows: Section 2 describes the problem statement by
showing the impact of the irradiance and wind speed variations on the generated power
and voltage. The impact of cyberattacks (FDI and DoS) on the BESS controller is also
shown in this section. Section 3 describes the microgrid systems that have been designed
in MATLAB/Simulink for this work. Section 4 describes the detailed structure of the SDM
controller as well as the conventional controllers. Section 5 is about the simulation result
and discussion. Section 6 describes the improved ensemble learning (SAMME AdaBoost)-
based cyberattack detection technology that has been developed in this work to ensure the
cybersecurity of BESS-incorporated microgrid systems. Section 7 provides the conclusion
for this work and describes the future scope of the paper.

2. Problem Statement

As previously mentioned, BESSs are an extremely important component in PV-based
microgrids. The BESS, along with its controller, helps to ensure voltage stability, system
efficiency, and the safety of the microgrid [25]. Also, as cyber threats become increasingly
sophisticated, cyberattack detection strategies are imperative to safeguard microgrid sys-
tems. Prioritizing cybersecurity alongside technological advancements ensures the secure
and resilient operation of microgrids, contributing to a more sustainable and reliable energy
future [26].

To understand the importance of a BESS controller and how cybersecurity is connected
to the controller, let us consider the hybrid AC microgrid system shown in Figure 1. The
system consists of three energy sources, including a solar photovoltaic (PV) generator, a
wind turbine generator, and a conventional permanent magnet synchronous generator
(PMSG) [27]. Two BESSs are attached to the PV generation point and wind turbine genera-
tion point. The BESSs are included to charge/discharge and manage power fluctuations.

Figures 2 and 3 show the wind speed and solar irradiance variations [28], respectively,
that have been considered for the microgrid system in Figure 1. As the irradiation of the PV
system and the wind turbine speed fluctuate, the AC bus voltage experiences variations.
These fluctuations can lead to unstable voltage levels, which may affect the quality of power
delivered to consumers. At the consumer end, this can result in equipment malfunction,
decreased efficiency, and potential damage to sensitive electrical devices. The AC bus
voltage profile is shown in Figure 4.
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Figure 5 examines the effect of varying solar irradiance (Figure 2) on the duty cycle
of a DC/DC BESS converter connected to a PV system. To simulate realistic changes in
solar irradiance, the irradiance levels are modified at the following specific time intervals:
5, 10, 15, and 20 s. Each change in irradiance triggers an adaptive response in the DC/DC
converter, adjusting its duty cycle to maintain optimal power transfer. The corresponding
duty cycle adjustments help to stabilize the PV system output despite the fluctuating
irradiance. It is evident that at t = 10 s, the duty cycle increases from 0.5 to operate the BESS
in charging mode. When the irradiance comes down to the nominal level at t = 15 s, the
duty cycle drops down to 0.5. Thus, Figure 5 illustrates this relationship, showing how
the duty cycle dynamically responds to changes in irradiance, ensuring efficient operation
across variable conditions.

Energies 2024, 17, 6463 7 of 35 
 

 

 
Figure 5. Duty Cycle of BESS Converter. 

A cyberattack on a hybrid energy system can have severe consequences, affecting 
system stability, safety, reliability, and economic performance. These systems rely on dig-
ital controls, communication networks, and supervisory systems like SCADA, making 
them vulnerable to cyber threats, as shown in Figure 6. A BESS is essential for frequency 
regulation and energy balancing. A cyberattack targeting the BESS controller could cause 
it to either overcharge, discharge at inappropriate times, or become unresponsive [29]. If 
a cyberattack manipulates the BESS’s charge/discharge cycles, it could cause energy im-
balances within the hybrid system. For example, if the BESS discharges too early or fails 
to discharge during periods of high demand, it could lead to load mismatch, where the 
energy supply does not meet the demand, causing brownouts or blackouts. 

 
Figure 6. Cyberattack on BESS-Integrated Hybrid Microgrid System. 

In Figure 7, the impact of an FDI attack on the PV-BESS power is shown. The FDI 
attack was implemented on the SDM controller of the PV-BESS portion of the hybrid mi-
crogrid system (Figure 1). At 5 s and 10 s, the battery was supposed to be in nominal con-
dition, i.e., the BESS power was supposed to be 0. However, the FDI attack occurred 

Figure 5. Duty Cycle of BESS Converter.



Energies 2024, 17, 6463 7 of 34

A cyberattack on a hybrid energy system can have severe consequences, affecting
system stability, safety, reliability, and economic performance. These systems rely on
digital controls, communication networks, and supervisory systems like SCADA, making
them vulnerable to cyber threats, as shown in Figure 6. A BESS is essential for frequency
regulation and energy balancing. A cyberattack targeting the BESS controller could cause
it to either overcharge, discharge at inappropriate times, or become unresponsive [29].
If a cyberattack manipulates the BESS’s charge/discharge cycles, it could cause energy
imbalances within the hybrid system. For example, if the BESS discharges too early or fails
to discharge during periods of high demand, it could lead to load mismatch, where the
energy supply does not meet the demand, causing brownouts or blackouts.
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In Figure 7, the impact of an FDI attack on the PV-BESS power is shown. The FDI attack
was implemented on the SDM controller of the PV-BESS portion of the hybrid microgrid
system (Figure 1). At 5 s and 10 s, the battery was supposed to be in nominal condition, i.e.,
the BESS power was supposed to be 0. However, the FDI attack occurred between 7.5 s
and 10 s. During this time, the reference set point of the SDM controller was made higher
than the required value. As a result, the battery discharged during this time, whereas it
was supposed to be in nominal condition.
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In a second scenario, another type of cyberattack, i.e., the DoS attack, was implemented
on the system. To implement this attack, a delay block was placed after the output of the
SDM controller. This attack was implemented first from 6 to 8 s and, again, between 16
and 18 s. The first DoS attack (t = 6–8 s) was implemented on the PV-BESS controller. The
adverse impact of the attack on the PV-BESS power profile is shown in Figure 8. Initially,
the PV-BESS power stabilizes at a high positive level, indicating the efficient discharge
of power from the BESS. However, around 6 s, a DoS attack begins, marked by rapid
fluctuations around the nominal line (0 watts). These high-frequency oscillations signify
power instability, potentially causing inefficiencies and stress on the system components.
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Since the solar irradiance change and wind speed variations cause voltage and power
fluctuations, and cyberattacks impact the functionality of BESS controller, the development
of a new controller and new detection method are needed for the PV-based microgrid
systems. This is the motivation behind this work.

3. Description of Microgrid Systems Including PV

In this work, four microgrid systems have been considered for the performance
analysis of the proposed BESS controller and the associated attack detection method. One
of the four microgrid systems has already been described in Figure 1 of Section 2. The other
three systems are described below.

3.1. Solar DC Microgrid System

A solar microgrid system (as shown in Figure 9) is a localized power generation setup
that primarily relies on solar energy to meet the electrical needs of a small community,
building, or even an individual home [30]. It includes key components such as a PV
module, Maximum Power Point Tracking (MPPT), DC/DC converter, energy storage
system, and loads. MPPT algorithms ensure the PV system operates at maximum efficiency,
adjusting the DC/DC converter’s output. For our work, the Perturb and Observe (P&O)
algorithm was used for MPP tracking. The system was simulated dynamically, with real-
time variations in irradiance and battery storage states, making it ideal for analyzing
the microgrid’s performance under different scenarios. The parameters of the different
components that were used in this design are given in Appendix A, Tables A1–A4.
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3.2. Grid-Connected Solar AC Microgrid System

A grid-connected solar AC microgrid system operates by integrating solar energy
with the utility grid, allowing for an energy exchange between the microgrid and the main
grid [31]. Figure 10 shows the structure of the grid-connected solar AC microgrid system.
In addition to the components described above for the solar DC microgrid, there are two
additional components in this system such as a DC/AC inverter and filter. This DC/AC
inverter converts the DC output of the solar cells and supplies it to the AC grid. We have
used the dq transformation technique to synchronize the AC power with the grid frequency
and voltage. The output of the inverter suffers from a high level of distortion. So, we used
LC filters to smooth out the inverter’s output power. The parameters of the filter are given
in Appendix A, Table A5.
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3.3. Hybrid AC Microgrid with a Single BESS

Figure 11 depicts a hybrid AC microgrid with a single BESS and integrates multiple
energy sources, such as solar PV, wind turbine generator, and a conventional PMSG [32].
The BESS plays a crucial role in smoothing out the intermittent power generation from



Energies 2024, 17, 6463 10 of 34

renewable sources by storing excess energy during periods of low demand and releasing it
when demand is high or when renewable output fluctuates. The solar irradiation and wind
speed variations considered for this system are the same as shown in Figures 2 and 3 in
Section 2.
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4. Proposed Sigma-Delta-Based Control Design for the BESS

Sigma-delta modulation (SDM) is a very popular method to convert an analog signal
to a digital signal [33]. The method is derived from delta modulation where the difference
between samples is encoded into binary symbols. The term “sigma-delta” reflects the
controller’s core functionality, where “sigma” represents integration and “delta” signifies
the difference. The controller works by accumulating the difference between the desired
signal and the actual value (the error) over time. It then uses a quantization technique to
minimize this error, adjusting the output to closely follow the desired signal trajectory.

A sigma-delta controller for controlling the buck–boost operation of a BESS in a
microgrid enables precise and stable energy flow between the battery and the grid. By
utilizing oversampling, the sigma-delta modulation converts the continuous error signal
into a dense pulse stream. This pulse stream controls the duty cycle of the buck–boost
converter, dynamically adjusting for charge and discharge modes based on the power
demands and grid conditions. In a microgrid, where multiple sources like PV and wind
contribute fluctuating power, the sigma-delta controller ensures smooth and responsive
voltage regulation, supporting stable and reliable energy exchange between the BESS and
the grid. The proposed architecture of the sigma-delta controller used in this thesis is
shown below in Figure 12.
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The main components in a sigma-delta controller for a BESS and the role each plays in
the control process are as follows:

i. Error Detector

• Role: Measures the difference between the target (desired) voltage/current and
the actual voltage/current from the battery.

• Function: Generates an error signal, guiding the control adjustments needed for
the stable charging or discharging of the battery.

ii. Integrator

• Role: Accumulates the error signal over time to create a smoother, slowly varying
control signal.

• Function: Reduces noise sensitivity and smooths out fluctuations, ensuring the
system responds based on overall trends rather than short-term disturbances.

iii. Feedback Loop

• Role: Provides continuous feedback to the integrator and error detector, adjusting
the control dynamically.

• Function: Helps maintain stability by enabling the controller to adapt to changes
in load demand or the battery’s state of charge.

iv. Comparator

• Role: Compares the integrated error signal to a reference level or threshold.
• Function: Produces three outputs (−1, 0, or 1) based on the comparison, which

serves as the switching decision (ON/OFF) for the converter’s MOSFET (Metal
Oxide Semiconductor Field Effect Transistor), thereby modulating the power flow.

v. Quantizer

• Role: Converts the comparator’s analog input into a high-frequency digital pulse
stream, as well as operates the sigma-delta controller at a high frequency, much
higher than the converter’s switching frequency.

• Function: Defines the duty cycle in response to the integrator and comparator
outputs, enabling precise high-frequency switching for optimal power regula-
tion, as well as allows the oversampling of the input signal, enhancing control
precision and responsiveness by providing finer adjustments in duty cycle.

Sigma-Delta Controller Input–Output Parameter

The main input parameter of the controller is load power (Pref), from which other
reference parameters like bus voltage and load current are calculated as shown in (1) and (2).

Vre f =
√

Pre f × Rload (1)

Ire f =
Vre f

Rload
(2)

where Vre f is the reference voltage, Rload is the load resistance, and Ire f is the reference current.
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The output parameter of the sigma-delta controller is the duty cycle D (0 < D < 1) of
the two MOSFETs (that control the charging and discharging of BESS), which comes from
the comparator output after quantizing through a high-frequency clock cycle.

If D > 0.5, it works in boost mode (discharging), and if D < 0.5, the controller works in
buck mode (charging mode).

The controller design parameters for all four microgrids (shown in Figures 1 and 9–11)
are summarized below in Tables 1–4. These parameters were determined through trial-and-
error methods in order to obtain the best performance.

Table 1. SDM Controller Design Parameters for Solar DC Microgrid.

Controller Parameters Values

Reference DC Power (Pref) 3750 watts

Reference DC bus Voltage (Vref) 400 volts

Integrator Gain (K) 0.02

Feedback Loop Gain 1

Comparator Threshold (Vth) −0.5 < e < 0.5

Clock Frequency (fs) 100 kHz

Step Size 0.01

Quantization Level 3 levels (1, 0 and −1)

Table 2. SDM Controller Design Parameters for PV-Powered AC Microgrid.

Controller Parameters Values

Reference AC load Power (Pref) 3750 watts

Reference DC bus Voltage (Vref) 400 volts

Reference AC bus Voltage (Vrms) 280 volts

Integrator Gain (K) 0.01

Integrator Limit ±100

Comparator Threshold 1

Clock Frequency (fs) 100 kHz

Step Size 0.01

Quantization Level 3 levels (1, 0 and −1)

Initial Duty cycle (D) 0.5

Feedback Loop Gain 1

Inverter Frequency 60

Table 3. SDM Controller Design Parameters for Double BESS Hybrid Microgrid.

Controller Parameters BESS-1 (PV) BESS-2 (Wind)

Reference AC load Power (Pref) 3750 watts 1500 watts

Integrator Gain (K) 0.005 0.01

Integrator Limit ±100 ±200

Comparator Threshold −0.5 < e < 0.5 −0.5 < e < 0.5

Clock Frequency (fs) 100 kHz 100 kHz

Step Size 0.01 0.01
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Table 3. Cont.

Controller Parameters BESS-1 (PV) BESS-2 (Wind)

Quantization Level 3 levels (1, 0 and −1) 3 levels (1, 0 and −1)

Initial Duty cycle (D) 0.5 0.5

Feedback Loop Gain 1 1

Inverter Frequency 60 Hz 60 Hz

Table 4. SDM Controller Design Parameters for Single BESS Hybrid Microgrid.

Controller Parameters Values

Reference AC load Power (Pref) 5600 watts

Reference AC bus Voltage (Vrms) 380 volts

Integrator Gain (K) 0.01

Integrator Limit ±200

Comparator Threshold −0.5 < e < 0.5

Clock Frequency (fs) 50 kHz

Step Size 0.01

Quantization Level 3 levels (1, 0 and −1)

Initial Duty Cycle (D) 0.5

Feedback Loop Gain 1

Inverter Frequency 60 Hz

In this work, the performance of the proposed SDM controller has been compared
with that of the existing proportional–integral (PI) and fuzzy logic controllers. The existing
PI and fuzzy logic controllers are explained below.

4.1. Two-Stage Proportional–Integral (PI) Controller

A two-stage PI controller for a BESS is designed to manage the charging and dis-
charging processes effectively while maintaining system stability and ensuring efficient
operation [34]. The two-stage approach typically involves separate control loops to handle
the different aspects of power management, such as voltage regulation and current control.
Figure 13 shows the control structure of the battery charge controller. The Pref value is

calculated for the nominal condition of the system (Pre f =
V2

R ). At the nominal condition,
Ppv = Pdc and the battery remains in standby mode.
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However, at times other than the nominal condition, depending on the changing
irradiance, the Pdc value changes, as shown in Figure 13. Consequently, an error occurs
between the Pref and Pdc values at that time. This error triggers the BESS controller into
action, and the PI controller generates an IRef value.
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Next, another PI controller compares the value of IRef with the original battery current,
Ib, at that moment. This second PI controller minimizes the error between these two cur-
rent values, generating a duty cycle. The duty cycle is sent to a pulse-width modulation
(PWM) generator (fs = 10 kHz) that controls two switches to operate the battery’s charg-
ing/discharging mode. Accordingly, the battery is able to store the excess power during
irradiance levels higher than the nominal condition, or supply deficit power during times
when irradiance levels are lower than the nominal condition. Thus, in this way, the power
in the DC bus is always kept constant using the BESS and controller to ensure quality
power is delivered to the consumer.

The PI controller design parameters for all four microgrids (shown in Figures 1 and 9–11)
are summarized below in Tables 5–8. These parameters were determined through trial-and-
error methods to obtain the best performance.

Table 5. PI Controller Design Parameters for Solar DC Microgrid.

Controller Parameters Values

Reference DC Power (Pref) 3750 watts

Reference DC bus Voltage (Vref) 400 volts

Stage 1: Integrator Gain (Ki) 0.01

Stage 1: Proportional Gain (Kp) 0.5

Stage 2: Integrator Gain (Ki) 5

Stage 2: Proportional Gain (Kp) 20

PWM Generator Frequency (fs) 10 kHz

Table 6. PI Controller Design Parameters for PV-Powered AC Microgrid.

Controller Parameters Values

Reference DC Power (Pref) 3750 watts

Reference DC bus Voltage (Vref) 400 volts

Stage 1: Integrator Gain (Ki) 0.1

Stage 1: Proportional Gain (Kp) 1

Stage 2: Integrator Gain (Ki) 2

Stage 2: Proportional Gain (Kp) 3.5

PWM Generator Frequency (fs) 10 kHz

Table 7. PI Controller Design Parameters for Double BESS Hybrid Microgrid.

Controller Parameters BESS-1 (PV) BESS-2 (Wind)

Reference DC Power (Pref) 3750 watts 1500 watts

Reference DC bus Voltage (Vref) 400 volts 400 volts

Stage 1: Integrator Gain (Ki) 0.03 0.1

Stage 1: Proportional Gain (Kp) 1 1

Stage 2: Integrator Gain (Ki) 3 2

Stage 2: Proportional Gain (Kp) 20 3.5

PWM Generator Frequency (fs) 10 kHz 10 kHz
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Table 8. PI Controller Design Parameters for Single BESS Hybrid Microgrid.

Controller Parameters Values

Reference DC Power (Pref) 5600 watts

Reference DC bus Voltage (Vref) 380 volts

Stage 1: Integrator Gain (Ki) 1

Stage 1: Proportional Gain (Kp) 2.7

Stage 2: Integrator Gain (Ki) 5

Stage 2: Proportional Gain (Kp) 25

PWM Generator Frequency (fs) 10 kHz

4.2. Fuzzy Logic Controller

A fuzzy logic controller operates on the basis of “fuzzy” or approximate reasoning,
much like human decision-making [35]. It uses a set of predefined rules and linguistic
variables to determine the appropriate control actions. The main steps of a fuzzy controller
include the following:

(i) Fuzzification: This process converts precise numerical input values into fuzzy sets.
These fuzzy sets represent different levels of these variables. Triangular membership
functions (MFs) illustrating linguistic NS (Negative Small), Z (Zero), PS (Positive
Small), and PB (Positive Big) for the input (error in power, ∆P) are presented in
Figure 14. Similarly, triangular membership functions illustrating variables S (Small),
M (Medium), L (Large), and VL (Very Large) for the output (duty cycle, D) are
presented in Figure 15. The equation employed for Triangular MFs in determining
the grade of membership is as shown in (3) [36]:

µF(x; a, b, c) = max
(

min
(

x − a
b − a

,
c − x
c − b

)
, 0
)

(3)

where the parameters {a, b, c} (where a < b < c) define the three x-coordinates corre-
sponding to the vertices of the triangle.
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(ii) Rule Base: The fuzzy controller stands out for its simplicity, employing a single-
input-single-output (SISO) variable design. This use of just one input and one output
variable enhances its straightforward structure. The proposed control approach is
defined by only five control rules, shown in Table 9, which map the input–output
relationships for the controller.

Table 9. Fuzzy Rule Table.

Fuzzy Input (∆P) Fuzzy Output (D)

NS S

Z M

PS L

PB VL

(iii) Fuzzy Inference and Defuzzification: For the inference mechanism of the fuzzy con-
troller design, Mamdani’s method stands out as widely acknowledged in the literature.
Additionally, the center-of-area method, a well-known and straightforward defuzzifi-
cation technique [37] is employed to ascertain the crisp output value, D (duty cycle)
by the following (4):

D =

∫
µC(x).xdx∫
µC(x)dx

(4)

where
∫

µC(x)dx denotes the area of the region bounded by the curve C.

The fuzzy logic controller design parameters for all four microgrids (shown in
Figures 1 and 9–11) are summarized below in Tables 10–13. These parameters were deter-
mined through trial-and-error methods to obtain the best performance.

Table 10. FLC Design Parameters for Solar DC Microgrid.

Controller Information Parameters

Input Error in power, ∆P

Output Duty Cycle, D

Input MFs 4 nos: NS, Z, PS, PB (all triangular equispaced)

Output MFs 4 nos: S, M, L, VL (all triangular equispaced)

Fuzzy Rule Base Mapping 4 (NS-S, Z-M, PS-L, PB-VL)

Table 11. FLC Design Parameters for PV Powered AC Microgrid.

Controller
Information Parameters

Input Error in power, ∆P

Output Duty Cycle, D

Input MFs 4 nos: NS, Z, PS, PB (3 triangular equispaced, 1 trapezoidal)

Output MFs 4nos: S, M, L, VL (all triangular but not equispaced)

Fuzzy Rule Base Mapping 4 (NS-S, Z-M, PS-L, PB-VL)

Table 12. FLC Design Parameters for Double BESS Hybrid Microgrid.

Controller Information BESS-1 (PV) BESS-2 (Wind)

Input Error in power, ∆P Error in power, ∆P

Output Duty Cycle, D Duty Cycle, D
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Table 12. Cont.

Controller Information BESS-1 (PV) BESS-2 (Wind)

Input MFs 4 nos: NS, Z, PS, PB
(2 triangular equispaced, 2 trapezoidal)

4 nos: NS, Z, PS, PB (3 triangular equispaced,
1 trapezoidal)

Output MFs 4 nos: S, M, L, VL (all triangular but
not equispaced)

4 nos: S, M, L, VL (all triangular but
not equispaced)

Fuzzy Rule
Base Mapping

4 (NS-S, Z-M, PS-L,
PB-VL) 4 (NS-S, Z-M, PS-L, PB-VL)

Table 13. FLC Design Parameters for Single BESS Hybrid Microgrid.

Controller Information Parameters

Input Error in power, ∆P

Output Duty Cycle, D

Input MFs 4 nos: NS, Z, PS, PB
(3 gaussian equispaced, 1 bell shaped)

Output MFs 4nos: S, M, L, VL
(all trapezoidal, but not equispaced)

Fuzzy Rule Base Mapping 4 (NS-S, Z-M, PS-L, PB-VL)

5. Simulation Results and Discussion

In this work, the proposed and existing controllers have been implemented on four
different microgrid systems, and their performance has been compared. The detailed
results are described below.

5.1. Performance of Different Controllers for Solar DC Microgrid System

Figure 16 shows the DC bus power responses for all three controllers. The red line
shows the performance of the PI controller. The controller exhibits abrupt overshoots at the
places where there are changes in irradiance. So, the next control technology, i.e., the fuzzy
logic controller, can solve the overshoot issue that we faced with the PI controller. The
performance of the controller is depicted by the green line. However, the main drawback
of this controller is that it takes a longer time to settle down and maintain the reference
power. Thus, we observe the best performance from the proposed controller, i.e., the
SDM controller, which, because of its structure that is specially designed to detect intricate
changes in the reference power value, can minimize most fluctuations in the DC bus power.
The performance of this controller is depicted by the blue line. In the case of the DC bus
voltage (Figure 17), we observe a very similar performance by the three different controllers
as was seen in case of the DC bus power.

In the BESS power shown in Figure 18, during the first 5 s, the irradiance level is too
low. Thus, the PV generation is below the nominal level. The battery discharges to provide
this deficient power to the system. Between 5 s and 10 s, the PV panels operate in the
nominal condition. So, the battery just remains in standby mode. From 10 to 15 s, the power
generated from the solar cells is higher than the nominal level. Thus, the battery charges to
absorb this excess power to maintain constant bus power. In the last 5 s, once again, we see
the battery enter into standby mode as the PV generates nominal power. The charging and
discharging cycles are best handled by the SDM controller as it has less overshoots than the
PI controller and can converge faster than the fuzzy logic controller.
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5.2. Performance of Different Controllers for Grid Connected Solar AC Microgrid

In this system, the irradiance variation that is shown in Figure 2 is considered.
Figure 19 shows the common AC load power profile. The red line represents the per-
formance of the PI controller, which shows abrupt overshoots whenever there is a change
in irradiance levels. To address this issue, a second control strategy, i.e., the fuzzy logic
controller, is implemented. This controller, depicted by the green line, effectively reduces
overshoot; however, its main limitation is a slower response time, taking longer to stabilize
and track the reference power. The proposed SDM controller, shown by the blue line,
provides the best performance. Due to its specialized structure, the SDM controller can
swiftly detect and respond to subtle fluctuations in the reference power, minimizing most
disturbances in the AC bus power.
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A similar trend in controller performance is observed for the AC bus voltage in
Figure 20, where each controller demonstrates comparable behavior to its performance in
regulating AC bus power.
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Figure 21 shows the BESS power. The proposed SDM controller is optimal for manag-
ing the battery’s charging and discharging cycles, as it produces fewer overshoots than the
PI controller and achieves faster convergence compared to the fuzzy logic controller.
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significant overshoots whenever irradiance levels change, posing a risk to household
appliances powered by the microgrid. The fuzzy logic controller effectively reduces the
overshoot observed with the PI controller, as shown by the green line. In contrast, the SDM
controller illustrated by the blue line demonstrates the best performance.
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In case of the AC bus voltage (Figure 23), we observe a very similar performance by
the three different controllers as was seen in case of the AC bus power.
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Figure 24 shows the PV_BESS power. The charging and discharging cycles are best
handled by the SDM controller as it has less overshoots than the PI controller and can
converge faster than the fuzzy logic controller.
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In the case of the wind BESS power (Figure 25), the charging and discharging cycles
are also best handled by the SDM controller as it has less overshoots than the PI controller
and can converge faster than the fuzzy logic controller.
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5.4. Performance of Different Controllers for Single Battery Hybrid Microgrid System

In this design, all the key components are exactly the same as described in Figure 1.
The only disparity is that a single BESS has been used here at the common AC bus. Here,
the bidirectional inverter, VSC has been used with the BESS. In Figure 26, the red line
shows the performance of the PI controller. The performance of the fuzzy logic controller
is depicted by the green line. We observed the best performance from the proposed SDM
controller depicted by the blue line. In the case of the AC bus voltage (Figure 27), we
observe a very similar performance by the three different controllers as was seen in case of
the AC bus power.
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In summary, the reduced AC bus voltage error significantly enhances the overall
stability of microgrids by ensuring better voltage regulation, minimizing fluctuations
that could destabilize sensitive loads, and improving power quality. This stability fosters
efficient power distribution, reduces the risk of component failures, and supports the
seamless integration of renewable energy sources and distributed energy resources (DERs).
The SDM controller achieves reduced AC bus voltage and power error. The SDM controller
provides good voltage and power regulation in AC microgrids by selectively prioritizing
control actions based on dynamic system conditions, allowing it to address disturbances
and maintain stability effectively. Its design emphasizes adaptive and discriminative
decision-making, enabling precise control of voltage levels and power flows, even in the
presence of fluctuating renewable energy inputs.

In Figure 28, the BESS power is shown. The charging and discharging cycles are best
handled by the proposed SDM controller as it has less overshoots than the PI controller
and can converge faster than the fuzzy logic controller.
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5.5. Index-Based Performance Comparison

To quantify the performance of the controllers, some numerical metrics, i.e., indexes as
shown in Tables 14–17 for all four microgrid systems, have been considered. We integrated
the battery powers over the entire run time, i.e., t = 20 s. This gave us the total energy of
the battery energy storage systems. The controller which has the lowest amount of energy
is said to be the best performer. So, we saw that the SDM controller gave the best result.
Also, in terms of voltage regulation, the voltage deviations were integrated over the entire
runtime (20 s). In this case, again, the controller with the smallest value is accepted as the
best performer and we see in all four systems, the SDM controller gives the best result.

Table 14. Performance Index for Solar DC Microgrid System.

Index SDM
Controller

Fuzzy
Controller

PI
Controller Without Controller∫ T

o |Pbess|dt = EBESS (kJ) 20.13 20.65 21.03 -∫ T
o

∣∣∆VDCBUS

∣∣dt (volt-sec) 170.28 201.96 243.41 901.77

Table 15. Performance Index for Grid Connected AC Microgrid System.

Index SDM
Controller

Fuzzy
Controller

PI
Controller Without Controller∫ T

o |Pbess|dt = EBESS (kJ) 20.13 20.65 21.03 -∫ T
o

∣∣∆VACBUS

∣∣dt (volt-sec) 255.28 286.07 301.71 1123.87

Table 16. Performance Index for Hybrid AC Microgrid System with Two BESS.

Index SDM
Controller

Fuzzy
Controller

PI
Controller Without Controller∫ T

o |Pbess|dt = EBESS (kJ) 17.03 17.25 17.33 -∫ T
o |PWT_bess|dt = EWT_BESS (kJ) 12.20 12.56 12.83 -∫ T

o

∣∣∆VDCBUS−1
∣∣dt (volt-sec) 213.60 353.09 396.31 1548.3
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Table 16. Cont.

Index SDM
Controller

Fuzzy
Controller

PI
Controller Without Controller∫ T

o

∣∣∆VDCBUS−2
∣∣dt (volt-sec) 230.21 398.36 442.41 1611.88∫ T

o

∣∣∆VACBUS

∣∣dt (volt-sec) 141.76 180.14 220.85 920.34

Table 17. Performance Index for Hybrid AC Microgrid System with Single BESS.

Index SDM
Controller

Fuzzy
Controller

PI
Controller Without Controller∫ T

o |Pbess|dt = EBESS (kJ) 20.77 22.88 22.97 -∫ T
o

∣∣∆VACBUS

∣∣dt (volt-sec) 385.07 398.45 411.32 1823.27

6. Proposed Improved Ensemble Method (SAMME AdaBoost)-Based Cyberattack
Detection System for Hybrid Microgrid

In this work, we focused on improving the existing Ensemble Learning method in
such a way that it can handle multiclass classification problems with improved efficiency.
This is how we came to apply the improved version of an ensemble-learning-based model
for cyberattack detection in microgrid systems. The SAMME (stagewise additive modeling
using a multiclass exponential loss function) is an adaptation of the AdaBoost (Adaptive
Boosting) algorithm specifically designed for handling multiclass classification tasks [38].
While AdaBoost was originally intended for binary classification, SAMME extends its
capability to work with multiple classes by introducing a multiclass exponential loss
function. In SAMME, weak classifiers are trained sequentially, with each subsequent
classifier focusing more on the instances misclassified by previous ones. Unlike binary
AdaBoost, which calculates the classifier’s weight based on the error rate, SAMME also
incorporates the number of classes, giving it a unique method for calculating the influence
of each classifier in the ensemble. This approach allows SAMME to generate a powerful
ensemble of weak classifiers that can handle complex, multiclass data. When combined
with decision trees as base learners, SAMME effectively boosts accuracy by emphasizing
difficult cases and reducing errors over multiple iterations, ultimately creating a strong,
adaptable model for multiclass problems.

A detailed flowchart of the SAMME AdaBoost algorithm is given below in Figure 29.
The flowchart for SAMME AdaBoost provides a visual structure of how the algorithm
works for multi-class classification, extending traditional AdaBoost, which is limited to
binary classification.

A detailed description of the algorithm is provided as follows:

i. Start:

Begin with the training dataset, where each instance has a label belonging to one of
several classes.

ii. Initialize Weights:

Initialize weights for each instance in the dataset, wi =
1
N , where N is the total number

of samples.

iii. Iteration over Boosting Rounds (Loop):

For each boosting round T, the following is performed:
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Step A: Train Weak Classifier:

Train a weak classifier (e.g., decision stump) on the training data, using the current
sample weights.

Step B: Calculate Error Rate:

Calculate the weighted error rate et of the weak classifier, using Formula (5), which is
the sum of the weights of the misclassified samples.

et =
∑N

i=1 wi.I(yi ̸= ht(xi))

∑N
i=1 wi

(5)

Step C: Compute Classifier Weight:

Compute the classifier’s weight ∝t using Formula (6).

∝t= ln(
1 − et

et
) + ln(K − 1) (6)

where K is the number of classes. This step ensures that the classifier weight is adjusted for
multi-class settings.

Step D: Update Sample Weights:

Update the weights of each instance based on whether it was correctly or incorrectly
classified. Weights of the misclassified samples should increase, while weights of the
correctly classified samples should decrease. To achieve this, Formula (7) is used.

w(t+1)
i = wt

i X exp(∝t .I(yi ̸= ht(xi)) (7)

Step E: Normalize Weights:

Normalize the weights to ensure they sum to 1, preparing them for the next iteration.

iv. Aggregate Weak Classifiers:

After completing all the boosting rounds, combine the weak classifiers based on
their weights ∝t to form a strong classifier. Each classifier’s vote is scaled by its ∝t value.
Formula (8) is used to aggregate the weak classifiers.

Fk(x) =
T

∑
t=1

∝t .I(ht(x) = k) (8)

v. Generating Probability of each class:

After aggregating the weak classifiers, Softmax Function, eFk(x), is used to generate
probability of each class.

vi. Class Prediction:

For a new instance, each weak classifier generates the probability for each class. The
final prediction is the class with the highest weighted probability.

vii. End:

Output the final strong classifier capable of multi-class predictions.
This flow ensures SAMME adapts AdaBoost to handle multi-class data by modifying

the error calculations and weight updates accordingly.
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6.1. Application of Improved Ensemble Method in Detecting Cyberattacks

In this problem, we have three classes, where Class 0 is ‘No Attack’, Class 1 is ‘FDI
Attack’, and Class 2 is ‘DoS Attack’. The detailed mathematical derivation of FDI and DoS
attacks have been shown in [24]. SAMME is particularly well suited to this multiclass
detection problem because it does not rely on a one vs. rest or one vs. one approach, which
can sometimes reduce performance or add complexity in multiclass scenarios. Instead,
SAMME works natively on the three classes, streamlining the detection process and al-
lowing the model to handle overlapping patterns between the “no attack”, “FDI”, and
“DoS” classes more effectively. Its boosting process also ensures the model is robust against
misclassification and can adjust to focus on the most challenging cases, such as minor
variances between the FDI and DoS attacks, ultimately increasing detection accuracy across
all three classes.

The SAMME AdaBoost works in the following steps to detect the three different classes
in this case:
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i. Training the Model on Three Classes: In this scenario, each weak classifier in the
ensemble will iteratively focus on distinguishing among the three classes, “no attack”,
“FDI attack”, and “DoS attack”. The SAMME algorithm adjusts the weights of in-
stances after each weak learner, giving more focus to instances that are misclassified
in the previous round. This adjustment enables the model to improve its accuracy on
difficult cases over time.

ii. Handling Misclassification with Class Weights: SAMME calculates the influence
of each weak classifier based on the number of classes, taking a unique approach
to weighting. The algorithm adjusts each classifier’s weight based on its accuracy
across all three classes, emphasizing the challenging-to-predict classes (e.g., if FDI and
DoS attacks are harder to distinguish from each other or from the “no attack” class).
This way, SAMME learns to differentiate each attack type by refining the decision
boundaries between the three classes.

iii. Sequential Training to Boost Accuracy: SAMME iterates through multiple weak clas-
sifiers, each one trained to improve on the errors of the previous classifiers. This
sequential boosting of each learner’s focus on difficult cases results in a strong en-
semble model capable of accurately categorizing whether a situation represents “no
attack”, an “FDI attack”, or a “DoS attack”.

Simulated data from MATLAB are extracted to create the dataset for this detection
purpose. The attacks were implemented on a hybrid microgrid with two batteries (Figure 1).

The dataset consists of the following features:

1. Irradiance 10. PV BESS Power

2. PV Power 11. PV BESS SoC

3. PV Output Voltage 12. Wind BESS Power

4. Wind Power 13. Wind BESS SoC

5. Wind Output Voltage 14. AC Bus Voltage

6. DC Bus Voltage 1 15. AC Load Power

7. DC Bus Voltage 2

8. PV Inverter Output Power

9. Wind Inverter Output Power

In total, 250,000 instances were made available. Up to 60% of the data, i.e., 150,000 in-
stances, was used to train the model, and the remaining instances were used for testing.

6.2. Comparison with Existing Ensemble Learning-Based Method

The performance of the proposed SAMME AdaBoost method has been compared with
that of the ensemble learning (one class AdaBoost) model that was reported in [24]. The
confusion matrix shown in Figure 30 represents the performance of SAMME AdaBoost.
The model performed quite well, with the highest values along the diagonal, indicating
correct classifications for each class. For Class 0, 32,666 instances were correctly classified,
with 667 instances misclassified as Class 1. For Class 1, 33,334 instances were classified
correctly, with 333 instances misclassified as Class 0 and 666 as Class 2. For Class 2, all
33,333 instances were correctly classified, with no misclassifications. Overall, the model
shows high accuracy, almost 99.33%. The color intensity in the heatmap reflects the count
of each classification outcome, with higher counts shown in deeper red in Figure 30.
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Figure 30. Confusion Matrix of SAMME AdaBoost Model for Detecting Cyberattacks.

Performance Metrics

The effectiveness of the proposed method and conventional ML models is evaluated
in terms of the following performance indicators (9–12), where TP refers to True Positive,
TN refers to True Negative, FP refers to False Positive, and FN refers to False Negative. In
this work, we converted the three-class problem into three separate binary classification
problems, one for each class against the others. After that, each index was applied to these
binary cases. This is called the ‘One vs. All’ technique.

Average Accuracy =
TP + TN

TP + FP + FN + TN
(9)

F1 − Score =
2·Recall·Precision
Recall + Precision

(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

Figure 31 compares the performance metrics—precision, recall, and F1-score—of the
two models, SAMME AdaBoost and existing AdaBoost, for predicting “Class 0: Normal
Scenario”. Precision measures the model’s accuracy in predicting Class 0, recall measures
its ability to capture all true instances of Class 0, and the F1-score provides a balance
between precision and recall. The SAMME AdaBoost depicts a better performance than the
normal AdaBoost technique in all three metrics.

For Class 1: FDI Attack detection, in all three metrics, i.e., precision, recall and F1-score,
the SAMME AdaBoost depicts a better performance than the normal AdaBoost technique,
as shown in Figure 32.

For Class 2: DoS Attack detection, in terms of the three metrics, i.e., precision, recall
and F1-score, the SAMME AdaBoost depicts a better performance in terms of precision
than the normal AdaBoost technique, as shown in Figure 33.
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The results are summarized in Table 18.

Table 18. Comparison between AdaBoost and SAMME AdaBoost.

Parameters Model Class 0
Prediction

Class 1
Prediction

Class 2
Prediction

Precision
SAMME 0.95 0.94 0.96

AdaBoost 0.92 0.92 0.96

Recall
SAMME 0.94 0.96 0.95

AdaBoost 0.93 0.94 0.94

F1-Score
SAMME 0.95 0.94 0.95

AdaBoost 0.92 0.93 0.94

Average Accuracy
SAMME 0.9835

AdaBoost 0.9657

7. Conclusions

This work can be broadly divided into two sections. The first section researches the
performance of different controllers for a BESS in handling the intermittent tendency of
PV-based microgrid systems. The second section discusses how integrating IoT-enabled
devices in the microgrid infrastructure can open up new cyberattacks, what its impact can
be on the BESS controller and overall stability of the system, and finally a new detection
technique that can help make the system cyber resilient. In this work, extensive simulations
have been carried out using the Matlab/Simulink software. This paper can be concluded
as follows:

■ A sigma-delta modulation controller was developed to minimize the fluctuations in
power and voltage due to the intermittent tendency of solar and wind generation sources.

■ The performance of the novel sigma-delta modulation controller was compared with
that of the conventional PI and fuzzy logic controllers. Numerical results demonstrate
the improved performance of the proposed SDM controller, with a 35% reduction in
AC bus voltage error compared to conventional PI and FLC controllers.

■ The impact of two of the most common cyberattacks on the BESS controller of four
PV-based microgrid systems was observed and analyzed.

■ The improved ensemble learning (SAMME AdaBoost)-based cyberattack detection tech-
nique was developed to make the IoT-enabled BESS-integrated microgrid systems more
cyber resilient. The proposed SAMME AdaBoost detection method achieved superior
accuracy with an F1 score of 95%, outperforming the existing ensemble approaches.

It is important to note that practical implementation of the SDM controller and SAMME
AdaBoost method in microgrids requires components like sensors for real-time data col-
lection, embedded controllers, communication infrastructure, and power converters for
system control. Additional essentials include computational hardware for model inference
and software for machine learning and supervisory control. The potential cost implications
of implementing the SDM controller in microgrids include the initial expenses for hardware
components such as sensors, controllers, and communication infrastructure, as well as
software development and integration costs. Additionally, ongoing costs for system main-
tenance, data management, and updates to the SDM model to adapt to dynamic microgrid
conditions could impact long-term operational budgets.

The potential limitations of the proposed SDM controller in microgrids include its
reliance on high-quality, real-time data, which can be challenging in noisy or resource-
constrained environments. Thus, this work can be extended by considering realistic solar
irradiance and wind speed variation data, considering 24 h data pattern for solar irradi-
ance and wind speed variation, optimizing controller parameters using the appropriate
algorithms, implementing the system in hardware to address practical challenges like com-
munication delays, and integrating 5G for seamless connectivity between energy sources,
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BESS, and SCADA. It can also involve the incorporation of additional renewable energy
sources such as fuel cells, the analysis of advanced cyberattacks like the aurora attack, and
the exploration of ML-based techniques like the envelope model for anomaly detection
using Support Vector Machines (SVMs), Gaussian mixture models, or autoencoders. Fur-
thermore, effective cyberattack mitigation strategies, such as the Zero Trust concept, can be
developed to enhance microgrid security.
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Appendix A

Table A1. Electrical Specification of PV Panel.

Sl. No. Parameters Values

1. Maximum Power @ 800 W/m2 5300 W

2. Voltage at maximum power point 180 V

3. Current at maximum power point 29.9 A

4. Nominal Power @ 600 W/m2 3750 W

5. Open Circuit Voltage 150 V

6. Short Circuit Current 25 A

Table A2. Parameters of PV Boost Converter.

Sl. No. Description Values

1. Output voltage (Vout) 400 V

2. Inductance (L) 46 mH

3. Capacitance (C) 27.1 µF

4. Switching frequency (fs) 10 kHz

Table A3. Specification of Bi-Directional Buck Boost Converter for BESS.

Sl. No. Description Values

1. Switching frequency (fs) 10 KHz

2. Inductance, L 0.5 mH

3. Boost capacitance, Cboost 17.3 µF

4. Buck capacitance, Cbuck 50.3 µF

Table A4. Specification of BESS.

Sl. No. Description Values

1. Initial State of Charge 45%

2. Nominal Voltage 320 V
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Table A4. Cont.

Sl. No. Description Values

3. Rated Capacity 100 Ah

4. Battery Response Time 1 s

Table A5. Specification of LC Filter in Transmission Line.

Sl. No. Description Values

1. Inductance, L 0.213 mH

2. Capacitance, C 14.32 µF
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