
Citation: Moghimi, S.M.; Gulliver,

T.A.; Thirumarai Chelvan, I.;

Teimoornia, H. Load Optimization for

Connected Modern Buildings Using

Deep Hybrid Machine Learning in

Island Mode. Energies 2025, 17, 6475.

https://doi.org/10.3390/en17246475

Gerardo Maria Mauro

Received: 19 September 2024

Revised: 17 December 2024

Accepted: 19 December 2024

Published: 23 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Load Optimization for Connected Modern Buildings Using Deep
Hybrid Machine Learning in Island Mode
Seyed Morteza Moghimi 1,* , Thomas Aaron Gulliver 1,* , Ilamparithi Thirumarai Chelvan 1,†

and Hossen Teimoorinia 2,3,†

1 Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700, STN CSC,
Victoria, BC V8W 2Y2, Canada

2 Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
3 NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
* Correspondence: seyedmortezamoghimi@uvic.ca (S.M.M.); agullive@ece.uvic.ca (T.A.G.)
† These authors contributed equally to this work.

Abstract: This paper examines Connected Smart Green Buildings (CSGBs) in Burnaby, BC, Canada,
with a focus on townhouses with one to four bedrooms. The proposed model integrates sustainable
materials and smart components such as recycled insulation, Photovoltaic (PV) solar panels, smart
meters, and high-efficiency systems. These elements improve energy efficiency and promote sustain-
ability. Operating in island mode, CSGBs can function independently of the grid, providing resilience
during power outages and reducing reliance on external energy sources. Real data on electricity, gas,
and water consumption are used to optimize load management under isolated conditions. Electric
Vehicles (EVs) are also considered in the system. They serve as energy storage devices and, through
Vehicle-to-Grid (V2G) technology, can supply power when needed. A hybrid Machine Learning (ML)
model combining Long Short-Term Memory (LSTM) and a Convolutional Neural Network (CNN) is
proposed to improve the performance. The metrics considered include accuracy, efficiency, emissions,
and cost. The performance was compared with several well-known models including Linear Regres-
sion (LR), CNN, LSTM, Random Forest (RF), Gradient Boosting (GB), and hybrid LSTM–CNN, and
the results show that the proposed model provides the best results. For a four-bedroom Connected
Smart Green Townhouse (CSGT), the Mean Absolute Percentage Error (MAPE) is 4.43%, the Root
Mean Square Error (RMSE) is 3.49 kWh, the Mean Absolute Error (MAE) is 3.06 kWh, and R2 is 0.81.
These results indicate that the proposed model provides robust load optimization, particularly in
island mode, and highlight the potential of CSGBs for sustainable urban living.

Keywords: load optimization; Smart Green Buildings; island mode; hybrid Machine Learning

1. Introduction

As urban areas grow, the demand for sustainable living solutions increases. Inte-
grating Renewable Energy Sources (RESs) such as Photovoltaic (PV) systems and Electric
Vehicles (EVs) into Smart Green Buildings (SGBs) can reduce emissions and improve load
efficiency. However, optimizing energy usage in these dynamic environments remains
a challenge [1]. In 2019, buildings accounted for 32% of primary energy use in the US,
with global consumption projected to rise by 1.3% annually until 2050 [1]. Space heat-
ing, cooling, and lighting consume almost half of this energy [2], making load prediction
and optimization in SGBs essential for reducing energy waste, costs, and environmental
impact [3,4].

Machine Learning (ML) techniques have been considered to predict and optimize
building energy consumption [5]. Hybrid models combining Long Short-Term Mem-
ory (LSTM) and Convolutional Neural Networks (CNNs) have been shown to improve pre-
diction accuracy by capturing both temporal and spatial dependencies in energy data [6,7].
These models reduce energy costs and emissions, which contribute to building resilience.
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Hybrid ML models such as Random Forest–Extreme Gradient Boosting–Linear Regres-
sion (RF–XGBoost–LR) have been shown to improve real-time prediction accuracy in
Smart Buildings (SBs) and Smart Grids (SGs) [8–10]. The integration of distributed energy
resources has been considered to optimize local energy generation and consumption to
improve cost-effectiveness and flexibility [11].

To date, there has been limited research on island mode (off-grid) operation in resi-
dential buildings [12–14]. This study fills this gap by evaluating ML models for Connected
Smart Green Townhouses (CSGTs) in Burnaby, British Columbia (BC), Canada, with a
focus on island mode operation. Performance indicators such as energy efficiency, cost,
emissions, and prediction accuracy are employed to support sustainable building opera-
tions [15]. A hybrid LSTM–CNN model is introduced to predict load consumption and
optimize parameters such as Heating, Ventilation, and Air Conditioning (HVAC), lighting,
and electricity use. The results demonstrate significant cost savings, emission reductions,
and improved load efficiency and indicate that connected SGBs operating in island mode
can contribute to sustainable urban development.

The remainder of this paper is organized as follows. Section 2 introduces energy
demand prediction for CSGTs in island mode, including performance, cost, and emissions.
Section 3 outlines the proposed ML model, while Section 4 presents the performance results.
Finally, Section 5 summarizes the paper and discusses the implications for sustainable
urban living.

2. SGT Modeling

The design and modeling of SGBs play a critical role in reducing Greenhouse Gas
(GHG) emissions and supporting climate goals. These buildings incorporate advanced
technologies, such as energy-efficient HVAC systems and Photovoltaic (PV) solar panels, to
improve load efficiency, resulting in substantial energy savings and cost reductions. As one
of the strategies toward a sustainable future, SGBs contribute to environmentally friendly
urban development. This section outlines the modeling of Connected SGTs (CSGTs),
focusing on the integration of sustainable technologies to optimize performance.

Canada has significant energy and climate challenges but there is a lack of research, par-
ticularly regarding the impact on load consumption and energy optimization in SGBs [16–18].
This is addressed here with a focus on the geographic and climatic conditions in Burnaby,
BC. An understanding of these factors is crucial for designing SGTs tailored to environmen-
tal conditions. This research offers valuable insights into the challenges and opportunities
for CSGTs in Burnaby, advancing sustainable building practices [19].

The daylight hours in a year in Burnaby exceed the sunshine hours. Daylight refers to
the total hours of light each day, while sunshine reflects the availability of direct sunlight,
which affects solar energy harvesting. The longest daylight hours (16.02) occur in June,
while the shortest hours (8.03) occur in December. This variation indicates higher solar
energy potential in summer and reduced availability in winter. Heating Degree Days
(HDDs) are also important for understanding climate and designing efficient heating
systems for SGTs. The HDD in Burnaby is approximately 3000, which indicates moderate
heating demand. This helps guide the optimal sizing and design of heating systems to
meet local needs [20].

2.1. SGT Formulation

This paper considers the characteristic home described in [21–23] to develop an SGT
model. The base model is a two-story townhouse (2140 sq ft) located in Burnaby. It was
built in 1995 and underwent significant renovations in 2007–2008 [21]. Major renovations
typically occur every 15–20 years, depending on the condition of the building, regulatory
changes, and advances in sustainable technology. The home is oriented southward to
maximize solar energy utilization.

LEED certification and Canada Green Building Council (CGBC) standards are consid-
ered to reduce emissions and improve load efficiency [21]. SGTs are designed to operate
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solely on electricity to minimize on-site emissions, supported by PV systems with the
goal of net-zero energy [24]. During sunny months, surplus electricity can be exported to
neighboring buildings, offsetting consumption during colder months.

Sustainable materials include bamboo flooring, recycled wood, PV panels, LED light-
ing, and high-efficiency heat pumps. These materials are widely used in sustainable
construction projects [25–27]. They must adhere to applicable local and international
building codes, including sustainability and safety requirements [28–30]. Heat pumps
and modern air conditioning systems provide energy-efficient year-round temperature
control [31,32]. Heat pumps supply both heating and cooling and are more energy-efficient
than traditional HVAC systems. Smart air conditioners optimize cooling by automatically
turning off when not required, reducing energy consumption.

This work employs sustainable materials for SGTs in Canada [33]. Windows with a
thermal resistance of R6 are used to reduce heat transfer and improve insulation, helping
to maintain indoor comfort and lower heating and cooling loads [33]. This high thermal re-
sistance is especially beneficial for energy efficiency in colder climates. The R2000 standard
for energy-efficient housing in Canada is also employed [34]. It incorporates advanced
insulation and ventilation systems. Table 1 gives the components and materials used in
SGTs as well as the technologies and features that contribute to sustainable buildings.

The townhouse sizes and layouts are optimized for different family needs and energy
usage. The one-bedroom (one-Bd) SGT is designed for a young couple, focusing on compact
living with minimal energy consumption. The two-Bd SGT is suitable for a couple with one
young child, providing extra space while being energy efficient. The three-Bd SGT caters to
a family with two teenage children, prioritizing efficient zoning and energy distribution.
The four-Bd SGT is designed for a family of five, incorporating advanced energy systems
to accommodate higher energy demands.

Table 2 gives the specifications for hot water tank, HVAC, and PV capacity in SGTs
(island mode). PV system capacity refers to the peak output under ideal sunlight conditions
(i.e., under standard test conditions) and does not account for daily or monthly output
variations due to location-specific factors such as weather, shading, or panel orientation.
Operating in island mode increases resilience and reliability to allow SGBs to function
independently of the grid and ensure an uninterrupted energy supply during outages. This
maximizes the use of locally generated renewable energy such as from PV panels, and EV
batteries for storage, promoting energy independence and decentralized resource man-
agement. Integrating island mode with advanced technologies like Vehicle-to-Grid (V2G)
systems and Machine Learning (ML) models provides an innovative solution to modern
energy challenges. These models improve load prediction to optimize energy resources
and support sustainability so SGBs can be an environmentally friendly urban solution.

Figure 1 shows the proposed SGT and its components in island mode. These include
PV panels, energy-efficient HVAC (e.g., heat pump), and a high-performance hot water
tank [35]. These systems are modeled in OpenStudio to evaluate energy performance.
Data are collected using meters that measure electricity, water, and gas consumption.
These data are processed and stored on a central server. A WiFi access point provides
communication between the server and devices, while cloud storage supports remote
access and long-term data storage. This setup enables efficient resource management and
informed decision-making [16–18].

Table 3 presents the PV panel parameters for the SGTs, including roof area, panel
capacity, energy output, payback period, and cell efficiency, as well as the battery system
specifications when operating in island mode. These values were obtained using the results
in [36,37]. This shows that the roof area, panel capacity, and estimated annual energy output
increase with the number of bedrooms. Larger townhouses have more roof area, supporting
higher-capacity panels. The energy saved annually is the same as the PV system output,
reflecting efficient utilization. Battery storage is specified to provide energy autonomy for
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1.5 days. This allows for short-term off-grid operation. The payback period is the time
required to recover installation and other costs from the energy savings and is given by

Payback Period (years) =
Total Installation Cost

Annual Energy Savings
(1)

where Total Installation Cost includes all PV system expenses, including panels, inverters,
batteries, wiring, and labor. The Annual Energy Savings is the yearly monetary value of
energy saved, calculated by multiplying the PV system energy generated (kWh) by the
local electricity rate (CAD/kWh). After the payback period, the system provides nearly free
energy, aside from maintenance. The SGTs use lithium-ion batteries for energy storage. The
capacities range from 9.0 kWh for a 1-Bd unit to 18.0 kWh for a 4-Bd unit, each supporting
1.5 days of off-grid operation. Larger SGTs produce more energy but need more storage
and have longer payback periods.

Table 1. Materials and smart technologies used in SGTs.

Material/Technology Description

Air Conditioner High-efficiency cooling system.
Bamboo Flooring Renewable, durable, and eco-friendly.
Connected Appliances Internet connection for remote monitoring and control.
Cork Wall Insulation Renewable, lightweight, and excellent insulation.
Envelope and Structural Mass Improved insulation and thermal mass for load efficiency.
EV Charger Electric vehicle charging station.
Heat Pump Energy-efficient heating and cooling.
Hot Water Tank Utilizes recycled materials for thermal insulation.
Light Emitting Diode (LED) Lighting Energy-efficient and long-lasting.
Low Volatile Organic Compound (VOC) Paint Reduces indoor air pollution.
PV Panels RES to reduce electricity costs.
R6 Windows High-performance windows to reduce heat loss and improve load efficiency.
Rainwater Harvesting System Collects rainwater for irrigation.
Reclaimed Wood Recycled, unique aesthetic, and reduces deforestation.
Recycled Glass Countertops Eco-friendly, durable, and visually appealing.
Recycled Insulation Materials Eco-friendly materials for thermal insulation.
Recycled Wood High strength, recyclable, and long-lasting.
Smart Home (SH) Hub Connect and manage smart devices, facilitating remote monitoring.
Smart Meters Monitor and optimize load consumption.
Smart Plugs Enable remote control and energy monitoring.
Smart Thermostat Programmable and energy-efficient temperature control.
EVs such as a Tesla 3 Environmentally friendly transportation with zero emissions.

Table 2. Specifications for hot water tank, HVAC, and PV capacity in SGTs (island mode).

Townhouse Type
Hot Water Tank

Capacity
(Gallons)

Daily Hot Water
Consumption
(Gallons/Day)

HVAC System
Capacity (Tons)

PV System
Capacity (kW)

Base 20.1 45.3 1.1 2.2
One-Bd 30.3 55.6 1.3 2.8
Two-Bd 39.1 75.2 1.9 3.5

Three-Bd 48.9 95.2 2.5 4.2
Four-Bd 60.3 110.1 2.8 5.4
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Figure 1. The SGT components in island mode.

Table 3. PV panel and battery storage specifications for SGTs in island mode.

Parameter 1-Bd SGT 2-Bd SGT 3-Bd SGT 4-Bd SGT

Roof Area (sq ft) 764 1080 1543 1736
Panel Capacity per Unit (W) 300 400 500 600
Total System Capacity (kW) 2.6 3.2 3.8 4.5
Estimated Annual Energy Output (kWh) 3070 3840 4610 5380
Energy Saved Annually (kWh) 3070 3840 4610 5380
PV Cell Area (sq ft) 193 251 309 361
Battery Storage (kWh) 9.0 12.0 15.0 18.0
Autonomy Period (Days) 1.5 1.5 1.5 1.5

2.2. CSGT Formulation

Connecting residential buildings significantly reduces energy consumption and costs [38].
For SGTs, connecting units improves efficiency and enables better energy management.
Linking modern residential townhouses is similar to Micro-Grids (MGs) [39,40]. Here,
CSGTs in island mode are examined to assess their performance and determine the benefits
for load optimization and sustainability.

Key components of connected townhouses are connected water systems [21,41] and
party walls [42,43]. Party walls are shared walls between neighboring properties and are
common in townhouses and semi-detached homes. They serve as boundaries and are
jointly owned and maintained. Party wall agreements specify structural maintenance,
repairs, alterations, and dispute resolution [42,43]. In CSGTs, party walls provide structural
integrity, noise reduction, and fire safety. Connected water systems are important for
building performance, occupant comfort, and sustainability. District cooling provides
chilled water across multiple buildings. This work examines district cooling performance,
load patterns, temperature management, and efficiency [41]. It also considers how building
operations impact cooling infrastructure effectiveness.

The CGST performance expressions are based on [44,45]. The heat transfer is given by

Q = k · A · ∆T
d

(2)

where Q is the heat transfer rate, k is the thermal conductivity of the wall material, A is
the surface area of the wall, ∆T is the temperature difference across the wall, and d is the
thickness of the wall. This describes conductive heat transfer, where thermal energy moves
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through a solid material. It is proportional to the thermal conductivity of the material and
the cross-sectional area through which the heat moves. The goal is to minimize heat loss or
gain and optimize energy use in CGSTs.

Continuity is very important in fluid dynamics and is given by

d(ρA)

dt
= ṁin − ṁout (3)

so the rate of change of mass (ρA) within a volume is equal to the difference between
the mass flow rate entering (ṁin) and leaving (ṁout) the system. This is applied to fluid
systems within CSGTs such as HVAC, plumbing, and other fluid transport mechanisms
such as rainwater harvesting systems.

The load consumption is

C =
n

∑
i=1

Ci (4)

The goal is to minimize C which is the sum of the load consumptions Ci of different
components, systems, or time periods, while maintaining comfortable temperature levels
and adequate flow rates. The building energy balance is

Energy In − Energy Out = Energy Storage (5)

where Energy In includes total load consumption. Total load consumption includes elec-
trical consumption (e.g., lighting and HVAC), gas consumption, and water consumption.
Energy Out includes heat loss, heat gain, total load consumption output, and PV panel
output. In island mode, buildings operate independently from the grid, so PV output is
considered an output when it is stored in batteries and used to meet building energy needs.
The PV output is a source of energy that contributes to building self-sufficiency. Energy
Storage is changes in internal and external energy storage within the building.

Renewable Energy Integration (REI) refers to the incorporation of RESs into a building
energy system in island mode and is given by

REI =
Renewable Energy Used

Total Energy Consumption
× 100% (6)

where Renewable Energy Used is the amount of energy derived from RESs like PV pan-
els and Total Energy Consumption is the total energy consumed by the building. It in-
cludes electricity consumption (e.g., lighting and HVAC), gas consumption, and water
consumption.

The Smart Technology Utilization Index (STUI) is used to quantify the effectiveness
and efficiency of smart technology implementation in a building. It is expressed as

STUI =
Number of Smart Devices

Total Devices
× 100% (7)

where Number of Smart Devices is the total number of smart devices used in the building
and Total Devices is the total number of devices in the building.

SGTs range from base to 4-Bd units. The base and 1-Bd units have 1 bathroom, the
2-Bd unit has 2 bathrooms, and the 3-Bd and 4-Bd units have 3 bathrooms. Kitchen sizes
vary from 60 sq ft (base) to 150 sq ft (4-Bd). Dining rooms range from 40 sq ft (base) to
120 sq ft (4-Bd). Living rooms range from 120 sq ft (1-Bd) to 250 sq ft (4-Bd). Entrance
spaces are from 30 sq ft (base) to 90 sq ft (4-Bd). Deck sizes are 40 sq ft to 150 sq ft. The
first bedroom is 100 sq ft in the base unit and 120 sq ft in the others. The 2-Bd to 4-Bd units
have a second bedroom (120 sq ft) and a master bedroom (150–250 sq ft). There is a second
master bedroom (150–200 sq ft) in the 3-Bd and 4-Bd units. Garage space is available only
in the 3-Bd (154.1 sq ft) and 4-Bd (173.8 sq ft) units. The base unit is 680.0 sq ft while the
4-Bd unit is 1735.9 sq ft. Heights are 8.0 ft (base) and 16.5 ft (other units). The base unit has
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a 20-gallon hot water tank, 1.0 ton HVAC system, and 1.80 kW PV panels. These capacities
increase to a 60.3-gallon hot water tank, 3.1 ton HVAC system, and 4.48 kW PV panels in
the 4-Bd unit.

2.3. Performance Metrics

This section presents the metrics to assess building efficiency, accuracy, performance,
emissions, and costs. The Total Energy Use Intensity (TEUI) is

TEUI =
Total Energy Consumption

Total Building Area
(8)

where Total Energy Consumption is the sum of all forms of energy consumption within
the building in kWh and Total Building Area is the total floor area of the building in sq ft.
The Total Energy Demand Intensity (TEDI) is

TEDI =
Total Energy Demand

Total Building Area
(9)

where Total Energy Demand is the sum of the peak energy demand from all sources within
the building in kW.

The Control Efficiency Index (CEI) is used to quantify the effectiveness of control
systems in achieving desired outcomes within the building and is given by

CEI =
Actual Energy Usage (AEU)

Optimal Energy Usage (OEU)
× 100% (10)

where Actual Energy Usage (AEU) is the actual energy consumed by the building and
Optimal Energy Usage (OEU) is the energy usage under ideal conditions. This metric
is crucial for building energy management as it helps to identify inefficiencies in control
strategies and provides a basis for optimizing performance.

The Indoor Air Quality index (IAQ) is a measure of indoor air quality. It is used to
quantify the quality of indoor air within the building and is

IAQ =
IAQ Measurement

Maximum Acceptable IAQ
× 100% (11)

where Maximum Acceptable IAQ is the maximum acceptable level of indoor air quality.
It evaluates various indoor air quality parameters such as Carbon Dioxide (CO2) levels,
Volatile Organic Compounds (VOCs), Carbon Monoxide (CO), and Ozone (O3) [46].

Waste Recycling Rate (WRR) is used to quantify the proportion of waste materials that
are recycled or diverted from landfills and is given by

WRR =
Weight of Recycled Waste

Total Weight of Waste
× 100% (12)

where Weight of Recycled Waste is the total weight of the waste materials recycled and
Total Weight of Waste is the total weight of the waste materials generated. This reflects
the effectiveness of building waste management, with higher values indicating better
recycling performance. It is used to identify areas within the building where waste recycling
practices may need to be improved such as common areas and kitchens. Material Recycling
Percentage (MRP) is used to assess the sustainability performance of SGBs and is given by

MRP =
Weight of Recycled Materials (WRM)

Total Weight of Materials Used (TWMU)
× 100% (13)
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where WRM is the total weight of the materials recycled and TWMU is the total weight of
the materials used. A building with an average MRP of 75% is more likely to achieve green
certification, reflecting a commitment to sustainability.

The water efficiency is

Water Efficiency =
Water Saved

Total Water Used
× 100% (14)

It reflects the effectiveness of water-saving measures like low-flow fixtures and rainwater
harvesting. The Electrical Consumption Efficiency (ECE) is

ECE =
Total Useful Electrical Output

Total Electrical Input
× 100% (15)

A higher ECE means that more input electricity is converted into useful energy. The Gas
Consumption Efficiency (GCE) is

GCE =
Total Useful Heat Output From Gas

Total Gas Input
× 100% (16)

It measures the efficiency of gas used for heating.
The insulation R-value measures thermal resistance and is given by

R =
d
k

(17)

A higher value indicates better insulation, which improves building efficiency [35]. Impor-
tant R-values include exterior walls (R-30, in ft²·°F·h/BTU), windows (R-5, triple-pane with
low-emissivity coatings), roof/ceiling (R-50, for high insulation), and floor/slab (R-20, to
reduce heat loss through the foundation). OpenStudio provides detailed thermal values
based on the specified materials and their properties.

TEUI and TEDI quantify load consumption and efficiency to help reduce waste and
optimize energy use [47]. GHGI gives the carbon footprint and is expressed as

GHGI =
Total Greenhouse Gas Emissions

Building Floor Area
(18)

Compliance with TEUI, TEDI, and GHGI standards is crucial, as it ensures sustainability
and thus building marketability to investors. High TEUI, TEDI, and GHGI ratings signify
superior efficiency, making buildings more competitive. Economic viability [48] considers
cost savings, Return on Investment (ROI), and cost-benefit ratios. These support informed
decision-making for load efficiency to align with both regulatory and investment goals.

The Total Energy Consumption is

Total Energy Consumption = Energy from Storage + Energy from Renewables (19)

where Energy from Storage is the energy supplied by the battery system and Energy from
Renewables is the energy generated by local renewable sources, such as PV systems. This
represents the energy used for building operation in island mode. It should be sufficient to
ensure continuous function when the building is disconnected from the grid. The cost of
energy is

Cost of Energy = Total Energy Consumption × Unit Cost (20)

where Total Energy Consumption is the total amount of energy consumed by the building
and Unit Cost is the unit cost of the energy consumed. The cost savings are

Cost Savings = Cost Before − Cost After (21)
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where Cost Before is the total cost before implementing load efficiency initiatives and
Cost After is the reduced cost after implementing load efficiency measures. This pro-
vides the financial savings by comparing costs before and after load efficiency measures
are implemented.

The ROI is
ROI =

Net Savings
Initial Investment

× 100% (22)

where Net Savings is the total savings from load efficiency measures and Initial Investment
is the cost of implementing these measures. The net benefit is

Net Benefit = Total Savings − Total Costs (23)

where Total Savings is the savings from load efficiency measures and Total Costs are the ex-
penses for implementing and maintaining them. This provides the overall financial benefit.

The HVAC metric is defined as

HVAC Metric =
1
n

n

∑
i=1

(
Xi − Xmin,i

Xmax,i − Xmin,i

)
(24)

where Xi is the ith parameter value, Xmax,i and Xmin,i are the corresponding maximum
and minimum values, and n is the number of parameters. The parameters included in this
metric are heat transfer efficiency, fluid dynamics efficiency, building energy balance, TEUI,
TEDI, cooling energy consumption, and IAQ.

In island mode, energy storage, backup power, load management, and resilience must
be evaluated to reflect the operational constraints of off-grid systems. The charging and
discharging of the battery is modeled by the State of Charge (SOC)

SOC(t) = SOC(t − 1) +
P-charge(t) · ηcharge − P-discharge(t)

Emax
(25)

where SOC(t) is the battery charge at time t, P-charge(t) and P-discharge(t) are the corre-
sponding charging and discharging power, ηcharge is the charging efficiency, and Emax is
the maximum energy capacity. The energy balance for the storage system in island mode is

Estorage(t) = Estorage(t − 1) + PPV(t) + Pbackup(t)− Pload(t)− Pstorage(t) (26)

where Estorage(t) is the stored energy at time t, PPV(t) is the PV system power, Pbackup(t)
is the backup power, Pload(t) is the building load, and Pstorage(t) is the power used for
storage operations. The backup efficiency is

Backup Efficiency =
Total Backup Power Output

Total Backup Power Input + Energy from Storage
× 100% (27)

where Total Backup Power Output is the useful backup power, Total Backup Power Input
is the total energy consumed by the backup system, and Energy from Storage is the energy
drawn from the storage system. Battery degradation over time is modeled by

Capacity(t) = Capacity(t − 1) · (1 − Degradation Rate)− Capacity Loss Due to Usage (28)

where Capacity(t) is the remaining battery capacity at time t, Degradation Rate is the loss
rate per cycle, and Capacity Loss Due to Usage accounts for additional loss due to use.

Table 4 gives the water system and party wall results for CSGTs in island mode. This
shows that the PV system output ranges from 7.2 to 12.2 kWh/day, indicating reliable
energy generation. HVAC usage is lower, reflecting efficient energy management. Daily hot
water use is consistent across the townhouse sizes, demonstrating good system capability.
Energy savings from shared walls range from 8.5% to 18.3% and indicate the impact of
connected infrastructure on reducing load. Compared to SGTs in island mode, CSGTs
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outperform in PV panel output, energy savings, and HVAC efficiency. Thus, connected
SGTs are more resilient and sustainable during off-grid operation.

Table 4. Outcomes related to water systems and party walls in the CSGTs in island mode.

Parameter 1-Bd 2-Bd 3-Bd 4-Bd

Daily Hot Water Usage (Gal/Day) 55.1 80.7 105.3 125.2
Energy Savings from Shared Walls (%) 8.5 12.1 15.2 18.3
PV Panel Output (kWh/Day) 7.2 8.9 10.5 12.2
HVAC System Usage (Tons/Day) 1.2 1.7 2.3 2.6

Table 5 gives the monthly energy performance for SGTs and CSGTs in island mode
without an ML model. These results were generated using Python 3.11.15 and EnergyPlus
23.1 with the pyenergyplus library. The building model was created in OpenStudio 3.8.0
with .osm files converted to EnergyPlus input files (.idf). Table 5 shows that CSGTs have
5% to 7% lower energy consumption per square foot due to energy sharing and advanced
management. The TEUI is improved by 10% and the TEDI is better by up to 12%. The
HVAC and water efficiency are 2% to 4% better and CO2 emissions per kWh are 3% to
5% lower. Better insulation and renewable energy use reduce heating and cooling loads,
lowering costs by 2% to 4% and increasing ROI by 5% to 7%. These results illustrate CSGT
sustainability, cost-effectiveness, and energy efficiency, making them a superior choice for
modern buildings.

Table 5. Monthly energy performance for SGTs and CSGTs in island mode without an ML model.

Parameter
Disconnected Connected

Acceptance Range
1-Bd 2-Bd 3-Bd 4-Bd 1-Bd 2-Bd 3-Bd 4-Bd

Efficiency
Heat Transfer (%) 84.1 85.2 86.3 87.4 85.0 86.5 87.8 89.1 80–90
Fluid Dynamics (%) 78.2 79.6 80.5 81.6 79.3 80.8 82.0 83.5 75–85
Total Energy Consumption (kWh/sq ft) 0.79 0.73 0.71 0.68 0.76 0.72 0.69 0.67 0.65–0.80
Building Energy Balance (%) 90.2 91.3 92.4 93.5 91.5 92.6 93.7 94.8 85–95
TEUI (kWh/sq ft) 0.81 0.79 0.78 0.76 0.69 0.66 0.64 0.61 0.60–0.80
TEDI (kWh/sq ft) 0.45 0.44 0.41 0.39 0.41 0.38 0.37 0.36 0.35–0.50
HVAC Metric (%) 90.2 91.0 91.8 92.6 91.2 92.1 93.0 93.8 85–95
Water Efficiency (%) 79.5 79.9 80.7 81.3 80.5 80.9 81.6 82.2 75–85
ECE (%) 95.1 95.7 96.3 96.9 96.0 96.5 97.1 97.7 90–98
GCE (%) 87.3 88.1 88.9 89.7 88.5 89.3 90.1 90.9 85–95
Insulation R-Value (%) 24.0 24.3 24.6 24.9 24.7 25.0 25.4 25.7 20–30
Cost Savings (CAD) 380.5 410.6 440.7 470.8 396.0 426.8 457.4 488.2 -

Performance
RE Integration (%) 30.5 35.1 39.7 44.3 31.2 36.0 40.8 45.6 30–50
STUI (%) 92.5 93.4 94.3 95.2 93.7 94.5 95.4 96.2 90–97
Cooling Energy Consumption (kWh/sq ft) 0.28 0.26 0.25 0.23 0.23 0.22 0.21 0.21 0.20–0.30
CEI (%) 86.2 87.1 88.0 88.9 87.5 88.4 89.3 90.2 85–95
WRR (%) 67.4 69.2 71.0 72.8 68.7 70.6 72.4 74.3 65–75
IAQ (%) 89.0 89.9 90.8 91.7 90.2 91.1 92.0 92.9 85–95
MRP (%) 73.1 73.9 74.7 75.5 74.3 75.1 76.0 76.8 70–80

Energy Storage
Battery Charging Efficiency (%) - - - - 89.31 91.25 92.32 92.87 85–95
Battery Discharging Efficiency (%) - - - - 89.52 90.64 90.89 92.03 85–95
Energy Storage Capacity (kWh) - - - - 53.15 61.42 72.12 83.21 50–80
Backup Power Duration (hours) - - - - 4.23 4.95 6.12 7.31 4–8

Emissions
GHGI (kgCO2/kWh) 0.52 0.49 0.47 0.43 0.50 0.47 0.45 0.41 0.40–0.55
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Table 5. Cont.

Parameter
Disconnected Connected

Acceptance Range
1-Bd 2-Bd 3-Bd 4-Bd 1-Bd 2-Bd 3-Bd 4-Bd

Cost
Cost of Energy (CAD) 550.5 620.8 690.2 761.7 538.0 607.8 677.2 748.5 -
ROI (%) 16.2 17.3 18.4 19.5 17.0 18.1 19.3 20.4 15–25
Net Benefit (CAD) 307.5 361.2 412.4 459.9 316.8 370.4 421.7 469.5 -

3. Load Optimization Using the Proposed ML Model

This work integrates empirical data, computational modeling, and ML techniques
to analyze key parameters such as efficiency, accuracy, and cost that affect SGBs. The
goal is to optimize load consumption in SGTs and improve sustainability [49–52]. The
proposed hybrid model predicts load consumption and optimizes HVAC and lighting
systems, as well as electricity usage. It combines the spatial feature extraction of CNNs
with the temporal learning of LSTM. It is trained using historical data [49]. The optimization
framework focuses on reducing costs and emissions, improving system performance, and
maximizing REI and smart technology for efficient, sustainable operation.

Hybrid models have been shown to outperform traditional ML methods [12,51].
The CNN–LSTM–AE model developed in [51] achieved lower Mean Square Error (MSE),
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE) compared to other models using datasets from UC Irvine and
Korean commercial buildings. In [52], a CNN–LSTM model was used to improve indoor
temperature modeling for HVAC control. The performance was better than MLP and LSTM
models over multiple time horizons (1–120 min). The proposed model combines a CNN
with LSTM to provide effective load optimization in SGTs as well as insights into energy
dynamics and performance.

The proposed algorithm for managing SGT energy in island mode employs a deep
hybrid model that integrates CNN and LSTM networks [53–55]. Figure 2 presents a
flowchart of the algorithm. It involves data analysis, load and energy optimization, SB
controls, RE integration, occupant behavior modeling, and continuous monitoring. The
algorithm begins with data input, such as load consumption and user behavior, and this is
processed using the model.

K-fold cross-validation is employed to train and validate the model [56]. LSTM
layers with attention focused on important time-series data, while CNN layers with skip
connections extract features from spatial and sequential data. The outputs are integrated to
improve prediction accuracy. The algorithm includes two decision nodes. If Condition 1
is met, load optimization is conducted; otherwise, the results are output. Condition 2
determines if RE integration and/or occupant behavior are modeled. The algorithm
produces final predictions to optimize energy performance and load efficiency in CSGTs.

Optimization Problem

The optimization problem is multi-objective. It aims to reduce costs and emissions
while improving performance [57]. The focus is minimizing total energy usage and in-
creasing the integration of RESs and smart technologies. The deep ML model predicts load
consumption and optimizes system parameters [58,59]. The objective function is

F = Minimize Total Energy Consumption − α × REI − β × STUI (29)

where the coefficients α and β are based on historical data and prioritize the two key
objectives. The values chosen are α = 0.3 to emphasize cost minimization and β = 0.2 to
focus on emission reduction with lower priority. This combines load consumption, REI,
and STUI into a single function.
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Figure 2. The proposed algorithm flowchart.

The following constraints are used to ensure solutions meet practical and regula-
tory standards

0 ≤ TEUI ≤ TEUImax (30)

0 ≤ TEDI ≤ TEDImax (31)

0 ≤ REI ≤ 100% (32)

0 ≤ STUI ≤ 100% (33)

Energy In − Energy Out = Energy Storage (34)

Energy Storagemin ≤ Energy Storage ≤ Energy Storagemax (35)

where Energy In includes energy generated from local sources like PV panels, while
Energy Out is all energy consumed in the building. Energy Storage is the excess energy
stored in batteries. Several variables have minimum or maximum values that restrict
possible solutions. For example, thermostat settings are limited to 18–25 °C. According to
IEC 62933 [60], the minimum energy storage should be 10% and the maximum should be
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90% of total capacity. Constraints, including budget and regulatory requirements, ensure
that solutions are realistic and effective.

ML techniques have been used to predict load consumption, optimize resources, and
improve sustainability in SGTs and CSGTs. Artificial Neural Networks (ANNs) are effective
for load optimization, demand prediction, and anomaly detection. They have also been
employed for occupancy forecasting and load anomaly detection using methods such as
Holt–Winters–Taylor smoothing and Autoregressive Moving Average (ARMA).

The predicted load is
Ŷt = f (Xt, Xt−1, . . . , Xt−n) (36)

where Xt, Xt−1, . . . , Xt−n are the historical load data and other relevant features, and f is
the prediction function. The predicted occupancy is

Ôt = g(Tt, Dt, Wt, Ot−1, . . . , Ot−n) (37)

where Tt, Dt, and Wt are the time, day, and weather features, and Ot−1, . . . , Ot−n are the
historical occupancy data.

The goal for HVAC optimization is to minimize load consumption while meeting
comfort constraints

min
u ∑

t
Ct(ut) (38)

where ut is the control input at time t and Ct(ut) is the corresponding load consumption cost.
Comfort and operational constraints keep the system within acceptable limits. Comfort
constraints ensure thermal comfort by penalizing deviations from desired temperature
or humidity set-points. HVAC behavior over time is dynamic as it responds to inputs
and disturbances. It can be modeled using physics-based equations or simulation and ML
models like LSTM can capture these dynamics.

The integration of LSTM and CNN layers enables the model to capture temporal
dependencies and spatial patterns. Attention mechanisms focus on the most relevant
features while skip connections improve feature representation and generalization. This
architecture can adapt to varying input conditions and handle sequences of different
lengths and complexities while mitigating the vanishing gradient problem and ensuring
fast convergence. The proposed model has three LSTM layers and three CNN layers. The
outputs of these layers are concatenated to fuse temporal and spatial representations. The
combined features are passed through a fully connected layer to reduce the dimensionality
and refine the data for prediction. The final output layer provides the predictions.

Figure 3 gives the data processing flowchart. The input data are normalized using
scaling and are preprocessed for cleaning, missing value imputation, and handling outliers.
The data are then split into training, testing, and validation sets. Non-cyclic features (e.g.,
time components) and correlated attributes are used to improve prediction accuracy. The
data are normalized between 0 and 1 using min–max normalization

Ltnorm =
Lt − Lmin

Lmax − Lmin
(39)

where Lt is the tth original value at time t, and Lmax and the Lmin are the maximum and
minimum values, respectively. The resulting feature vectors have the form

X = [L, H, D, M, Ho, W p, Sp, SUp, Apg] (40)
where L is the past load values, H is the hour of the day (time-based variations), D is the
day of the week (daily usage patterns), M is the month (seasonal changes), Ho is a holiday
indicator (binary/categorical), W p encompasses weather parameters such as temperature
and humidity, Sp is the spatial features (e.g., building size and occupancy), SUp is usage
patterns such as peak usage times, and Apg is the appliance usage data. These nine features
are the input to the ML model.
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Figure 3. The data processing flowchart [61].

4. Performance Results

Building data, including system architecture, load consumption, and weather con-
ditions, were collected for the SGTs to ensure adaptability to different conditions. Open-
Studio was used to simulate energy use and Python libraries (pandas [62], NumPy [63],
and Matplotlib [64]), were employed to analyze and visualize the data. Ninja [65] was
employed to compare PV systems. Historical datasets such as AMPds2 [21–23,31] were
used to train and validate the ML models. Island mode in Burnaby assumes CSGTs dis-
connected from the BC Hydro grid, so energy from PV panels and EVs must be used.
This reduces GHG emissions and electricity costs and improves resilience by satisfying
household energy needs while selling surplus energy.

Figure 4 presents the monthly electricity consumption for one- to four-bedroom SGTs
and CSGTs in island mode (2012–2014). This shows that both SGTs and CSGTs have higher
electricity consumption in the winter due to greater heating demands. However, CSGTs
consume more electricity than SGTs, particularly in larger units (3-Bd and 4-Bd), indicating
that smart features contribute to increased loads. Thus, while CSGTs provide advanced
functionalities, these result in greater energy demands.
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Figure 4. Monthly electricity consumption for one- to four-bedroom SGTs and CSGTs in island mode
(2012–2014).

4.1. Impact of Island Mode on Gas and Water Consumption

Island mode operation significantly impacts gas and water consumption in SGTs,
as buildings operate independently from the grid. In cold climates like Canada, gas
consumption increases in island mode to meet heating needs, especially when it is used for
heating. SGT energy management systems can balance gas and electricity energy use in
island mode to ensure a consistent energy supply without over-reliance on a single source.

In island mode, SGTs may shift from electric to gas water heating to manage elec-
tricity constraints while ensuring hot water availability [66,67]. Water-efficient systems
have stricter water-use policies, reduced irrigation, and occupant-driven conservation
behavior [67]. The Urban Heat Island (UHI) influence on building load consumption [68]
provides important information for optimizing resource use [69]. These results emphasize
the need for energy management and resource optimization to maintain sustainability in
off-grid conditions.

In island mode, PV panels and EVs significantly reduce gas reliance by generating and
storing renewable energy, particularly for 3-Bd and 4-Bd units. The Tesla Model 3 batteries
store excess solar energy to power electric heating systems and reduce gas use. Figure 5
shows higher winter gas consumption for heating, with SGTs consuming more gas than
CSGTs. This highlights the efficiency of CSGTs in managing loads, especially in larger units,
supported by optimized systems and PV panel integration.
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Figure 5. Monthly gas consumption for one- to four-Bd SGTs and CSGTs in island mode (2012–2014).

Figure 6 presents the water consumption for January to December 2013 in island mode,
split into indoor (bathing, cooking, laundry) and outdoor (lawn watering) use. CSGTs
show lower total water consumption than SGTs, with a 12.5% reduction for all unit sizes.
In July 2013, CSGTs used 400–1000 L less water, with a savings of 950 L for 1-Bd units. Peak
consumption was reduced by 15% in July 2013, and yearly water consumption was 10,000 L
less per unit, reflecting sustainable design. CSGTs also have 10–20% lower water use due
to water-conscious behavior through smart systems. Overall, CSGTs in island mode save
14.8% more water than SGTs, with 4-bedroom units saving around 11,000 L yearly.

In island mode, thermal comfort zones (cold, cool, comfortable, warm, too warm)
remain consistent across townhouse sizes, suggesting good design principles. The com-
fortable zone, defined as 20–23 °C, 40–60% humidity, and 0.3–0.5 m/s airflow, aligns with
general comfort preferences, ensuring optimal conditions in CSGTs. PV panels and a
Tesla Model 3 EV improve sustainability and load efficiency, supporting thermal comfort.
Airflow increases from 0.1–0.2 m/s in the cold zone to above 0.7 m/s in the warm zone,
ensuring adequate ventilation. Data from the Ninja website support these results [65].
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Figure 6. Monthly water consumption for one- to four-Bd SGTs and CSGTs for January to December 2013
in island mode.

4.2. ML Model Results

A hybrid LSTM–CNN model tailored for energy prediction is employed [36]. The
proposed model is evaluated along with several well-known models, including LR, LSTM,
CNN, RF, Gradient Boosting (GB), and hybrid LSTM–CNN, to assess their performance
in SGBs. LR serves as a simple baseline, LSTM excels in handling sequential data, CNN
is good at recognizing spatial patterns, RF is robust at managing non-linear relationships
and noisy data, GB improves accuracy through ensemble learning, and hybrid LSTM–
CNN captures both temporal and spatial dependencies. RF, which utilizes decision tree
ensembles, is included to provide a contrast to the deep learning approaches.

Figures 7–10 present the CSGT electricity consumption prediction results for 1- to 4-Bd
CSGTs in island mode with the LR, CNN, LSTM, RF, hybrid LSTM–CNN, GB, and proposed
ML models. CSGT (red line) is actual consumption, while the other lines show model
predictions. These results indicate that, as the number of bedrooms increases, consumption
also increases due to larger spaces and higher energy needs. The proposed model provides
the best consumption predictions that closely match the actual data. This is because its
complex architecture handles data variability better than the other models, making it
effective for optimizing energy use and reducing costs in SGTs.
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Figure 7. Actual versus predicted monthly electricity consumption with 7 ML models for a one-Bd
CSGT in island mode (2012–2014).

Figure 8. Actual versus predicted monthly electricity consumption with 7 ML models for a two-Bd
CSGT in island mode (2012–2014).
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Figure 9. Actual versus predicted monthly electricity consumption with 7 ML models for a three-Bd
CSGT in island mode (2012–2014).

Figure 10. Actual versus predicted monthly electricity consumption with 7 ML models for a four-Bd
CSGT in island mode (2012–2014).
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Table 6 presents the performance of connected and disconnected SGTs with 1 to
4 bedrooms in island mode, with and without the proposed ML model. The acceptable
ranges are MAPE < 10% (very good), 10–20% (acceptable); RMSE < 10% of data range;
MAE < 5–10% of mean value; R2 > 0.8 (acceptable), > 0.9 (very good). The data range and
mean consumption are as follows: 1-Bd (280 kWh, 600 kWh), 2-Bd (350 kWh, 800 kWh),
3-Bd (400 kWh, 1000 kWh), 4-Bd (500 kWh, 1150 kWh). These results fall within the
acceptable range, indicating that the model is effective. The ML model improves the
prediction accuracy and thus the efficiency, as the MAPE, RMSE, and MAE are lower.
The R2 values are greater than 0.80 in most cases, demonstrating better performance than
without the ML model.

Table 6. Monthly energy performance for SGTs and CSGTs with and without the proposed ML model.

Parameter

Without the ML Model With the ML Model

Connected SGTs Disconnected SGTs Connected SGTs Disconnected SGTs

1-Bd 2-Bd 3-Bd 4-Bd 1-Bd 2-Bd 3-Bd 4-Bd 1-Bd 2-Bd 3-Bd 4-Bd 1-Bd 2-Bd 3-Bd 4-Bd

MAPE (%) 3.82 4.15 4.57 5.02 3.91 4.25 4.68 5.12 2.68 3.48 3.61 4.43 2.73 3.51 3.64 4.48
RMSE (kWh) 2.88 3.35 3.76 4.25 2.97 3.42 3.83 4.32 2.03 2.63 2.93 3.49 2.09 2.72 2.98 3.56
MAE (kWh) 2.31 2.74 3.23 3.68 2.38 2.81 3.28 3.75 1.83 1.98 2.78 3.06 1.89 2.04 2.85 3.17
R2 0.86 0.81 0.77 0.72 0.85 0.80 0.75 0.72 0.98 0.91 0.85 0.81 0.93 0.88 0.81 0.76

Table 7 presents the parameters and performance of the 7 ML models, including the
number of layers, neurons, training iterations per epoch, training time per epoch, accuracy,
and MAE. This shows that the proposed model achieves the highest accuracy (95%) and a
low MAE (0.013), but with the highest computational cost in terms of training time and
number of iterations. The hybrid LSTM–CNN model also performs well (90% accuracy,
MAE of 0.011). The ensemble models RF and GB provide good accuracy (89–90%) and
reasonable MAE. LSTM has moderate computational cost and provides good performance
(88% accuracy, MAE of 0.015), while CNN (86% accuracy, MAE of 0.018) performs well.
LR has low accuracy (84%) and high MAE (0.02) because it is the baseline, but it has low
computational cost.

Table 7. Number of layers, neurons, training iterations per epoch, training time per epoch, error, and
accuracy for 7 ML models.

Model Layers Neurons Average Training
Iterations per Epoch

Average Training
Time per Epoch

Accuracy
(%) MAE

LR N/A N/A 261 70 s 84% 0.02
LSTM 3 128 233 6 min 88% 0.015
CNN 5 64 324 10 min 86% 0.018
Random Forest Trees: 100 Trees: 100 1120 5 min 89% 0.016
Gradient Boosting Trees: 100 Trees: 100 1051 6 min 90% 0.017
Hybrid LSTM-CNN LSTM: 2, CNN: 3 LSTM: 64, CNN: 64 753 22 min 90% 0.011
Proposed LSTM: 3, CNN: 3 LSTM: 128, CNN: 128 1012 28 min 95% 0.013

The MAPE and MAE for day-ahead predictions for CSGTs in island mode vary de-
pending on weather, occupancy, and resource consumption behavior. Figure 11 gives the
hourly variations in MAPE and MAE for day-ahead predictions for 3 January 2013. This
shows that the error fluctuations are between 3.30% and 4.50% and that the MAE ranges
from 2.45 kWh to 3.60 kWh. Both metrics decrease throughout the day, indicating improved
prediction accuracy. Considering that island mode can be expected to have greater errors
compared to grid-connected mode, the proposed model provides excellent results.

The normality and homoscedasticity residuals [70,71] are used to validate model
performance. They represent the differences between actual and predicted values, which
range from −2 kWh to 1 kWh. The normality (Shapiro–Wilk test) residual has a p-value of
0.061, which is greater than the standard threshold of 0.05. Thus, it conforms to a normal
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distribution with random deviations from the mean. The homoscedasticity (Breusch–Pagan
test) residual has a p-value of 0.076. This shows that the variance is consistent. These results
indicate that the model predictions are reliable.

Figure 11. Hourly one-day-ahead prediction of MAPE and MAE for 3 January 2013.

5. Conclusions

Connected Smart Green Townhouses (CSGTs) in island mode were considered to
improve energy efficiency by integrating Renewable Energy Sources (RESs) such as PV
panels and energy-efficient HVAC systems. The goal was to reduce load consumption,
Greenhouse Gas (GHG) emissions, and reliance on fossil fuels while promoting sustainabil-
ity. Operating independently of the grid, island mode offers resilience during outages and
optimizes local energy storage and utilization, minimizing the carbon footprint.

The proposed ML model was developed to predict energy system performance by
capturing temporal and spatial dependencies in energy data. Energy management was
optimized for connected and disconnected Smart Green Townhouses (SGTs) to reduce
energy waste and costs. A Mean Absolute Percentage Error (MAPE) of 3.30–4.50% and a
Mean Absolute Error (MAE) of 2.45–3.60 kWh for day-ahead predictions were achieved,
indicating excellent accuracy to support sustainable urban development.

In the future, parameter tuning can be considered to improve model performance.
Occupant behavior can also be incorporated into real-time energy policies. The goal is to
improve energy utilization, minimize waste, and foster sustainable practices in urban living.
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Abbreviations
The following abbreviations are used in this manuscript.

Symbol Description Symbol Description
ANN Artificial Neural Network MAE Mean Absolute Error
BC British Columbia MAPE Mean Absolute Percentage Error
BMS Building Management System MG Micro-Grid
CAD Canadian Dollar ML Machine Learning
CEI Control Efficiency Index MRP Material Recycling Percentage
CGBC Canada Green Building Council MSE Mean Square Error
CNN Convolutional Neural Network NN Neural Network
COP Coefficient of Performance PV Photovoltaic
CSGTs Connected Smart Green Townhouses REI Renewable Energy Integration
EDA Exploratory Data Analysis RES Renewable Energy Source
ECE Electrical Consumption Efficiency RF Random Forest
EER Energy Efficiency Ratio RMSE Root Mean Square Error
EV Electric Vehicle SB Smart Building
GCE Gas Consumption Efficiency SGB Smart Green Building
GB Green Building SG Smart Grid
GHG Greenhouse Gas SGI Smart Grid Integration
GHGI Greenhouse Gas Index SGT Smart Green Townhouse
HDD Heating Degree Days STUI Smart Technology Utilization Index
HSPF Heating Seasonal Performance Factor TEDI Total Energy Demand Intensity
HVAC Heating, Ventilation, and Air Conditioning TEUI Total Energy Use Intensity
IAQ Indoor Air Quality TWMU Total Weight of Materials Used
LED Light Emitting Diode V2G Vehicle-to-Grid
LEED Leadership in Energy and Environmental Design VOC Volatile Organic Compound
LR Linear Regression WRM Weight of Recycled Materials
LSTM Long Short-Term Memory WRR Waste Recycling Rate

WRW Weight of Recycled Waste
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21. Makonin, S. Ellert, B. Bajić, I.V. Popowich F. Electricity, water, and natural gas consumption of a residential house in Canada from
2012 to 2014. Sci. Data 2016. 3, 160037. [CrossRef]
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