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Abstract: Federated learning (FL) has emerged as a decentralized, cutting-edge framework for
training models across distributed devices, such as smartphones, IoT devices, and local servers
while preserving data privacy and security. FL allows devices to collaboratively learn from shared
models without exchanging sensitive data, significantly reducing privacy risks. With these benefits,
the deployment of FL over wireless communication systems has gained substantial attention in
recent years. However, implementing FL in wireless environments poses significant challenges due
to the unpredictable and fluctuating nature of wireless channels. In particular, the limited energy
resources of mobile and IoT devices, many of which operate on constrained battery power, make
energy management a critical concern. Optimizing energy efficiency is therefore crucial for the
successful deployment of FL in wireless networks. However, existing reviews on FL predominantly
focus on framework design, wireless communication, and security/privacy concerns, while paying
limited attention to the system’s energy consumption. To bridge this gap, this article delves into the
foundational principles of FL and highlights energy-efficient strategies tailored for various wireless
architectures. It provides a comprehensive overview of FL principles and introduces energy-efficient
designs, including resource allocation techniques and communication architectures, tailored to
address the unique challenges of wireless communications. Furthermore, we explore emerging
technologies aimed at enhancing energy efficiency and discuss future challenges and opportunities
for continued research in this field.

Keywords: federated learning (FL); decentralize learning; energy efficiency; wireless network;
internet of things (IoT)

1. Introduction

The rapid growth of Internet of Things (IoT) applications, coupled with the increasing
computational power of smart devices such as smartphones, wearables, and autonomous
vehicles, has generated unprecedented amounts of data within modern distributed net-
works [1,2]. For instance, IoT devices produced an estimated 1.1 zettabytes of data in
2023 alone, underscoring the urgent need for efficient data-driven machine learning ap-
proaches [3,4]. Traditional centralized learning techniques, which have typically been used
to process and analyze data, rely on aggregating data at central cloud servers for storage
and training [5]. While effective in certain contexts, this method faces significant limitations
in handling vast data generated by modern IoT ecosystems. The reliance on central servers
not only results in communication bottlenecks, high transfer costs, and latency issues
but also makes it unsuitable for real-time applications like smart healthcare, smart cities,
and autonomous driving systems [6–8]. Additionally, transferring sensitive user data to
centralized servers increases the risk of data breaches and malicious exploitation [9,10],
underscoring the limitations of conventional learning methods in distributed networks.
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Federated learning (FL) offers a promising alternative by decentralizing the training
process. FL technique operates by having a central server distribute global model parame-
ters to remote devices, whereas each device uses its local dataset to update the model [11,12].
Instead of transferring raw data, which is typically vast and sensitive, these devices send
only their locally updated model parameters back to the server [13]. The server then
aggregates these updates, refines the global model, and repeats the process until a desired
level of accuracy is reached. This significantly reduces the amount of data exchanged
over the network, improving communication efficiency [14]. The size of model updates
is often much smaller than the raw data, which is particularly advantageous for reducing
network traffic and latency. Furthermore, FL enhances privacy by keeping sensitive data
on local devices, minimizing the risk of data theft or breaches during transmission [15,16].
In this way, FL provides an efficient, scalable, and privacy-preserving solution for machine
learning in distributed environments like IoT networks [17].

Although wired networks are known for their stability and reliability, wireless net-
works offer distinctive benefits that enhance the efficiency and scalability of FL, especially
in the context of IoT [18]. Specifically, wireless networks allow devices to connect and
disconnect seamlessly as they move in and out of coverage areas, which is essential for
accommodating the vast and dynamic ecosystem of IoT devices. This adaptability ensures
that new devices can be easily integrated into the FL process without significant infras-
tructure changes. Moreover, the use of wireless networks enables FL to reach remote or
hard-to-wire locations and offers a diverse range of devices and datasets in the learning pro-
cess [19]. This diversity can lead to the development of more generalized and robust models
that perform better across diverse environments and use cases. Additionally, wireless pro-
tocols can be readily optimized for energy efficiency, ensuring battery-powered devices
participate in FL without excessive energy consumption [20]. By leveraging the flexibility
of wireless networks, FL can maximize the potential of distributed IoT devices, facilitating
scalable and efficient machine learning in diverse, real-world environments, while preserv-
ing data privacy [18]. This powerful combination makes FL an optimal solution for training
machine learning models in vast, dynamic, and geographically dispersed networks.

Despite its advantages, deploying FL over wireless networks presents challenges,
particularly in latency, reliability, scalability, and energy efficiency [21–23]. Among these
challenges, the limited battery life of IoT devices emerges as a well-documented barrier to
deploying FL effectively. To achieve high accuracy in the global model, service operators
require IoT devices to engage in frequent local model training and update model parameters
through wireless links. This process, while essential for improving the performance of the
FL system, results in substantial energy consumption for UEs [21]. Moreover, as IoT devices
are typically deployed in environments with limited access to charging infrastructure, the
energy constraints become even more critical. Consequently, ensuring energy-efficient
operation while maintaining the efficiency and effectiveness of the FL process is critical for
practical FL implementation over wireless networks [24].

Existing surveys on FL primarily focus on technical optimizations, such as model
compression, hyperparameter tuning, and training algorithm improvements. However,
implementing FL over wireless networks introduces additional complexities, including
resource allocation, bandwidth limitations, fluctuating channel conditions, and energy
constraints. With the rapid evolution of wireless technologies driven by 5G and the
anticipated shift to 6G, new architectures are emerging to help solve the issues in deploying
FL over wireless networks [25]. For instance, nonorthogonal multiple access (NOMA)
can be leveraged in both the power domain [26] and code domain [27]. In the spatial
domain, advanced techniques like massive multiple-input multiple-output (MIMO) [28],
reconfigurable intelligent surface (RIS) [29], and unmanned aerial vehicles (UAVs) [30]
can be integrated further to enhance the performance and efficiency of wireless networks.
These advancements serve as the primary motivation for our survey, which aims to provide
a comprehensive review of cutting-edge wireless network architecture designs for energy-
efficient FL. From this point of view, our survey highlights critical research challenges,
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explores promising solutions, and outlines the future vision for efficient deployment of FL
over wireless networks.

The main contributions of this paper can be summarized as follows:

• First, we provide a brief overview of the fundamental principles behind deploying FL
in general wireless networks. Then, we introduce a resource allocation optimization
problem for minimizing overall energy consumption composed of computation and
communication energy consumption.

• Next, we present a comprehensive survey of the latest wireless network architectures
with energy-efficient designs for FL. These architectures are systematically catego-
rized based on the distinct characteristics of the FL process, including centralized
federated learning (CFL) and decentralized federated learning (DFL), offering a clear
understanding of their respective strengths and use cases.

• To enhance energy efficiency in deploying FL over wireless networks, this paper
provides an overview of emerging advanced technologies that can be integrated into
wireless architectures to boost system performance. Technologies such as SWIPT, IRS,
and NOMA are explored for their significant potential to address the challenges of
implementing FL in wireless environments effectively.

• Finally, we discuss the challenges, opportunities, and potential research directions, con-
sidering emerging advanced technologies and future wireless network architectures.

2. Basic Principles of FL over Wireless Networks

In this section, we provide a brief overview of the fundamental principles governing
FL in a general wireless network, with a focus on understanding the associated energy con-
sumption model during the FL process. FL is broadly classified into two main categories:
centralized federated learning (CFL) and decentralized federated learning (DFL). These
approaches differ in how they coordinate and aggregate model updates from participat-
ing devices, aligning closely with specific wireless network architectures based on their
communication patterns and infrastructure requirements.

The overarching concept of FL, encompassing both CFL and DFL, is to collaboratively
derive a global model, denoted as q, by aggregating contributions from all participating
local models. The primary objective of FL is to determine the optimal parameters q for the
global model by minimizing the global loss function, expressed as

min F(q)
q

≜
K

∑
k=1

Dk
D

Fk(q), (1)

where Fk(q) = ∑Dk
i=1 f(q, xk,i, yk,i) represents the local loss function for the k-th client over

its local dataset Dk with size Dk, and D = ∑K
k=1 Dk denotes the total dataset size across

all participating devices. Here, f(q, xk,i, yk,i) denotes the loss function for an individual
data sample pair (xk,i, yk,i) from the local dataset Dk. To solve the optimization problem (1)
for both CFL and DFL, we introduce the foundational FL algorithm, federated averaging
(FedAvg), initially proposed in [31].

2.1. Overview of FL Models
2.1.1. Overview of the CFL Strategy

As illustrated in Figure 1a, a basic CFL system relies on a central server, such as a
cloud server, serving K clients (e.g., sensor IoT devices and smartphones). In wireless
communication contexts, the central server is often situated at a base station (BS), which
facilitates communication with and coordination of clients over wireless links. The CFL
approach involves the central server aggregating local models from K clients to construct a
global model q, which is subsequently disseminated back to the clients for further iterations.
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(a) Centralized federated learning

(b) Decentralized federated learning

Figure 1. Federated learning strategies.

This architecture is particularly well suited for traditional wireless networks, such as
4G and 5G, where the BS or cloud serves as the central hub for client communication. CFL
benefits from the stability and reliability of such centralized systems, enabling efficient
aggregation and low-latency synchronization of models.

The CFL process addresses the optimization problem in (1) iteratively through three
key phases: local computation, communication, and global computation. During the j-th
global iteration, the following steps are performed: Step 1 (Global downlink training up-
dates): At the start of the CFL process (j = 0), the central server initializes the global model,
which is typically a machine learning model, such as a deep neural network, composed of
multiple layers and interconnected nodes designed to capture complex patterns in data.
The initialization of the model often involves setting the model parameters (weights) to
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random values or pretrained values, depending on the specific application and prior knowl-
edge available. Then, the central server broadcasts the global model q(j) to K clients over
wireless downlink channels.

Step 2 (Local computation): During the j-th iteration, the k-th client retrieves the
global model q(j) from the central server, and uses it as the initial local model. The k-th
client then trains its local dataset q(j)

k using its dataset, Dk, by minimizing the loss function
Fk(q). Optimization methods such as gradient descent (GD) and stochastic gradient
descent (SGD) [21] can be used to solve this optimization problem. After completing a
predetermined number of local iterations, the clients transmit their locally updated models
to the server via wireless uplinks.

Step 3 (Global uplink training updates): The central server collects the locally updated
models, q(j)

k , k = 1, 2, · · · , K, from the K clients and computes a new global model q(j+1),
using the FedAvg algorithm:

q(j+1) :=
K

∑
k=1

Dk
D

q(j)
k . (2)

The CFL training process iterates until the global model achieves the desired level of accuracy.
To better understand the differences between CFL and DFL, Table 1 highlights their

key characteristics across multiple dimensions, such as architecture, communication over-
head, scalability, fault tolerance, energy efficiency, privacy, and use case suitability. This
comparison provides a clear understanding of how these two paradigms differ in terms of
their operational models and practical applications.

Table 1. Comparison of CFL and DFL.

Characteristic CFL DFL

Architecture Central server aggregates updates
from devices Peer-to-peer communication without a central server

Communication
Overhead

High, as all devices communicate with
the server Lower, as communication is localized among peers

Scalability Limited by central server capacity High, as no central bottleneck exists

Fault Tolerance Vulnerable if the central server fails More resilient, as no single point of failure exists

Energy Efficiency May require more energy due to server-
device interactions Typically more energy-efficient due to localized operations

Privacy Relies on the server’s privacy measures Offers better privacy as data exchanges are localized

Use Case Suitability Suitable for scenarios with
robust infrastructure Ideal for distributed systems with limited infrastructure

2.1.2. Overview of the DFL Strategy

In contrast to CFL, DFL, illustrated in Figure 1b, eliminates the need for a central server
to manage the learning process [32,33]. Instead, each client exchanges model parameters
directly with other clients to update its local model. The final model is obtained on an
edge device by aggregating local updates from the connected edge clients. In the context of
wireless systems, DFL is particularly well suited for wireless systems that utilize device-to-
device (D2D) communications [34]. Like CFL, the primary goal of DFL is to optimize the
global parameters q by minimizing the global loss function in (1).

The DFL process during the j-th iteration involves the following steps:
Step 1 (Local computation): At the beginning of the DFL process (j = 0), all K clients

initialize their local models with the same structure. During the j-th iteration, the k-th client
updates its local model, q̄(i)

k , using its dataset, Dk, and optimization algorithms such as
SGD [35,36].
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Step 2 (Model aggregation via D2D communications): After completing the local
computation, each client shares its trained model with neighboring clients over the wire-
less links. Using the FedAvg method in [31], the k-th client updates its local model by
aggregating the models received from other clients:

q(i)
k :=

K

∑
k′=1

αk,k′ βk,k′ q̄
(i)
k , (3)

where βk,k′ is the aggregation weight between clients k and k′, with values ranging from
0 to 1 [32], and αk′ ,k = {0, 1} indicates the presence or absence of a D2D link between
the two clients. The DFL process iterates until a global consensus is reached, yielding an
optimized model.

2.2. Signal Transmission Models

During the local model uploading process, the transmit uplink signal from the k-th
client is given by xk =

√
pksk, where sk, with E

{
|sk|2

}
= 1, denotes the desired data symbol,

and pk denotes the uplink power of the k-th client. In a CFL setup, this signal is transmitted
to the central server, while in DFL, it is transmitted to other clients. Two common schemes
for uplink transmission are time division multiple access (TDMA) and frequency division
multiple access (FDMA).

2.2.1. TDMA-Based Uplink Transmission

In the TDMA scheme, each client is assigned a distinct, orthogonal time slot of length
tk to communicate with the central server (CFL) or with other clients (DFL), ensuring
interference-free transmission. The achievable uplink rate for the k-th client (in bps) is
given by

Ru
k =

Butk
T

log2

(
1 +

|hu
k |

2 pk

σ2
noise

)
, (4)

where |hu
k |

2 pk
σ2

noise
represents the signal-to-noise ratio (SNR) of the k-th client during uplink

transmission. |hu
k |

2 captures the uplink channel gain between the k-th client and the central
server (CFL) or other clients (DFL). σ2

noise represents the variance of the background noise.
T ≜ ∑K

k=1 tk is the total time resource, Bu denotes the total uplink bandwidth allocated for
local model transmission.

2.2.2. FDMA-Based Uplink Transmission

In the FDMA scheme, each client is allocated a distinct, nonoverlapping frequency
band to communicate with the central server (CFL) or other clients (DFL), avoiding inter-
ference. The uplink rate of the k-th client (in bps) in this case is expressed as

Ru
k = Bk log2

(
1 +

|hu
k |

2 pk

σ2
noise

)
, (5)

where Bk denotes the bandwidth allocated to the k-th client, and Bu ≜ ∑K
k=1 Bk is the total

uplink bandwidth.

2.3. Energy Consumption Model
2.3.1. Computation Energy Consumption

The number of CPU cycles required by the k-th client to process a single data sample is
denoted as Nc,k. This parameter is typically determined offline by analyzing the execution
time of local computation in FL, along with the CPU clock speed and the number of input
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bits [37]. For a dataset of size Dk at the k-th client, the total CPU cycles required for a single
local computation round are Nc,kDk, leading to the computation time:

tcmpk =
Nc,kDk

fk
, (6)

where fk ∈ [ fmin, fmax] is the CPU frequency of the k-th client, adjustable to meet specific
performance objectives. According to [38], the power consumption of the mobile CPU
processor at the k-th client is modeled as Pcmpk = ζk f 3

k (Joule/s), where ζk is the effective
capacitance coefficient dependent on the processor architecture. Thus, the total computation
energy consumption (in Joule) at the k-th client during each local round is calculated as

Ecmpk = Pcmpktcmpk = ζk Nc,kDk f 2
k . (7)

2.3.2. Communication Energy Consumption

Let Ns denote the size of the model parameters transmitted during each communica-
tion round. The transmission time between the k-th client and the central server (CFL) or
other clients (DFL) is computed as

tcomu
k =

Ns

Ru
k

, (8)

where Ru
k is the uplink rate for the k-th client , derived in (4) or (5). Consequently, the total

communication energy consumption for the k-th client in one round is expressed as

Ecomu
k = E{|xk|2} × tcomu

k =
pmax

u w2
k Ns

Ru
k

. (9)

From (9), the communication energy consumption at each client depends on the uplink
power and rate. While higher uplink power improves the uplink rate, reducing latency
in the FL update process, it also increases energy consumption, which is a concern in
resource-constrained environments. Therefore, power control strategies are considered
to optimize transmission power, striking a balance between signal quality and energy
efficiency. Additionally, bandwidth allocation strategies are also crucial for reducing
communication latency and improving uplink efficiency by assigning resources based on
client requirements or network conditions, thus ensuring both reduced delays and fairness.
Consequently, resource allocation strategies, such as bandwidth and power control, are
essential for enhancing communication energy efficiency in FL over wireless networks.
These strategies can be efficiently optimized using advanced techniques such as convex
optimization or reinforcement learning, as referenced in several studies.

2.3.3. Total Energy Consumption Minimization Problem

The total energy consumption by clients (in Joules) during a CFL or DFL training
round can be decomposed into the energy for the local computation process and that for
the communication process, which can be expressed as

Etotal =
K

∑
k=1

(Ecomu
k + NcmpEcmpk), (10)

where Ncmp represents the number of local computation rounds per global iteration.
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To enhance energy efficiency in FL over wireless networks, resource allocation must
be optimized to minimize total energy consumption over N0 global training rounds. This
challenge can be formulated as the following optimization problem:

P : min
pk , fk ,Bk ,αk,k′

N0

K

∑
k=1

(Ecomu
k + NcmpEcmpk) (11a)

s.t. 0 ≤ pk ≤ Pmax, ∀k ∈ K, (11b)

fmin ≤ fk ≤ fmax, ∀k ∈ K, (11c)
K

∑
k=1

Bk ≤ Bu, (11d)

αk,k′ ∈ {0, 1}, k, k′ ∈ K, (11e)

where constraints (11b) and (11c) ensure appropriate uplink power and CPU frequency for
each client, respectively. Constraint (11d) ensures that the total bandwidth does not exceed
the available uplink bandwidth Bu (FDMA), while constraint (11e) enforces link selection
criteria for DFL strategies.

Effective resource allocation for wireless transmission and local computation is critical
for reducing energy consumption in FL. Tailored strategies are needed for different wireless
network architectures to achieve optimal energy efficiency. Advanced wireless networks,
continually evolving, offer innovative approaches to further improve energy efficiency for
FL at the edge. The next two sections explore these architectures in detail.

3. Wireless Network Architectures for Energy-Efficient CFL
3.1. Terrestrial-Based Architectures
3.1.1. CFL in Centralized Wireless Networks

Centralized wireless networks, illustrated in Figure 2, are systems where a central
entity (e.g., a BS, access point, or central server) oversees resource management and
operation decision-making. The central controller manages communication tasks, including
user access, data routing, resource allocation, and security, providing stable connectivity
for edge devices.

Figure 2. CFL over a centralized wireless network.
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As the adoption of machine learning and deep learning grows within centralized
wireless networks, there is an increasing demand for privacy-preserving and resource-
efficient methods. Transmitting raw data to a central server often proves impractical due
to bandwidth and privacy constraints. However, the structure of centralized networks
aligns well with CFL, enabling decentralized training of machine learning models without
sharing raw data [18,39–42].

• CFL in Cellular Networks: A cellular network is a type of centralized system, provid-
ing wireless communication services over wide geographical areas. Several studies on
energy-efficient CFL in cellular networks were presented in [21,39,43–46]. In [39], the
authors examined strategies to improve overall energy efficiency in CFL over 5G+ mo-
bile devices by analyzing energy consumption trade-offs between local computation
and wireless communication.
Building on this, Ref. [45] introduced a joint design for wireless transmission and
weight quantization to enhance energy efficiency on mobile devices. Similarly, Ref. [21]
tackled energy-efficient transmission challenges for CFL in wireless networks.

• CFL in IoT Network: Centralized network architectures have been widely applied
in IoT networks to manage large-scale deployments, optimize communication, and
streamline data processing. With the rapid proliferation of IoT devices, coupled
with the integration of machine learning in IoT applications, CFL has emerged as a
promising solution to address these challenges [11,47–49]. In [48], the author proposed
a multiagent federated reinforcement learning algorithm to optimize energy-efficient
CFL while ensuring the quality of service (QoS) for IoT nodes, fairness, and UAV
trajectory planning. The authors in [49] explored resource allocation and energy-
efficient CFL schemes for relay-assisted IoT networks, focusing on minimizing the
overall energy consumption of IoT devices while meeting latency constraints for
training and transmission.

• CFL in Fog-Cloud RAN: Fog–cloud radio access networks (F-RAN or C-RAN) repre-
sent another centralized architecture, especially for 5G and beyond. Energy-efficient
CFL in such networks is highly promising [50,51]. The authors in [51] developed an
energy-efficient CFL framework for C-RAN with strict energy constraints.

• Resource Allocation for CFL: Resource allocation plays a critical role in CFL-based
systems, as it directly impacts communication efficiency, energy efficiency, model con-
vergence speed, and overall system performance. By strategically managing resources
like bandwidth, power, and computational capacity, CFL can operate more effectively
in centralized networks [52–57]. Ref. [55] incorporated a simultaneous wireless infor-
mation and power transfer (SWIPT) system with multicarrier NOMA to improve CFL
energy efficiency. In [56], the authors proposed an energy-efficient CFL framework for
wireless networks by employing a joint computation-and-communication resource
management strategy. Leveraging intelligent reflecting surfaces (IRS), Ref. [57] opti-
mized resource allocation for CFL in centralized wireless networks.

• MIMO/mMIMO Technology for CFL: CFL has been applied to enhance performance
in large-scale cellular and IoT networks. To further address communication chal-
lenges posed by wireless channel fading in centralized networks, recent studies have
explored CFL along with multiple-input multiple-output (MIMO)/massive multiple-
input multiple-output (mMIMO) technology as a promising approach for efficient
parameter transmission between multiple wireless devices and servers. This inte-
gration enables communication-efficient CFL by improving both spectral and energy
efficiency, thereby addressing key requirements for scalable and sustainable wire-
less communication [58–60]. Studies like [60] proposed synchronous, asynchronous,
and session-based designs for energy-efficient CFL in mMIMO networks. However,
research in this area remains limited.
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3.1.2. CFL in Distributed Wireless Networks

In this subsection, we analyze the design of distributed wireless network architectures
that support CFL and present recent studies addressing the energy efficiency challenges
in these networks. Cell-free massive MIMO (CFMM) system can be interpreted as a
combination of massive MIMO, distributed antenna systems [61], and network MIMO,
which is considered the most advanced distributed wireless network.

CFMM is recognized as a key enabler for 6G networks, as it effectively addresses
significant propagation losses and enhances the quality of service, particularly for cell-edge
UEs [62]. Figure 3 illustrates a CFMM system with M access points (APs) and K UEs. These
distributed APs collaborate to serve UEs without geographic limitations.

Figure 3. CFL over a CFMM system.

In the context of FL, CFMM enables the accommodation of a large number of served
UEs compared with other wireless architectures owing to the support of the mMIMO
technique. Additionally, recent studies demonstrate that CFMM can achieve a five-fold gain
in spectral efficiency and a ten-fold improvement in energy efficiency compared with small-
cell and cellular massive MIMO systems [63]. Moreover, the distinctive features of CFMM
systems, particularly their ability to leverage the cooperative nature of distributed APs,
position them as an ideal platform for implementing CFL with energy-saving techniques.

Recent studies have introduced several strategies to reduce energy consumption in
these systems. For instance, the authors of [64] focused on minimizing energy consumption
in UEs during the FL training phase by optimizing key parameters such as transmit power,
frequency allocation, communication time, and computation time. They proposed an
iterative algorithm based on the inner approximation method, transforming the original
nonconvex optimization problem into a series of convex problems. This approach identifies
at least one locally optimal solution, thereby reducing energy expenditure during training.
Similarly, Ref. [65] proposed a novel uplink power allocation scheme tailored for CFL in
CFMM systems. This scheme simultaneously minimizes energy consumption and latency
during CFL training by optimizing users’ uplink transmission powers. By utilizing the
coordinate gradient descent method, the algorithm accounts for the impact of each user’s
power on overall energy consumption and latency experienced by other users, leading to
more efficient resource allocation within the CFMM framework.

In [66], the authors presented an over-the-air CFL scheme for CFMM systems, formu-
lating a joint optimization problem that integrates device scheduling and power scaling
while adhering to energy consumption constraints. They conducted a convergence analysis
and applied the Lyapunov method to simplify the long-term problem into a manageable
short-term one. An alternating optimization approach is utilized to tackle the mixed-integer
nonlinear programming problem. In [67], the authors highlighted CFMM’s potential for
federated edge learning, offering uniform coverage and high spectral efficiency. They intro-
duced over-the-air CFL (OTA-FL), which reduces communication overhead by allowing
clients to send updates simultaneously over shared resources. The study also provided
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practical implementation insights for OTA-FL in CFMM environments. Similarly, Ref. [68]
focuses on energy-efficient CFL in IoT networks, proposing an optimization problem to
minimize energy consumption in IoT devices. It addresses challenges like power limitations
and straggler effects, demonstrating the adaptability of CFMM for diverse scenarios. Col-
lectively, these studies underscore the CFMM’s potential to enhance CFL energy efficiency.
They pave the way for future research to explore advanced optimization techniques and
broaden the application of CFMM in diverse network environments.

3.2. Non-Terrestrial-Based Architectures

Aerial access networks (AANs) have emerged as a pivotal technology in 5G and
beyond networks [69]. These networks play a versatile role across a range of wireless
applications, including IoT data collection, wireless backhaul support, emergency response
operations, and wireless-powered communication systems. Owing to their distinctive
attributes, such as high flexibility, mobility, and adjustable altitude, AANs can function as
dynamic BSs, enhancing the capacity and coverage of wireless networks while optimizing
energy efficiency [70].

Driven by these advantages, integrating aerial networks with FL presents significant
potential to enhance system performance [71]. By deploying aerial platforms, FL training
can be extended across devices in remote or dynamic locations, supporting applications
like smart agriculture, disaster response, and environmental monitoring [71,72]. ANNs not
only provide ubiquitous coverage but also contribute to energy efficiency, a critical factor
in FL systems. However, since aerial platforms often operate with limited energy resources,
it is essential to optimize energy use in communication, flight, and processing to maintain
sustainable FL operations.

This subsection delves into three key aerial platforms for FL: UAVs, high-altitude
platform systems (HAPSs), and low Earth orbit (LEO) satellites highlighting their roles,
associated challenges, and optimization strategies for promoting energy efficiency.

3.2.1. CFL in UAV Communication Networks

UAVs are highly adaptable platforms that support FL training by collecting and
aggregating data from devices across diverse locations. With their dynamic mobility and
ability to fly autonomously, UAVs are particularly well-suited for scenarios requiring on-
the-fly connectivity. Their ability to access remote and hard-to-reach areas makes them
essential for CFL tasks where localized data needs collaborative processing, such as in
agriculture monitoring, disaster management, and environmental sensing. However, the
energy-constrained nature of UAVs necessitates careful planning to balance efficient flight
operations with CFL communication demands. This subsection reviews existing research
on UAV-based CFL and highlights strategies to optimize energy use while maintaining
system performance.

One of the first CFL frameworks within UAV networks, as illustrated in Figure 4a,
was introduced in [73]. This study analyzed the impact of wireless factors, such as fading,
transmission delay, and UAV antenna deviations, on CFL convergence. It proposed a
joint power allocation and scheduling strategy to optimize the convergence rate while
accounting for energy consumption and system delay constraints. Similarly, the work in [74]
provided an overview of FL applications in UAV-enabled wireless networks, emphasizing
the suitability of FL to address various challenges.

Optimization of the placement and movement of UAVs is critical to achieving high
communication quality and energy efficiency, as evidenced by numerous studies. For
instance, research in [75–80] introduced various strategies incorporating UAV placement
optimization. A novel approach in [75] proposed deploying UAVs with edge computing
capabilities, functioning as both aerial energy sources and servers for FL aggregation.
Using a block decomposition method, the study demonstrated the energy efficiency of
this solution compared with benchmarks. Similar to the work in [76], Ref. [78] addressed
joint UAV location and resource allocation optimization to reduce energy consumption
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in air-ground integrated FL systems. Meanwhile, Ref. [77] proposed a hybrid split and
federated learning framework for UAV networks, allowing users to choose between split
and federated training. To further improve energy efficiency while maintaining perfor-
mance, a user scheduling algorithm was developed within this framework. Regarding UAV
trajectory, the investigation in [81] addressed energy efficiency optimization for FL in UAV
communication networks, proposing an alternating optimization approach to solve the
nonconvex problem and evaluate UAV trajectories for better performance. The study in [82]
explored the concept of covert federated learning in UAV-enabled networks, ensuring FL
operations remain hidden from adversarial surveillance. This framework optimized UAV
trajectory, jamming power, and communication scheduling to achieve covert learning while
maintaining model convergence.

(a) CFL over a UAV communication network (b) CFL over a HAPS communication network

Figure 4. CFL over non-terrestrial-based wireless architectures.

Efficient resource allocation remains a critical challenge for energy-efficient UAV-FL.
In addition to the articles previously mentioned [75–80], the study in [83] presented a
multiagent federated reinforcement learning algorithm for resource management in UAV-
assisted mobile edge computing (MEC) systems. By tackling power control and user
association, the algorithm demonstrated comparable performance to centralized schemes
while enhancing operational efficiency and ensuring privacy protection. Although the
results appear promising, further research is necessary to completely comprehend the
implications of this algorithm in various contexts. The study in [84] addressed battery-
constrained FL in UAV-enabled IoT networks, optimizing energy consumption and latency
using a deep deterministic policy gradient-based algorithm, prolonging UAV battery life,
and ensuring uninterrupted FL training. The study in [72] proposed a fairness-enhanced
scheduling mechanism based on a multiarmed bandit algorithm, where device selection
was guided by a weighted reward function that balances model freshness and energy
consumption. This multicriteria scheduling promotes fair participation among ground
devices, optimizing long-term system performance and preventing drained energy.

In the context of UAV-MEC networks, navigation policies must consider UAVs’ diverse
capabilities to ensure energy efficiency and service quality. The study in [85] proposed a
decentralized navigation solution based on the soft hierarchical deep reinforcement learning
network and dual-end federated reinforcement learning. These methods not only enhance
task-offloading energy efficiency but also reduce waiting times. These studies collectively
emphasize the importance of advanced optimization techniques in UAV-enabled FL systems
to enhance energy efficiency and system performance.
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3.2.2. CFL over HAPS Communication Networks

HAPSs, positioned 20 to 50 km above Earth, offer extensive coverage and reliable line-
of-sight (LOS) communication [86], making them an ideal candidate for integrating CFL
into aerial networks, as depicted in Figure 4b. Their stable positioning, broad connectivity,
and ability to act as mega-cells are particularly valuable for 6G networks, addressing
energy efficiency and latency sensitivity in CFL. This subsection explores HAPS-enabled
CFL architectures, focusing on energy-efficient resource management, hierarchical model
optimization, and integration with other aerial platforms to boost CFL energy efficiency.

Energy efficiency is vital for enhancing HAPS performance in CFL scenarios. The
research in [87] underscores dynamic resource allocation strategies tailored to the fluc-
tuating demands of HAPS-enabled CFL networks. Similarly, Ref. [88] delves into CFL
techniques for task and resource allocation in wireless high-altitude balloon networks,
which are equally relevant to HAPSs. The study proposed a support vector machine (SVM)-
based CFL algorithm to minimize energy and time consumption. These studies underscore
HAPSs’ potential for sustainable CFL operations while acknowledging the complexity and
need for further optimization research.

The synergy between HAPSs and UAVs enhances CFL frameworks by improving
data aggregation and model training efficiency. For instance, Ref. [87] outlined a collab-
orative framework integrating HAPSs and UAVs, while [89] introduced a hierarchical
aerial computing framework that leverages these platforms for efficient IoT data process-
ing. Privacy-preserving CFL is another avenue explored in [90], where a federated deep
reinforcement learning model is used for HAPS-supported multi-UAV deployment. In
this architecture, the HAPS aggregates model updates from various UAVs operating au-
tonomously, reducing data transmission and preserving privacy. The collaboration between
HAPSs and UAVs demonstrates their combined effectiveness in enhancing energy efficiency
within CFL settings.

The integration of HAPSs with other aerial platforms, such as LEO satellites, presents
additional opportunities for energy optimization in CFL systems. For example, Ref. [91]
introduced a sparse channel estimation scheme tailored for CFL in nonterrestrial networks
(NTNs), including HAPSs. This approach enhances channel estimation accuracy, crucial for
efficient uplink and downlink CFL parameter transmission, significantly improving spectral
and energy efficiency. By leveraging HAPS as a central node in NTNs, CFL systems benefit
from more consistent performance, especially in dynamic and high-mobility scenarios.

HAPSs also play a critical role in air-ground integration for CFL in intelligent transport
systems and edge intelligence networks. Refs. [92,93] highlighted HAPSs’ ability to combine
aerial and terrestrial networks, distributing CFL processes efficiently across 3D networking
architectures. Through proper network selection and optimal offloading, these platforms
reduce latency and energy consumption in vehicle-to-everything and IoT applications,
demonstrating their potential to empower edge intelligence and streamline communication
between network nodes.

Integrating HAPSs into CFL architectures boosts energy efficiency by centralizing
aggregation and coordinating resources across UAV and LEO layers, reducing device
energy consumption and enabling scalable CFL. Future research could explore hybrid
aerial systems combining UAVs and HAPSs with energy-harvesting technologies to extend
operation in energy-constrained environments. Additionally, the development of CFL
protocols tailored for aerial networks could further optimize energy usage and processing
speed, enhancing resilience and adaptability [94].

3.2.3. CFL in Satellite Communication Networks

Satellite-based federated learning (SFL) provides global coverage and high scalability,
making it ideal for large-scale operations in remote or underserved areas. Satellites excel
in fault tolerance and offer persistent connectivity, overcoming limitations such as the
restricted battery life of UAVs and the limited coverage of HAPSs. Unlike these platforms,
satellites are not constrained by energy limitations or geographical boundaries, making
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them the most reliable choice for wide-area communication [95]. SFL is particularly valu-
able in applications like disaster response, environmental monitoring, and secure global
communication, where real-time data processing and privacy are paramount [96]. In a
typical SFL setup, multiple satellites gather data from edge devices while a central server,
located on Earth or in orbit, aggregates and processes the model updates [97], as illustrated
in Figure 5a. This system enables distributed learning across satellites and ground stations,
with each satellite or device conducting local computations and sharing updates with the
central server.

Energy efficiency is a cornerstone of SFL due to the power constraints of satellites,
which rely on limited onboard energy sources. Various strategies have been proposed to
address this challenge, tailored to specific use cases. For low-power IoT devices in LEO
satellite systems, [98] proposed selective device participation to minimize energy consump-
tion. By balancing computational and communication loads, the approach aligns with
power-aware scheduling principles and leverages dynamic resource allocation to enhance
efficiency. The authors in [99] suggested satellite grouping and the use of inter-satellite links
(ISLs) to address data heterogeneity and communication challenges. This strategy includes
caching frequently accessed data onboard satellites and optimizing transmission power and
computing frequency, effectively reducing redundant transmissions and conserving energy.
Focusing on satellite–terrestrial integration, Ref. [100] proposed caching mechanisms to
offload traffic from terrestrial networks, improving energy efficiency. By storing frequently
accessed data onboard satellite, energy consumption is significantly reduced, aligning with
conservation principles. All the studies focused on optimizing energy consumption while
preserving system performance, employing techniques like dynamic resource management,
caching, and ISL optimization as key strategies.

(a) CFL over a satellite communication network (b) DFL over a satellite constellations communication network

Figure 5. FL strategies over a satellite communication network.

Energy efficiency is further enhanced through hybrid systems that combine satellites,
UAVs, and HAPSs in FL [101,102]. UAVs are well suited for localized tasks due to their
proximity to the ground, while HAPSs and satellites offer broad, continuous coverage
for large-scale operations. This complementary arrangement highlights the potential for
collaborative frameworks that balance localized and global learning tasks. In particular, the
integration of UAVs and HAPSs with FL has garnered significant attention for leveraging
their nonterrestrial network capabilities to provide dynamic, scalable, and energy-efficient
communication platforms, especially in environments with limited terrestrial infrastructure.
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4. Wireless Network Architectures for Energy-Efficient DFL
4.1. DFL in D2D Communication Networks

D2D communication plays a pivotal role in DFL within wireless networks. By enabling
direct peer-to-peer model updates without a BS, D2D communication aligns with the decen-
tralized nature of FL, optimizing energy usage by shortening transmission distances and
reducing communication costs. In densely populated mobile networks, D2D allows nearby
devices to efficiently exchange model updates, thereby saving energy and eliminating the
need for intermediary nodes [103]. To illustrate the different operational modes of D2D
communication, Figure 6 presents two modes: (a) Standalone D2D, which operates inde-
pendently of any infrastructure, and (b) Network-assisted D2D, which leverages existing
network resources. Additionally, Table 2 briefly summarizes key studies on energy-efficient
DFL in D2D environments, which will be discussed further in this subsection.

(a) Standalone D2D (b) Network-assisted D2D

Figure 6. Operational modes of D2D communications.

Table 2. Summary of key studies on energy-efficient FL in D2D environments.

Reference Design Variables Method Mode

[104] Resource allocation Deep reinforcement learning (DRL) (a)

[105] Computing power allocation and dataset correlation into
FL scheduling

Graph learning and DRL (b)

[106] The selection of LAs and the scheduling of devices to
LAs/RRBs

A low-complexity graph-theory algorithm (b)

[107] Device selection, offloading ratios Graph convolutional networks (GCN) (b)

[108] Devices participating in the training, the offloading desti-
nation, the set of sampled data points, and the transmis-
sion power level of each device at each round

Deep neural network (DNN) (b)

[109] The clustering selection, CH-device scheduling, and fre-
quency computation allocation

FL-EOCD (b)

[110] Local training periods, consensus rounds Two timescale hybrid FL (TT-HF) (b)

[111] Participation vector, link selection matrix A FL framework involving a one-side matching theory-
based incentive mechanism to select and encourage users
to take part in the process

(b)

[34] Power adjustment, wireless resource allocation, link se-
lection, and aggregation weight adaptation mechanism

Alternating optimization algorithm, semidefinite program-
ming (SDP), tabu search-based meta-heuristic algorithm

(a)

(a) Standalone D2D, which operates independently of any infrastructure, (b) Network-assisted D2D, which
leverages existing network resources.
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When it comes to optimizing energy-efficient DFL in D2D environments, numerous
studies have proposed various methods. For example, the study in [104] optimized resource
allocation using deep reinforcement learning (DRL) to maximize network capacity and
minimize energy consumption, while ensuring the QoS for both cellular and D2D users.
In contrast, Ref. [105] combined DRL with graph learning to exploit the relationships
between datasets during model aggregation, which helps improve DFL accuracy and
reduce model errors within the energy constraints of edge servers. Graph-based methods
have gained prominence in optimizing DFL systems, particularly in heterogeneous and
energy-constrained environments. These methods are effective in modeling complex
relationships between devices, data, and network attributes. For instance, Ref. [106]
presented a low-complexity graph-theoretic algorithm to optimize parameters such as
local aggregator selection and device scheduling within a DFL system. By incorporating
D2D communication for model aggregation, this approach reduces energy consumption
while maintaining convergence rate, minimizing the need for central server communication
and achieving substantial energy savings in resource-limited environments. Similarly,
Ref. [107] utilized graph convolutional networks (GCNs) to optimize device selection and
offloading ratios within a D2D-enabled DFL framework, making it particularly suitable
for environments with diverse device capabilities and network topologies. This model
enhances DFL accuracy and reduces data processing and energy overhead by learning
complex interdependencies between devices and local data distributions, outperforming
traditional sampling methods.

Another energy-focused approach was introduced in [108], which proposed a D2D-
assisted DFL framework that minimizes the global loss of a deep neural network (DNN)
model while respecting device energy constraints and edge server bandwidth limitations.
By using auxiliary graphs to solve weighted maximum matching problems, this method
optimizes local model uploads, leverages the energy resources of neighboring devices,
and improves communication efficiency during the training process. To further improve
resource utilization, Ref. [109] proposed a DFL-EOCD scheme, which integrates D2D
communications and overlapped clustering for decentralized aggregation. This approach
reduces the energy consumption of devices while maintaining a satisfactory convergence
rate. The DFL-EOCD algorithm outperforms traditional DFL schemes by optimizing energy
consumption, latency, and convergence rate, offering a promising direction for DFL in
decentralized networks.

The study in [110] proposed a two-timescale hybrid DFL (TT-HF) framework that
combines conventional device-to-server communication with D2D communications, en-
abling devices to perform multiple local gradient descent iterations and participate in a
cooperative D2D consensus within clusters at each global aggregation interval. The authors
introduced a novel definition of gradient diversity to analyze the TT-HF’s convergence be-
havior, establishing new bounds to minimize network resource demands during distributed
learning. An incentive-driven DFL framework was proposed in [111], which integrates a
one-sided matching theory-based mechanism to encourage user participation. By utilizing
D2D communications and forecasting channel conditions with echo state networks at each
user site, this framework optimizes the trade-off between energy consumption and conver-
gence time, thus enhancing the DFL process in communication-challenged environments.
Finally, Ref. [34] proposed a decentralized learning mechanism that optimizes computing
power, wireless resource allocation, link selection, and aggregation weight adaptation.
Using alternating optimization, semidefinite programming, and a tabu search-based al-
gorithm, this framework minimizes total learning costs, including latency and energy
consumption, while improving energy and communication efficiency in D2D-enabled DFL
systems. These methods, which leverage graph-based models, address key challenges
in DFL by reducing energy use, enhancing accuracy, and improving convergence rates,
demonstrating the effectiveness of graph-theoretic and D2D strategies in enhancing the
performance and sustainability of DFL systems.
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4.2. DFL in UAV Communication Networks

While CFL employs distributed topologies for model parameter exchange, it remains
centralized, relying on a central server for model aggregation. In contrast, the server-based
DFL approach faces a single point of failure in UAV networks [73]. For example, in a UAV
DFL framework, a leading UAV typically serves as the central server for model aggregation,
with other UAVs sending their local models to this server. However, if the central UAV
becomes unreachable due to issues with air-to-air links, attacks, or battery depletion, the
system may fail. To mitigate this risk, Ref. [112] proposed a DFL framework for UAV
networks (DFL-UN), as shown in Figure 7. In this framework, each UAV trains its local
model and integrates models from neighboring UAVs, eliminating the need for a central
aggregation entity. Recognizing the importance of aggregation methods for enabling model
sharing and combining updates among UAVs, the authors in [113] proposed two novel
aggregation methods within a DFL framework tailored for UAV networks.

UAV #1

UAV #5

UAV #2

UAV #3

UAV #4

Figure 7. DFL over UAV networks.

These methods address server dependency, energy consumption, and communication
costs by optimizing local training and communication rounds.

To address security challenges in DFL-UN, such as unreliable connections, high mo-
bility, and energy inefficiency, authors in [114] proposed the use of peer-to-peer trust
policies, asymmetric encryption, and an intrusion detection mechanism to detect hijacking
attempts. Additionally, they integrated location-based energy-efficient routing to predict
link breakage and optimize routing paths. In [115], the authors extended the UAV systems
into a coordinated swarm, using natural swarm behavior algorithms and introducing a
leader election-assisted, spiking neural networks-driven DFL framework. This approach
optimizes FL model training while minimizing energy consumption and training time.

4.3. DFL in Satellite Constellations Communication Networks

CFL relies on a central server to aggregate model parameters, which is impractical for
distributed LEO satellite constellations due to the difficulty in selecting a suitable central
satellite. Moreover, reliance on ground stations introduces latency and limits operational
flexibility due to the intermittent visibility of satellites. With the increasing deployment
of LEO constellations by organizations such as SpaceX, OneWeb, and Amazon, there is a
growing need for solutions like SFL that integrate scalability, efficiency, and robustness into
satellite-based operations [116].

To address these challenges, a DFL framework for LEO satellite constellations was
proposed in [94], as shown in Figure 5b. This framework enables efficient model aggrega-
tion across LEO satellite networks without requiring a central server, thereby mitigating
reliability concerns and communication bandwidth limitations inherent in CFL approaches.
Optimizing energy efficiency in DFL over satellite constellations involves enhancing ISLs to
minimize communication overhead, utilizing energy-aware data exchange protocols, and
applying dynamic resource allocation strategies to reduce power consumption. The study
in [117] introduced a novel decentralized SFL framework for Walker Delta, where satellites
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communicate via ISLs across orbital planes. This approach addresses a mixed combina-
torial optimization problem by jointly optimizing power control, bandwidth allocation,
and routing to minimize energy consumption. The authors in [118] leveraged decentral-
ized operations and energy-aware communication strategies to reduce communication
congestion and improve fault tolerance, aligning with DFL principles to optimize energy
consumption while maintaining system performance. The authors in [119] focused on min-
imizing convergence time in satellite-based DFL by optimizing the number of satellites per
orbit and the number of orbits. This approach balances energy constraints, communication
distance, and DFL performance, ensuring efficient and reliable operation. These stud-
ies highlighted the innovative strategies for enhancing energy efficiency in DFL-enabled
satellite constellation systems.

Table 3 summarizes the research issues and limitations of the existing energy-efficient
FL-enabled wireless network architectures, providing a comprehensive reference for the
topics discussed in Sections 3 and 4.

Table 3. Summary of the research issues and limitations of the existing energy-efficient FL-enabled
wireless network architectures.

Wireless Network
Architectures

Limitations Research Issues

Centralized Wireless
Networks

Constrained resources such as bandwidth,
processing time; high latency due to the need
to aggregate and process data at a central
server; poor performance in scenarios with
poor channel conditions or when devices are
located far from the central server.

Managing interference from neighboring cells; scal-
ability issues as the number of devices increases;
optimizing the constrained resource allocation;
requiring highly accurate channel estimation in
MIMO/mMIMO systems.

Distributed Wireless
Networks

High backhaul energy costs; uneven en-
ergy usage and synchronization between APs
during FL; pilot contamination for channel
estimation.

Handling large-scale networks including a large
number of devices; managing the heterogeneity of
data across different devices or access points, mini-
mizing interference when multiple devices operate
simultaneously; optimizing the selection of APs to
ensure efficient data routing and model aggregation.

UAV Communication
Networks

UAV mobility challenges in maintaining
stable FL training; high latency in UAV-
server communications; limited battery
life constraints; synchronization of UAV
collaboration.

Optimizing the UAV placement and trajectory for en-
ergy efficiency; managing UAV mobility to maintain
stable communication links and ensure FL model
update consistency; managing the limited computa-
tional power and battery life of UAVs, addressing
the consensus and synchronization in collaboration
of multiple UAVs.

HAPS Communication
Networks

Limited energy resources in HAPSs; inconsis-
tent communication quality in harsh weather
conditions; HAPS mobility challenges; low
latency due to long-distance communication;
energy constraints

Improving the accuracy of channel models for HAPS
communication in harsh environments; optimizing
HAPS placement for maximum coverage and FL task
efficiency; challenges of maintaining a stable com-
munication and synchronization link between the
HAPS and ground stations or devices;

Satellite Communication
Networks

High latency, especially with geostationary
satellites in the FL updating process; lim-
ited bandwidth, unstable links between the
satellite and ground stations or edge devices
due to atmospheric conditions and satellite
movement.

Optimizing resource allocation between devices and
satellites; building robust systems to address the
FL disruptions due to satellite movement and at-
mospheric conditions; addressing the challenges of
multisatellite coordination, such as seamless handoff,
interference, synchronization, and orbits.

D2D Communication
Networks

Interference management due to overlapping
D2D communications, limited participation as
short-range links exclude distant devices, re-
ducing diversity; synchronization as the num-
ber of participating devices increases.

Optimization of resource allocation, computing
power, and FL scheduling; selection of local agents
(LAs); management of offloading ratios; CH-device
scheduling; adaptation of aggregation weights and
link selection matrices.
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5. Improving Energy Efficiency in FL Using Emerging Technologies

This section provides an in-depth look at the latest technologies designed to enhance
wireless system performance. Specifically, we highlight advancements in FL-enabled
wireless systems that leverage these emerging technologies to improve energy efficiency.

5.1. Simultaneous Wireless Information and Power Transfer

SWIPT has emerged as a vital technology in the IoT era, enabling simultaneous data
and energy transmission over a single wireless medium. This innovation benefits energy-
constrained devices by eliminating the need for separate power sources [120]. SWIPT is
becoming increasingly important in FL-enabled wireless systems, as it allows devices to
harvest energy from RF signals while simultaneously receiving control information or
updates [121]. The harvested energy supports local computations and facilitates uplink
transmissions throughout the FL process. As a result, the integration of SWIPT into FL-
enabled wireless systems has garnered significant attention in recent studies.

In [122], the use of SWIPT in IoT with FL is explored, where devices simultaneously
transmit model data and harvest energy. The study investigated the trade-off between com-
munication rounds and time, ensuring that energy harvesting offsets energy expenditure.
Additionally, SWIPT was shown to enable efficient model learning with minimal communi-
cation rounds while extending device battery life. The authors in [123] proposed the use
of SWIPT in FL to address the energy limitations of edge devices. The central parameter
server, co-located with the BS, uses SWIPT to transmit both the model and power to edge
devices, which then train local models and send updates via NOMA. Similarly, Ref. [124]
presented a SWIPT-assisted FL network and minimized long-term energy consumption
while ensuring FL convergence through dynamic resource allocation and UE scheduling.

SWIPT also provides significant benefits for FL-enabled UAV systems by addressing
energy scarcity, particularly in micro-UAV swarm networks. Studies in [125,126] tackle this
issue using SWIPT for FL, where the BS broadcasts both the model and power to UAVs,
which use the harvested energy to train and upload models. The research optimizes UAV
scheduling and resource allocation, with results showing that the proposed suboptimal
algorithm outperforms existing baselines. Furthermore, [127] introduced a UAV-based
communication model for IoT in areas without ground BSs. This model uses SWIPT to
transmit both information and energy to IoT devices, optimizing UAV trajectory, power
splitting ratio, and communication scheduling to maximize energy efficiency through DRL.

5.2. Intelligent Reflecting Surfaces

IRS is an innovative technology that is set to revolutionize wireless communica-
tion networks by enabling intelligent and adaptive control over electromagnetic wave
propagation [128,129]. IRS utilizes a reconfigurable array of metamaterial elements to dy-
namically enhance signal strength, extend network coverage, mitigate interference, and
enhance spectral efficiency, all while being energy-efficient and cost-effective. When inte-
grated with FL, IRS amplifies its capabilities, creating a synergistic framework that enables
secure, energy-efficient, and reliable communication in wireless networks [130,131]. This
combination has attracted significant attention from researchers, particularly in developing
energy-efficient FL systems supported by IRS [56,132–134].

In [132], the authors introduced a HAPS communication system that utilizes rate-
splitting multiple access and UAVs equipped with IRS as relay nodes to enhance the
performance of integrated satellite–aerial–terrestrial relay networks. To optimize system
energy efficiency, a multiobjective optimization problem was formulated, and the challeng-
ing nonconvex nature of the problem was tackled using an approach called access-free
federated deep reinforcement learning. In [133], the authors proposed a scheme combining
wireless power transfer, information transmission, and solar energy harvesting in IoT units,
supported by UAVs and IRS. They introduce a multiagent federated reinforcement learning
algorithm to optimize parameters and maximizes energy efficiency. Furthermore, in [134],
the authors investigated an indoor millimeter-wave (mmWave) downlink communica-
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tion system, where a wireless AP is supported by multiple IRSs. To adapt to the indoor
environment, they developed an energy-efficient FL framework that enables the parallel
configuration of multiple IRSs.

5.3. Nonorthogonal Multiple Access

NOMA is a technique that enhances bandwidth efficiency and interoperability in fu-
ture networks, especially for 6G IoT systems [135,136]. Unlike orthogonal multiple access,
NOMA enables multiple users to share the same time-frequency resources simultaneously,
significantly boosting wireless system performance. The integration of NOMA into FL
has demonstrated significant potential for improving FL frameworks in wireless networks,
particularly when paired with emerging approaches such as resource allocation strate-
gies [137], dynamic user selection [138], IRS [139], and CSI techniques [140]. Moreover,
with a focus on energy-efficient FL, studies in [102,141–143] have provided comprehensive
insights into implementing energy-efficient FL within NOMA networks, highlighting their
ability to significantly enhance FL performance.

In [142], the authors proposed a joint resource allocation scheme using a two-dimensional
search algorithm and an efficient bisection algorithm to minimize the total energy con-
sumption in wireless-powered FL networks utilizing NOMA. The study in [141] presented
energy minimization in IoT-based CFL by combining WPT, NOMA, and IRS. The pro-
posed method utilizes semidefinite programming and a bisection algorithm, outperforming
benchmark schemes in terms of energy efficiency. Integrating NOMA into the UAV systems
demonstrated substantial improvements in energy-efficient FL. For instance, the authors
in [143] investigated energy reduction strategies in MEC systems leveraging NOMA with
UAVs, overcoming challenges posed by dynamic 5G and beyond networks, such as fre-
quent changes in task requests and device positions that would typically increase energy
consumption with stationary edge deployments.

NOMA techniques also proved effective in satellite communications, facilitating rapid,
bandwidth-efficient model transmissions among satellites, and thus accelerating the FL
training process. In [102], the authors introduced NomaFedHAP, a novel approach for
integrating NOMA into satellite communications NOMA to speed up CFL in LEO satellites.
By utilizing HAPSs as parameter servers, the approach mitigates mitigates Doppler shifts
and optimizes model aggregation. Simulations showed that NomaFedHAP achieves faster
and more accurate CFL convergence compared with existing methods.

6. Challenges, Opportunities, and Research Directions

This section provides a comprehensive overview of the critical challenges in deploy-
ing FL over wireless systems. Based on these challenges, we identify potential research
opportunities for future advancements.

6.1. Limitation of Analyzed Designs

The energy-efficient design models in the analyzed studies rely on ideal assumptions,
such as perfect channel estimation and stable network conditions, which may not accurately
reflect real-world environments characterized by fading and mobility. The energy models
focus on computational and communication energy but exclude hardware inefficiencies
and environmental factors. Assumptions of homogeneous devices overlook the real-
world heterogeneity in device capabilities, which can impact energy consumption and
convergence. Moreover, the results derived from the considered studies lack validation
in practical deployments, where issues like hardware limitations and unexpected delays
may arise. Additionally, the trade-offs between energy efficiency and other metrics, such
as latency and accuracy, were not extensively quantified. Addressing these limitations
provides valuable directions for future work to refine energy-efficient FL frameworks.
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6.2. Channel Estimation Challenges

Channel estimation plays a crucial role in ensuring reliable communication in FL over
wireless networks. Accurate estimation of the wireless channel state is essential for effective
resource allocation, beamforming, and interference management, all of which directly influ-
ence FL performance [144]. In architectures like IRS-assisted and UAV-supported networks,
channel estimation faces additional challenges due to multihop channels and dynamic
environments. For example, IRS-assisted systems require the estimation of both direct
and indirect channels, making the process computationally demanding [145]. Similarly,
UAV mobility leads to rapid changes in channel conditions, causing outdated channel
state information. This, in turn, degrades the QoS, slows FL convergence, and significantly
increases energy consumption [146].

While numerous studies have explored enhancing channel estimation in wireless
systems using various techniques, FL-enabled wireless systems require robust and adap-
tive estimation methods that can operate under low-latency constraints. Additionally,
these methods must strike a balance between estimation accuracy and computational effi-
ciency, especially for energy-constrained devices. Therefore, a comprehensive evaluation of
channel models is necessary to understand the impact of various factors across different
wireless system architectures. Furthermore, developing channel estimation algorithms
that can withstand external disturbances will be crucial for the continued success of FL in
wireless environments.

6.3. Physical Layer Security Challenges

Physical layer security (PLS) is an emerging concern in FL over wireless networks due
to the open and shared nature of the communication medium [147]. FL training involves
frequent transmission of model updates between the central server and user devices, mak-
ing it susceptible to various eavesdropping and jamming attacks. PLS offers a promising
solution by providing perfect security without the need for complex key distribution or
encryption algorithms, thus reducing communication overhead and enhancing security
without increasing energy consumption [148,149].

Innovative PLS methods tailored for FL over wireless systems will leverage wireless
characteristics, such as secure beamforming and cooperative jamming, to safeguard FL
transmissions without compromising performance. Recent studies [150–153] have pro-
posed various methods for integrating PLS into FL systems. However, several unresolved
challenges persist in deploying PLS for FL over wireless networks. A primary challenge
lies in designing lightweight, real-time, adaptive PLS techniques capable of responding
to dynamic network conditions, such as fluctuating channel quality and varying user
participation, while maintaining the robustness and reliability of FL systems. Additionally,
balancing the overhead introduced by PLS mechanisms with the need for energy-efficient
FL operations remains a critical issue. Moreover, addressing the trade-off between ensuring
robust security and accommodating the resource constraints of edge devices, without
compromising FL training efficiency, continues to be a significant area for further research
and development.

6.4. UAV Energy Consumption Challenges

One of the most significant barriers to implementing FL in UAV communication
systems is the limited energy available to UAVs. Many studies overlook this critical issue,
often assuming that UAVs have sufficient energy for operations. However, in practice,
UAVs must carefully manage their remaining energy to ensure a safe return to base [154].
Thus, accounting for UAV energy constraints is essential for the efficient deployment of FL.

Although some studies have attempted to address this issue by using advanced
technologies like SWIPT to recharge UAVs, most fail to provide a comprehensive energy
consumption model [125,126]. These studies often neglect important practical factors such
as payload weight, flight speed, weather conditions, and temperature fluctuations, all of
which can significantly impact energy usage [155]. To effectively deploy FL with UAVs, it
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is crucial to develop more realistic and practical energy models that take these factors into
account. Addressing this gap presents a promising research direction for optimizing UAV
performance and ensuring efficient energy management in FL systems.

We have explored various aspects of energy-efficient FL in wireless networks; however,
there remain significant opportunities for further research. One promising avenue involves
the application of advanced machine learning and reinforcement learning techniques
to address complex optimization challenges in FL. For example, as highlighted in [156],
machine learning-based approaches such as linear regression and DNNs have shown
effectiveness in predictive modeling. Similarly, Ref. [157] demonstrated the potential of
hybrid frameworks that integrate metaheuristics with Q-learning to solve urban traffic light
scheduling problems. These methodologies could be adapted to develop efficient resource
allocation strategies and improve network orchestration in FL systems, particularly in
large-scale and heterogeneous network environments.

7. Conclusions

This paper provided a comprehensive review of FL concepts across various wireless
network architectures, with a particular emphasis on energy efficiency challenges. We
outlined the fundamental principles of FL architectures, including CFL and DFL, along
with their detailed implementation steps. The energy efficiency optimization problem in
FL deployment over wireless systems was examined, covering both local computation
and communication energy models. We presented an overview of wireless network archi-
tectures designed to support energy-efficient FL, focusing on networks tailored for both
CFL and DFL. We also explored emerging technologies such as SWIPT, IRS, and NOMA,
assessing their potential to enhance FL-enabled wireless networks. Moreover, integrating
hybrid technologies, such as combining SWIPT with IRS or NOMA, could significantly
boost. Enhanced cooperation between UAVs and ground infrastructure, facilitated by ro-
bust channel estimation and power control mechanisms, also has the potential to improve
FL scalability and reliability. These advancements could pave the way for a new era of
FL-enabled wireless networks. Finally, we discussed key challenges in implementing FL
over wireless networks, including channel estimation, PLS, and UAV energy consumption,
while identifying promising directions for future research to address these challenges and
optimize FL performance in wireless environments. Addressing the research challenges
and limitations of the current energy-efficient FL-enabled wireless frameworks, as dis-
cussed in this study, holds the potential to substantially enhance both the performance and
practicality of deploying FL over wireless networks.
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