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Abstract: This paper addresses the challenge of enhancing power quality in a standalone microgrid
powered by wind and battery systems. Fluctuations in wind power generation and unpredictable
electricity demand significantly impact power quality. To mitigate these issues, a control strategy
utilizing Super Twisting Sliding Mode (STSM) controllers tuned by the Hippopotamus Optimization
Algorithm (HOA) is proposed. The HOA algorithm efficiently determines optimal STSM controller
parameters, leading to improved system performance and stability. A comparative study was
conducted against PI, Fuzzy Logic controllers, and other metaheuristic optimization algorithms (PSO,
GWO, WOA). Simulation results, obtained using MATLAB/Simulink, demonstrate the superior
performance of the proposed methodology. Specifically, during a simulated abrupt load change, the
system exhibited rapid recovery with frequency reaching equilibrium, significantly faster than PI and
Fuzzy Logic controllers. Moreover, the DC link voltage remained stable with fluctuations of only 2%,
while the three-phase RMS voltages at the Point of Load Bus (PLB) maintained balanced and stable
values. These results confirm the enhanced power quality and robust operation achieved with the
proposed HOA-tuned STSM control strategy, outperforming other tested methods. The methodology
effectively manages both the energy management system and improves power quality in standalone
wind and battery-powered microgrids.

Keywords: wind system; battery storage; power quality; microgrid; super twisting sliding mode
controllers; HOA

1. Introduction

The challenges posed by climate change highlight the urgent need for a global shift
towards renewable energy sources. This transition is essential to meet the increasing
electricity demand while addressing the depletion of natural resources, global warming,
and rising electricity costs, thereby decreasing reliance on fossil fuels and minimizing
carbon emissions [1].

The utilization of wind energy has become increasingly favored, particularly because
of its plentiful nature and sustainable characteristics [2,3]. Therefore, the implementation of
Standalone Microgrid Systems (SMSs) can address numerous challenges, such as delivering
electricity to consumers, minimizing pollution, and ensuring a reliable and stable power
supply. These SMSs can utilize wind energy by employing small-scale wind turbines, which
produce electricity that is subsequently stored in batteries for later use [4]. This technology
proves to be especially beneficial in remote or off-grid locations where conventional power
sources might be inconsistent or inaccessible. The quality of electricity generated by the
Wind Power Conversion System (WPCS) can fluctuate significantly based on the wind
speed at any particular time. In conditions of strong winds, the system is capable of
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producing a substantial amount of power; however, during periods of calm winds, the
power output may be minimal or nonexistent. The inconsistency inherent in wind power
presents difficulties in depending exclusively on it for stable energy generation, as it does
not serve as a constant and dependable energy source. To address this challenge, WPCSs
are frequently integrated with energy storage systems, such as Battery Storage Units (BSUs),
to provide a more reliable and steady power supply [5–8].

In the WPCS-BSU system, power quality is affected by fluctuations in electricity
production due to the variability of weather conditions and unpredictability in electricity
demand [9]. In this context, power quality pertains to the attributes of the electricity
supply, encompassing voltage stability, frequency control, and the absence of disturbances
or interruptions [10]. Thus, to maintain overall system reliability and efficiency, power
electronics and their control systems play a significant role in enabling the system to
produce maximum power despite internal or external variations. Additionally, they are
used not only to manage power flow to ensure equilibrium within electrical systems but
also to manage frequency, voltage, and the control of active and reactive power, as well as
to address harmonics [11,12].

Many different structures and control algorithms have been developed to control
power quality. Proportional-integral (PI) control is widely used in various applications, in-
cluding wind energy systems, due to its simplicity but is not sensitive to external or internal
variations, such as wind speed turbulence and the changes in wind system parameters, that
can significantly degrade system performance [13]. For this reason, nonlinear controls have
been developed to be less sensitive to wind speed and parameter variations. In this context,
Fuzzy Logic Control (FLC) provides better performance in managing nonlinearities and
uncertainties in wind energy systems. However, its complexity in design and reliance on
well-defined rules can be challenging [14]. A sliding mode controller (SMC) has a better con-
trol response, in comparison with the other strategies, by providing a more robust response
to external disturbances [15–17]. However, it can suffer from chattering effects, which may
lead to a reduction in overall system efficiency. In response to these limitations, the Super
Twisting Sliding Mode Controller (STSMC) has been developed to enhance performance by
mitigating chattering while maintaining robust control. The STSMC operates by using a
continuous control approach, which smooths out the control actions and reduces wear on
system components. This advantage makes it particularly effective in (SMS) powered by
(WPCS) and (BSU) [18,19]. However, to optimize the performance of the (STSM) Controller,
particularly in handling the dynamic and nonlinear behavior of such systems, there is a
pressing need for properly tuned parameters.

To achieve optimal performance, it is crucial to fine-tune its parameters effectively.
Combining the STSMC with a metaheuristic algorithm provides powerful tools for solving
complex optimization problems under various operating conditions [20,21]. A metaheuris-
tic is an algorithm designed to solve approximately a wide range of hard optimization
problems without having to adapt deeply to each problem; they are nature-inspired and
based on some principles from physics, biology, or ethology [22]. Specifically, the swarm
intelligence algorithm simulates the behavior of a biological population or natural phenom-
ena, and a group of simple individuals follows specific interaction mechanisms to complete
a given complex optimization problem involving continuous and discrete variables, as
well as multi-dimensional and nonlinear challenges. Swarm intelligence algorithms exhibit
advantages such as robustness and economy [23].

Many swarm intelligence algorithms have emerged. Ref. [24] Introduces Particle
Swarm Optimization (PSO), inspired by the regularity of bird flocking behavior. The Whale
Optimization Algorithm (WOA) simulates the behaviors of whale swarming, including
encircling, pursuing, and attacking prey, to achieve optimization objectives [25,26]. The Grey
Wolf Optimization (GWO) Algorithm is inspired by the hunting behaviors of wolf packs
as they search for prey [27]. The Hippopotamus Optimization Algorithm (HOA) simulates
defense and evasion strategies against predators while performing location updates. It boasts
advantages such as high accuracy, strong local search capability, and good practicality [28].
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To achieve the optimal response of the studied microgrid control systems, the HOA
will be developed to estimate appropriate parameters for the various STSM controllers
discussed in this paper. The organization of the paper is as follows: Section 2 provides
a detailed description of the topic, while Section 3 outlines the process for estimating
the parameters of STSM controllers using HOA. Sections 4 and 5 present the detailed
mathematical modeling and proposed methodology, respectively. Section 6 includes a
small signal analysis of the system. Various results obtained from simulations are discussed
in Section 7. Finally, the conclusion and references are presented at the end of the paper.

2. Standalone Microgrid System

Figure 1 illustrates the general topology of the designed SMS; it consists of the main
following components: The WPCS includes a wind turbine that converts the kinetic energy
of the wind into electrical energy. This electrical energy is then transformed from alternating
current (AC) to direct current (DC) through a rectifier, ensuring compatibility with the DC
link. The DC link serves as a pivotal connection, allowing the WPCS to convey the energy it
generates to the BSU. The BSU is essential to the system as it retains surplus energy produced
by the wind turbine, which is utilized during periods of low wind or high demand.
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Figure 1. Standalone microgrid supplied by WPCS-BSU.

Additionally, the BSU is connected to the DC link via a bidirectional converter, facil-
itating flexible energy transfer between the WPCS and the BSU. An inverter is linked to
the DC link to supply power to AC loads, converting the stored DC power into AC power
suitable for residential or industrial applications. This enables the use of energy stored in
the BSU or generated by the wind turbine to support both three-phase and single-phase
AC loads at the Point of Load Bus (PLB), enhancing the overall efficiency and reliability of
the renewable energy system.

3. HOA-Based STSM Controller

Sliding mode control is a highly regarded control strategy that has received consid-
erable acknowledgment in the context of various nonlinear systems [19,20]. The STSM
controller is capable of resolving the chattering problems typically linked to conventional
sliding mode control, thereby facilitating smooth control [29]. The control law for this
nonlinear system is articulated in the following way.{

u = a2|e|
1
2 sgn(e) + v

.
v = a3sgn(e)

(1)

where a2 and a3 are gains, e = a1(input-reference) + differentiation of (input-reference), and
v is the sliding surface. Hence:



Energies 2024, 17, 6492 4 of 14

output = a2
√

esgn(e) +
∫

a3sgn(e)dt (2)

Figure 2 illustrates the block diagram of the STSM control system. The adjustment
of variables a1, a2, and a3 presents significant challenges when employing multiple STSM
controllers within the proposed control model. Consequently, the PSO method [30] is
employed to estimate different parameters within the STSM controller. However, HOA has
a higher significance priority than PSO to identify the best solution [27]. In the process of
developing the algorithm for the adaptive STSM controller, which involves the selection
of design parameter values for the sliding mode control algorithm, an HOA approach is
utilized and executed by Equations (3)–(20).
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The function f (x) is influenced by the position of the STSM controller utilized in the
proposed control methodology:

f =
∫ T

0
t(|input − re f erence|)dt (3)

The HOA algorithm is a population-based optimization method that represents basic
mathematical equations using the following expressions:

Hi = BL
j + k ×

(
BU

j − BL
j

)
; i = 1, 2, . . . N; j = 1, 2, 3 . . . M (4)

H =



H1
...

Hi
...

HN


N×M

=



h1,1 · · · h1,j · · · h1,M
...

. . .
...
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...
hN,1 · · · hN,j · · · hN,M


N×M

(5)

The hippopotamus group has three behavioral procedures, as outlined previously,
which are mathematically represented in the equations below:

Behavior-1: The current location of the hippos in the river or pond has been revised
(Exploration): The leading Hippopotamus is ascertained through the objective function
value iteration. Normally, hippos have a tendency to congregate near each other. The domi-
nant male hippos take on the role of protecting the herd and their territory from potential
threats. Several female hippos are situated near the male hippos. The male hippopotamus
members positions within the lake or pond can be mathematically represented by the
following equations:

Hmale
i = hij + a1·

(
Dh − aij

2

)
(6)

b =



a3 ×
→
k 1 + (≈ δ1)

2 ×
→
k 2 − 1

→
k 3

a2 ×
→
k 4 + (≈ δ1)

→
k 5

(7)
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H f emale
i =


hij + b1·

(
Dh − aij

3 ·Ri

)
exp

(−t
τ

)
> 0.6, else

hij + b2·(Ri − Dh)k6 > 0.5, else
BL

j + k7

(
BU

j − BL
j

) (8)

Hi =

{
Hmale

i × Fmale
i < Fi; else

Hi
(9)

Hi =

{
H f emale

i × F f emale
i < Fi; else

Hi
(10)

Behavior-2: Defense system of Hippopotamus against predators: The safety and
security of hippopotamuses is a major contributing factor to their tendency to live in herds.
Hippopotamuses primarily defend themselves by quickly turning towards the predator
and emitting loud vocalizations to discourage the predator from getting too close. At this
stage, Hippopotamuses may demonstrate a behavior of approaching the predator in order
to make it retreat, effectively fending off the potential threat. Equations provided illustrate
the location of the predator within the search space:

Pj = BL
j +

→
k 8

(
BU

j − BU
j

)
; j = 1, 2 . . . . . . M (11)

→
G =

∣∣Pj − Hi,j
∣∣ (12)

In this instance, the Hippopotamus shifts its position toward the predator, albeit with
a restricted range of motion. The aim is to alert the predator or intruder to its presence in
its territory:

HP
i =


→
RL ⊕ Pj +

(
f

λ×cos(2π j)

)
·

FPj
→
G

< Fi
→
RL ⊕ Pj +

(
f

λ×cos(2π j)

)
·

FPj

2×
→
G+

→
k 9

≥ Fi

(13)

Hi =

{
H

Pj
i × F

Pj
i < Fi

Hi × F
Pj
i ≥ Fi

(14)

The Levy distribution is employed to account for abrupt shifts in the predator’s
location when launching an attack on the Hippopotamus. The mathematical formula for
the stochastic motion of Lévy movement is derived as follows:

Levy(η) =

0.05 × ω ×

 Γ(1+η) sin( πη
2 )

Γ
(

1+η
2

)
η×2

η−1
2


|η|

1
η

1
η

(15)

Behavior-3: Escaping the nature of the Hippopotamus from the Predator: The Hip-
popotamus exhibits a different behavior when faced with a predator, such as when it
encounters a group of predators or is unable to fend off the predator using its defensive
tactics. The approach results in the Hippopotamus discovering a secure spot near its
present whereabouts, and incorporating this conduct during the third behavior of the HOA
improves its capacity for local search exploitation:

localB
L
j =

BL
j

γ
; localB

U
j =

BU
j

γ
; γ − 1, 2, . . . τ (16)

H
Ej
i = Hij + k10

(
localB

L
j + ψ

(
localB

U
j − localB

L
j

))
(17)
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ψ =


2 ×

→
k 11 − 1

k12
k13

(18)

Hi =

{
H

Ej
i × F

Ej
i < Fi

Hi × F
Ej
i ≥ Fi

(19)

The best solution of the above procedure from behavior 1 to 3 can be replaced as the
best error signal (e) by the below expression:

ei =

{
Hi × Fi < ξ; else;
Hi,

(20)

The procedure will continue to be executed until the optimal values of ai are achieved.
The respective flowchart of the proposed algorithm is shown in Figure 3.
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4. Mathematical Modeling of STSM-Based Proposed System

Considered internal parameters of the microgrid are shown in Table 1 as follows:

Table 1. Microgrid Parameters Notations.

Microgrid Parameters Notations

Internal resistance of wind MPPT (boost converter) Rw
Inductor of wind MPPT Lw

Duty cycle of MPPT Dw
Input voltage of MPPT Vw

Current flowing through MPPT Iw
Battery voltage Vb

Inductor of bidirectional converter Lb
Resistance of bidirectional converter Rb
Duty cycle of bidirectional converter D

Current flowing through bidirectional converter Ib
Output voltage (DC link voltage) Vdc

The generalized layout of the wind-battery system with only their respective convert-
ers is shown in Figure 4.
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The following basic equations are obtained by using KVL law:

Vw = Lw
dIw

dt
+ Rw Iw + (1 − Dw)Vdc (21)

Vb = Lb
dIb
dt

+ Rb Ib + (1 − D)Vdc (22)

However, the battery current is in bidirectional flow, and also the duty cycle can be
represented by:

D =

{
1 i f Ib > 0; Qb ON
0 i f Ib < 0; Qa ON

(23)

In an ideal case, input and output powers must be balanced; hence:

Pw + Pbat = Pload (24)

Vw Iw,re f + Vb Ib,re f = Vdc Idc,re f (25)

Hence:

Idc,re f = λ

(
Vw Iw,re f + Vb Ib,re f

)
Vdc

(26)

where ‘λ’ is the ideality factor, which shows the power converter’s losses.
Considering errors of the system by (main errors signals of DC side controllers).

e1 = Iw − Iw,re f (27)

e2 = Ib − Ib,re f (28)

A similar analysis is also conducted for other STSM controllers.
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The change in error is also considered,

.
e1 =

.
Iw −

.
Iw,re f (29)

.
e2 =

.
Ib −

.
Ib,re f (30)

Therefore:
.
e1 =

Vw

Lw
− Rw

Lw
Iw − (1 − Dw)

Lw
Vdc −

.
Iw,re f (31)

.
e2 =

Vb
Lb

− Rb
Lb

Ib −
(1 − D)

Lb
Vdc −

.
Ib,re f (32)

A similar approach is also conducted for other STSM controllers based on their
error signals.

5. Proposed Control Methodologies
5.1. MPPT Control of WPCS

Figure 5 presents a diagrammatic representation of the proposed control strategy for
the MPPT of WPCS.
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The wind turbine’s speed signal, essential for the effective execution of MPPT in
WPCS [5], is frequently difficult to acquire and susceptible to errors in current method-
ologies. Therefore, a P&O method is employed that necessitates only voltage and current
signals, which are derived from the DC link and the current injected into the DC link from
the WPSC (i.e., Iw). To minimize the number of sensors required, the approach is executed
by focusing on the voltage at the DC link (i.e., Vdc) rather than the voltage across the
three-phase diode rectifier. The application of the P&O algorithm enables the system to
follow the reference current, which varies with wind speed, to optimize power genera-
tion. The P&O approach for WPCS is derived from the fundamental equation presented
below [31]:

Ik+1
w = Ik

w + ∆Iw × sign
(

dPw

dIw

)
(33)

The output signal generated by the P&O algorithm is subsequently compared with
the actual wind current (Iw). The HOA-STSM controller-1 will receive the error signal
to produce the necessary pulses for switch Q1, which is utilized in the MPPT circuit of
the WPCS.

5.2. Control of Bidirectional Circuit

The bidirectional DC–DC converter control system (Figure 6) employs a multi-loop
architecture incorporating STSM controllers to manage efficient and safe energy transfer
between the BSU and the external power source or load. The system’s operation is heavily
dependent on the switching states of transistors Qa and Qb, which determine the direction
and magnitude of current flow. A crucial element is the consideration of the battery’s state
of charge (SoC) to prevent overcharging or excessive discharge. An “estimating oscillating
component” block enhances robustness by compensating for voltage fluctuations. Three
STSM controllers work in tandem, utilizing feedback from battery current (Ib) and DC link
voltage (Vdc) to precisely regulate the charging and discharging currents while considering
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the SoC. These controllers generate PWM signals to control the converter’s switches,
ensuring optimal energy management and system stability.
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5.3. Control of Inverter

Figure 7 depicts the proposed control strategy for the three-phase inverter within
the standalone microgrid. The system continuously monitors the RMS voltage (Vrms)
and frequency (F) at the Point of Load Bus (PLB), comparing these measurements to their
desired setpoints. Any deviation results in error signals that are processed by super-twisting
sliding mode (STSM) controllers (Controllers 5 and 6). These controllers generate reference
direct (idc*) and quadrature (iq*) currents, which are used to regulate the actual direct
(idc) and quadrature (iq) currents flowing in the inverter. This regulation is achieved by
manipulating the Sinusoidal Pulse Width Modulation (SPWM) signals (P1–P6) supplied
to the inverter’s switching elements. This control approach employs the robust nature of
STSM controllers to ensure accurate tracking of the desired voltage and frequency at the
PLB, maintaining stable system operation despite variations in load and renewable energy
generation. The rapid response of the controllers makes the system resilient to dynamic
changes inherent in microgrids with renewable energy sources.
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6. Simulation Results

Figure 8 shows the overall system design of the studied standalone microgrid (SMS),
implemented in MATLAB/Simulink. Various input signals from sensors (shown in green)
are used by the controllers. These signals are converted to digital form and sent as output
signals to the converters (shown in red). This section presents the results of a series of tests.
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6.1. Comparison of STSM with PI and FLC Controllers

The SMS undergoes testing at a load variation of 200% at PLB, utilizing STSM, Fuzzy,
and PI controllers. The load is introduced at 1.5 s and removed at 1.65 s. Throughout this
time frame, an analysis of the frequency response among STSM, Fuzzy, and PI controllers
is conducted and illustrated in Figure 9 with a zoomed-in view. The frequency response
achieved with the STSM controllers is stable and reaches equilibrium rapidly in comparison
with the other controllers. Consequently, additional tests are performed utilizing the
proposed control strategy with STSM controllers.
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6.2. Response Under Load Change

A complete change in load is observed at t = 1.5 s, with the release occurring at
t = 2 s. Throughout this timeframe, the proposed control methodology effectively stabilized
the voltages at both the DC link and the Power Load Balance (PLB). Figure 10a presents a
zoomed-in view of the voltage at the DC link, showcasing small fluctuations of approx-
imately 2%. This minor variability highlights the effectiveness of the developed energy
management system (EMS) through the proposed control methodology.
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Figure 10. (a) Response of voltage at DC link; (b) Three phase RMS voltages at PLB.

The graph in Figure 10b offers a detailed perception of the three-phase RMS voltages
at the PLB, particularly during a dynamic load event. While the overall voltage levels
remain within the nominal operating range, this zoomed-in view reveals rapid fluctuations
in the RMS voltage of each phase during the transient load event (1.5–2 s). Although these
fluctuations are more pronounced during the load change, the system demonstrates a quick
recovery, maintaining stability within a remarkably small fluctuation range.

6.3. Response Under Change in Wind Speed

The SMS response is evaluated in relation to variations in wind speed. The wind
speed is altered at t = 2.0 s, while the load is simultaneously increased at t = 1.75 s. In
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the event of a variation in wind speed, the suggested control methodology for MPPT
effectively monitors the maximum power, as illustrated in Figure 11a, which also presents
the response of torques. Therefore, the proposed control of MPPT depicted in Figure 5 is
working effectively under rapid changes in wind speed. The respective powers of the load,
BSU, and WPCS are illustrated in Figure 11b. From this figure, it is observed that the EMS
helps the BSU to respond according to the power balance between generation and load at
the PLB.
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6.4. Performance of HOA

The response of the error signal from Vrms is considered for comparison among pro-
posed HOA-STSM, PSO-STSM, STSM (simple tuned STSM control), and the conventional
PI controller. A step change of 75% load is applied at t = 7.50 s at PLB for testing in this
case. The error signal response (expressed as a percentage of the normalized value derived
from the equation below) is illustrated in Figure 12. By observing this figure, the response
has improved by using the proposed method with HOA. Error is very nominal in the case
of optimized parameters by using HOA.

% of normalized Vrms =
V∗

rms − Vrms

V∗
rms

× 100 (34)
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6.5. Convergence with HOA

Various parameters of the STSM controller are obtained by using Grey Wolf Optimiza-
tion (GWO), Whale Optimization Algorithm (WOA), and HOA. The convergence of the
respective algorithms is depicted in Figure 13, and it was found that the HOA had the best
response as compared with others. This implies the response of the controller is improved
by the proposed STSM-HOA method.



Energies 2024, 17, 6492 12 of 14

Energies 2024, 17, x FOR PEER REVIEW 13 of 15 
 

 

Time (s)

er
ro

r 
o
f 

V
rm

s 
(%

n
o
rm

al
iz

ed
)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

7.50 7.52 7.54 7.56 7.58 7.60 7.62 7.64

With PI

STSM+PSO

With only STSM

STSM+HOA

 

Figure 12. Response of error signal. 

6.5. Convergence with HOA 

Various parameters of the STSM controller are obtained by using Grey Wolf Optimi-

zation (GWO), Whale Optimization Algorithm (WOA), and HOA. The convergence of the 

respective algorithms is depicted in Figure 13, and it was found that the HOA had the best 

response as compared with others. This implies the response of the controller is improved 

by the proposed STSM-HOA method. 

10-2

100

102

104

106

108

1010

Iteration

B
es

t 
sc

o
re

 o
b

ta
in

ed
 s

o
 f

ar

 

 

50 100 150 200 250 300 350 400 450 500

WOA

HOA

GWO

 

Figure 13. Convergence of HOA over GWO and WOA. 

6.6. Responses with Small Change in Reference 

Response for small changes in reference to the Vdc is also carried out. Small changes 

for decreasing and increasing change in Vdc are applied at t = 3.0 and 4.0 s. The corre-

sponding response for the actual DC link voltage is depicted in Figure 14. It can be seen 

that a stable response is observed, and the actual DC link voltage is fast enough to follow 

its reference value. 

Time (s)

Δ
 V

d
c 

(v
)

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75
-2.0

2.0

Actual

Reference

 

Figure 14. Response of change in DC link voltage. 

  

Figure 13. Convergence of HOA over GWO and WOA.

6.6. Responses with Small Change in Reference

Response for small changes in reference to the Vdc is also carried out. Small changes for
decreasing and increasing change in Vdc are applied at t = 3.0 and 4.0 s. The corresponding
response for the actual DC link voltage is depicted in Figure 14. It can be seen that a
stable response is observed, and the actual DC link voltage is fast enough to follow its
reference value.
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7. Conclusions

This study presented a novel control strategy for enhancing power quality in a stan-
dalone microgrid powered by wind and battery systems. The proposed approach employed
Super-Twisting Sliding Mode Controllers with parameters optimized using the Hippopota-
mus Optimization Algorithm. Simulation results, obtained using MATLAB/Simulink,
demonstrated the effectiveness of this method in maintaining stable DC link voltage and
balanced three-phase RMS voltages at the Point of Load Bus, even under significant load
variations. A comparative analysis against PI, Fuzzy Logic controllers, and other meta-
heuristic algorithms (PSO, GWO, WOA) revealed the superior performance of the proposed
HOA-STSMC approach in terms of speed of response and stability. This superior perfor-
mance was attributed to the HOA’s efficient parameter optimization and the STSMC’s
inherent robustness to disturbances.

Future work will focus on several key areas; a comprehensive small-signal stability
analysis will be conducted to rigorously assess the system’s dynamic behavior and stability
margins under various operating conditions. Moreover, exploring different metaheuristic
algorithms and their potential for improving parameter optimization for various load
profiles will be investigated to further enhance the performance and robustness of the
proposed control methodology.
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