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Abstract: The asymmetric design of hairpin windings is known as a method for reducing AC losses
in electric motors, especially at high frequencies. However, the design of the asymmetric winding
is very critical to obtaining the best benefit regarding the efficiency and the thermal performance
of the motor. Compared to the state-of-the-art in this paper, deep investigations are carried out to
obtain the optimum design of the asymmetric hairpin windings while still employing a conventional
manufacturing method. An analytical model is developed to speed up the investigation process, and
the results of the analytical model are validated with a finite element method (FEM) model. The
conclusions from the analytical investigation are considered in the design of an electric vehicle (EV)
motor. The performance of the motor is studied for two different driving profiles to validate the rules
of the asymmetric windings design and check the degree of dependency of the design of asymmetric
windings on the application. It is proved that using asymmetric design reduces motor losses and
improves thermal performance.

Keywords: AC losses; electric vehicles; hairpin windings design; resistance factor; traction motors

1. Introduction

Hairpin windings in AC electric motors have a lot of advantages that lead to an
improvement in the performance of electric machines. Compared to the traditional round
stranded wires, it is characterized by a higher fill factor [1], higher torque and power
density [2], better heat dissipation capability [3], shorter-end windings, which lead to a
compact structure, lower DC copper losses due to the greater cross-section area, and the
possibility of large-scale automatic production [4].

One of the main problems related to hairpin windings is the uneven current density
distribution and high AC losses, especially at high frequencies, resulting from the skin
effect and proximity effect [5]. These AC losses cause a decrease in the output power under
high-speed (high-frequency) operation [6]. Also, the AC losses cause a difference in value
between the DC resistance and the AC resistance of the conductor. As a result, the ratio of
the AC resistance to the DC resistance, which is called the resistance factor, can be used to
judge the AC losses [7].

Several approaches have been used in order to mitigate the effect of the eddy current
losses in hairpin windings. One of the simplest approaches is leaving a space near the
slot opening, which is not practical from the point of view of compact design [8]. For the
best use of the space near the slot opening, it is advised that using a water jacket inside
the slot provides a better cooling option compared to using a housing water jacket [9].
Using this technique, the cooling fluid becomes so close to the conductors and can directly
cool them. From all the possible arrangements for the slot water jacket, it is proved that
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using the water jacket near the slot opening gives the best performance [10]. In this case,
the slot water jacket near the slot opening helps partly in the cooling down process of the
rotor. Consequently, this decreases the AC losses, reduces the need for high-temperature
insulation material, increases the power density, improves the performance of the motor,
and increases the efficiency. The challenge related to this method is the reduction in the fill
factor [9].

Another approach is increasing the number of conductors per slot [11]. This leads to
fewer losses, especially at high frequencies. However, it results in a less robust structure
because of the increased number of welded points [12].

Another is using a different material for the winding. As usual, the use of copper
for its low resistivity provides high efficiency for traditional winding, as it decreases the
DC losses. The strands of the conventional winding mitigate AC losses, which is not the
condition of using hairpin winding. As a solution, using a material with higher resistivity
would result in the mitigation of AC losses, but it increases the DC losses. A compromise
must be fulfilled to keep the same performance or improve it [13]. In [14], it is found that
the dimensions of the slot and the construction of the machine affect the level of benefit
from using aluminum as an alternative to copper. As a result, care must be taken during
the design and manufacturing to use aluminum as a sustainable alternative [15].

Another effective approach is using parallel paths by dividing the conductors near
the slot opening in sub-conductors and applying transposition [2]. Conventional hairpin
windings are compared to hairpin windings with parallel paths, and it is proved that the
use of parallel paths, also called segmented hairpin windings, provides more uniform
current density distribution, which leads to lower losses [16]. However, this method also
leads to a high number of welded points.

Another approach is using asymmetric conductors with a lower cross-section area near
the slot opening and a bigger cross-section area near the yoke [17]. Using an asymmetric
hairpin winding reduces the losses at high frequencies and increases the peak output
power [18], but the effect over the whole range of operation needs to be investigated as
there is a crossover frequency. For any frequency lower than this frequency, the asymmetric
bar winding performance will result in more losses than the symmetric bar winding. In [18],
a genetic algorithm is used to find the optimum height of each conductor to minimize the
losses, which results in various heights for each conductor. The problem related to this idea
is the difficulty of manufacturing and the difficulty of application of the winding rules,
which will be only applicable using 3D printing [19]. In [20], a height reduction of 20% is
proposed to be the best option to offer fewer losses around base speed. However, it is not
the best option for other speeds. Also, the investigation was applied to the case of 4 layers
per slot and for one machine with specific dimensions.

In this paper, a deeper investigation is carried out for windings that consist of hairpins
with two different geometries in the same slots. This ensures conventional manufacturing of
hairpins in contrast to the [18,19], which need 3D-printed windings. This paper, compared
to previous work from the literature, investigates how to choose the percentage of height
reduction and check the validity of the concept for different dimensions, different numbers
of layers per slot, and different applications. The investigation is fulfilled using a modified
analytical model to obtain a fast indication of the loss’s tendency. The results of the
analytical model are validated using finite element (FE) analysis. The analytical model is
developed to avoid the problem of long consumed time by the FE simulation to calculate
the results at only one frequency. The same approach of using asymmetric hairpin winding
is applied to an interior permanent magnet (IPM) EV motor to consider all the phenomena
within the machine, such as saturation and the effect of the PM field. To check the validity
of the analytical model, the conclusions of the analytical model are considered in the design
of the full motor. A thermal study is carried out to investigate the effect of using asymmetric
winding on the reduction in the losses and the hotspot temperature of the motor over two
different drive cycles.
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2. Basic Analytical Model

The AC losses become a dominant cause of losses at high frequencies due to the
presence of skin effect and proximity effect. The analytical model can efficiently calculate
losses over a wide range of frequencies. Figure 1 shows an example of one conductor in an
open slot, but the same calculations are extended to include several numbers of conductors
within the slot and with different sizes. The difference between the value of the AC losses
and the value of the DC losses is an indication of the effect of increasing the frequency on
the performance of the motor. The resistance factor is a good measure to judge AC losses.
It is a unitless factor that is the ratio between the AC losses and the DC losses [7]:

Kr =
PAC
PDC

=
RAC
RDC

(1)

where PAC and PDC are the AC power losses (W) at any specific frequency and DC power
losses (W) at frequency zero, respectively. RAC and RDC are the AC resistance (Ω) and DC
resistance (Ω), respectively. The DC power can be expressed as follows:

PDC = RDC I2 =
l

σcbchc
I2 (2)

where I is the current passing through the conductor (A), σc is the electric conductivity
(S/m), l is the length of the conductor (m), bc is the width of the conductor (m), hc is the
height of the conductor (m) and d is the slot depth (m) as shown in Figure 1. The AC power
can be expressed as follows:

PAC =
bcl
σc

∫ hc

0
J.J∗ dy (3)

where J is the current density (A/m2) and J∗ is the complex conjugate of the current
density. J can have the following expression:

J = C1e(1+j)αy + C2e−(1+j)αy (4)

where C1 and C2 are integration constants that are determined by the boundary condi-
tions, and α is identified as the depth of penetration that can be expressed using the
following expression:

α =

√
1
2

ωµ0σc
bc

b
(5)

C1 = C2 =
jωµ0σc

(1 + j)bα
(
e(1+j)αhc − e−(1+j)αhc

) (6)

where µ0 is the permeability of vacuum, 4π × 10−7(H/m) and ω is the angular frequency
(rad/s). b is the width of the slot (m). Using (1)–(3) the resistance factor can be identified as
follows [16]:

Kr =
b2

c hc

I2

∫ hc

0
J.J∗ dy (7)

After substitution from (4)–(6) into (7), the resistance factor can be expressed as follows:

Kr = 4α2hc ∗
(

−j
(1+j)(e(1+j)α hc−e−(1+j)α hc)

)
∗
(

j
(1−j)(e(1−j)α hc−e−(1−j)α hc)

)
∗
∫ hc

0

(
e2αy + e+2jαy + e−2jαy + e−2αy)dy

(8)
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Figure 1. One slot with one conductor.

3. Principles of Asymmetric Hairpin Winding

The AC losses are maximum in the layer near the slot opening and decrease in the
layers on the way to the yoke. For symmetric hairpin winding with total number of layers
per slot ( L), all the layers have the same height (h c). Reducing the conductor height
near the slot opening would result in a reduction in the AC losses in these conductors.
The previous procedure would decrease the power losses of the motor. The condition for
asymmetric hairpin windings is that a number of layers (Lt) will have reduced height (ht)
and a number of layers (Lb) will have increased height (hb). The number of hairpins with
reduced height is chosen according to a rule and two objectives. The rule is keeping the
same fill factor of the slot, so the width of the conductors will not be changed, but the
change will be only with the heights, ensuring the same total cross-sectional area (A cT) of
the conducting material as follows:

AcT = L ∗ hc ∗ bc (9)

AcT = bc ∗ ((Lt ∗ ht) + (Lb ∗ hb)) (10)

The two objectives are reducing the losses in the windings and keeping manufacturing
complexity at a minimum [20].

According to [20], the heights of the hairpins that are near the slot opening will be
decreased by x% and the height of the rest of the hairpins will be increased by x%. Figure 2
shows how the principles of asymmetric hairpin windings would be applied when the slot
contains different numbers of layers. The equations for the top and bottom layers that are
used to apply asymmetric hairpin winding are listed in Table 1, which shows the rules that
apply to each number of layers per slot.

Table 1. Application of asymmetric hairpins for different numbers of layers.

L Lt Equation for ht Equation for hb

4 2 (1 − x) hc (1 + x) hc

6
2 (1 − x) hc (1 + (x/2)) hc

4 (1 − (x/2)) hc (1 + x) hc

8

2 (1 − x) hc (1 + (x/3)) hc

4 (1 − x) hc (1 + x) hc

6 (1 − (x/3)) hc (1 + x) hc
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layers, Lt = 4.

4. Analytical Investigation for Each Number of Layers

Several investigations are needed to find the optimum height reduction for each
number of layers per slot. They are introduced in this section.

4.1. Assumptions for the Computation of Optimal Height for Each Layer Group

The AC power losses and the resistance factor are calculated analytically for three
cases of the number of layers under different values of height reduction to choose the best
value. The total cross-sectional area within the slot is the same for all the cases; the layers
within the slot are assigned to the same phase, which is the worst-case condition from the
point of view of losses, and the same current density is guaranteed for all cases [21]. So, the
DC power losses will be the same in all cases. For 4-layer winding, 150 A will be passed in
the winding; for 6-layer winding, 100 A will be passed, and for 8-layer winding, 75 A will
be passed. Note that the resistance factor is not affected by the value of the current, but the
power losses are affected as in (3) and (7). The basic parameters of conductor width and
slot width for all cases of number of layers are introduced in Table 2.

Table 2. Base Parameters for All Cases.

Parameter bc b bc/b d Total hc

Value 5 mm 6.1 mm 0.82 21 mm 12 mm

4.2. The Optimum Height for Each Number of Layers
4.2.1. Four Layers per Slot

The values of ht and hb for each value of x% are calculated according to the equations
of Table 1. The power losses per slot ( PAC) for a 4-layer winding are shown in Figure 3a.
The results of the analytical model are validated at several points with the finite element
method (FEM) using Ansys Maxwell. 2022. The third curve for each case of x% is the
interpolation (Intrpl) of the FEM results. Different values of height reduction x% are
introduced in Figure 3b. It can be noticed that the increase in x% leads to a decrease in the
resistance factor (Kr) at high frequencies. However, there is a crossover frequency. Below
this frequency, the increase in x% leads to an increase in the power losses, which leads to
an increase in Kr. From the curves of x = 35% and x = 40%, it can be observed that for
frequencies > 730 Hz, x = 40% results in lower values of Kr. While for frequencies < 730 Hz,
x = 40% results in higher values of Kr than in the case of x = 35% as shown in Figure 4a.
The same can be observed in Figure 4b for x = 40% and x = 45% at f = 998 Hz. Which
means that for operation below 998 Hz, the use of asymmetric winding with x = 45%
results in more losses.
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Figure 4. Zoom in to show the crossover frequency for (a) x = 35% and x = 40%; (b) x = 40% and
x = 45%.

The reduction in the loss while using asymmetric windings can be analytically inter-
preted as in Figure 5 for a frequency of 1500 Hz. The blue curve in Figure 5a shows the
tendency of the current density distribution to nonuniformity towards the slot opening
because of the increasing effect of skin and proximity effect. Where the leakage flux around
the bottom part of the slot is higher than the leakage flux around the top of the slot, as the
first passes easily through the iron. The use of the reduced height (ht) for the two top layers
results in a reduction in the current uneven distribution, which leads to a reduction in the
losses as in (3). The reduction in the value of the resistance factor for the two top layers
results in a reduction in the resistance factor for the slot, as in Figure 5b.
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A certain value of x% = xm% for each frequency results in minimum losses. The
power losses for symmetric design ( Psym

)
at x = 0, height reduction for minimum losses

( xm%), the minimum power losses ( Pmin) at xm%, and the percentage decrease in losses
(% Pdecrease) at xm% for some values of frequency are introduced in Table 3. It is proved
that there is no specific value of x% that will result in the same percentage decrease in
losses for the whole frequency range. The percentage change in losses over the whole
frequency range for some values of x% compared to the symmetric (x = 0%) is shown in
Figure 6. The positive value of the percentage means a decrease in the losses. The choice of
x% according to this result will depend on the application. If the motor will be used in a
race car when very high speeds and high frequencies are required all the time, then higher
values of x% will be the best choice. If the motor will be used within a normal city car,
then lower values of x% will result in a good decrease in losses over the whole frequency
range. The negative value of the percentage decrease in losses means that at this frequency,
x% results in an increase in the losses, so care must be taken in the determination of x%,
otherwise choosing x = 45% for a city car will increase the losses.

Table 3. Minimum Power Losses at Optimum Height Reduction for Each Value of Frequency for
4-Layer Winding.

F (Hz) Psym (W) xm% Pmin (W) %Pdecrease

50 52.37 1% 52.36 0.02 %

100 54.3 5% 54.2 0.26%

500 114.7 33% 91.9 19.87%

1000 284.1 51% 164.3 42.17%

1500 515.1 62% 222.7 56.77%

4.2.2. Six Layers per Slot

The same analysis that is performed for a 4-layer winding will be repeated in this
section for a 6-layer winding to investigate the effect of the number of layers on losses. The
values of ht and hb for each value of x% are calculated according to the equations of Table 1,
but Lt should be chosen first to decrease the losses. Therefore, the comparison between
the two values of Lt is presented in Figure 7a for x = 10% and x = 20%. It can be noticed
that the use of two top layers with reduced height results in minor losses. To generalize
the rule, the same comparison is performed for different dimensions with increased height
and decreased width, as shown in Figure 7b, and the same conclusion is obtained. The
equations related to Lt = 2 from Table 1 are used. The analytically calculated Kr for each
case of x% over the range of operating frequency from 0 to 1500 Hz is shown in Figure 8.
It can be noted that after x = 35%, the decrease in the losses is not noticeable at high
frequencies, but on the contrary, the losses are increased at low frequencies.
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and the effect of each value over the whole frequency range is studied as shown in Figure 

9. The positive sign of the percentage means a decrease in the losses, and the negative sign 

means an increase. For a specific 𝑥%, the decrease in losses for 6-layer winding is lower 
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Figure 8. Resistance factor (Kr) for 6-layer winding at different values of height reduction ( x%).

For each frequency, there is a specific percentage of height reduction at which the
power losses become minimal, as described in Table 4. The value of x% that causes
minimum losses at one specific frequency will not cause minimum losses for the other
frequencies. This is the same as concluded for 4-layer winding, but with lower values for
xm% here and lower impact on the power losses decrease. Some values of x% are chosen,
and the effect of each value over the whole frequency range is studied as shown in Figure 9.
The positive sign of the percentage means a decrease in the losses, and the negative sign
means an increase. For a specific x%, the decrease in losses for 6-layer winding is lower
than for 4-layer winding. Also, the frequency at which the losses start to increase is higher
for 6-layer winding. This means that a high value of x% has a negative impact on the losses
for low frequencies. To choose a specific value of x% for the design, two factors must be
considered: the value of the loss reduction and the targeted application.

Table 4. Minimum Power Losses at Optimum Height Reduction for Each Value of Frequency for
6-Layer Winding.

F (Hz) Psym (W) xm% Pmin (W) %Pdecrease

50 52.01 0% 52.01 0%

100 52.88 2.5% 52.85 0.06%

500 80.55 26% 74.29 7.78%

1000 165.10 37% 131.20 20.53%

1500 299.9 43% 216.45 27.83%
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Figure 9. Percentage change in power losses for each value of height reduction ( x%) for 6-layer winding.

4.2.3. Eight Layers per Slot

As previously carried out for 4-layer and 6-layer windings, the same study is carried
out for 8-layer windings. It is found from Figure 10 that reducing the height of the top
4 layers of the 8-layer winding results in fewer losses. The equations related to Lt = 4 from
Table 1 are used for the calculations of ht and hb. The analytically calculated Kr for each
case of x% is shown in Figure 11a. The percentage change in power losses for some values
of x% is shown in Figure 11b. It can be noticed that increasing the number of layers per
slot results in a shift of the curves of the percentage decrease in the losses to the right. This
means more frequencies under an increase in the losses.

From the comparison of the three cases of the number of layers, hc decreases with the
increase in the number of layers. This results in a decrease in Kr as shown in Figure 12. It
can be concluded that the lower the number of layers per slot, the higher the value of x%
that should be chosen to guarantee a decrease in the losses over the whole frequency range.
It can be observed that using 4-layer winding with x = 30% leads to close or lower values
of Kr compared to 6-layer winding. That results in a decrease in the losses with a reduction
in the welded points, leading to higher reliability.
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(b) f = 500 Hz; (c) f = 1000 Hz; (d) f = 1500 Hz.

5. Parametric Study of All the Dimensions and the Effect on
Height Reduction

In this section, a parametric study of all the dimensions with the effect on height
reduction is carried out. The width of the slot (b), the width of the conductor (bc) and the
height of the conductor (hc) are changed. The analysis is introduced for a 4-layer winding,
but it is the same for a 6-layer and 8-layer winding.

5.1. Changing Conductor and Slot Width

Only bc and b are changed in Table 5, but all the other parameters are still the same.
Decreasing the conductor width to slot width ratio leads to a decrease in Kr as shown in
Figure 13a. In general, increasing the conductor width while keeping the same current
leads to a decrease in the power losses starting from DC power losses because of increasing
the area of the conductor. In this analysis the slot width is changed as well. The percentage
decrease in losses is calculated at x = 10% and x = 20% for each width value as shown
in Figure 13b. Despite the difference in the widths, the percentage decrease in losses is so
close for each height reduction. It can be found that the percentage decrease in the losses is
approximately independent of the current density.

Table 5. The Changed Values of bc and b.

Parameter bc b bc/b

Case 1 10 mm 11.1 mm 0.90

Case 2 5 mm 6.1 mm 0.82

Case 3 3 mm 4.1 mm 0.73
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5.2. Changing Conductor Height and Width and Slot Width 
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power losses are kept the same for each case by changing the current. As shown in Figure 

14, the change in the height results in a major difference in the power losses. The percent-

age decrease in losses differs massively because of the change in the value of the height as 

shown in Figure 15. It can be concluded that the change in the width has a minor effect on 

the percentage decrease in the losses, while changing the height has the major effect. Also, 

for all the widths and heights for a specific value of 𝑥%, there is a maximum value of 

percentage reduction in losses that they all reach but at different frequencies. 

  

Figure 13. For various values of b and bc: (a) resistance factor (Kr) at x = 0; (b) percentage decrease
in power losses at x = 10% and x = 20%.

5.2. Changing Conductor Height and Width and Slot Width

In this investigation, the bc, b, and hc form Figure 1 are changed. The initial DC power
losses are kept the same for each case by changing the current. As shown in Figure 14,
the change in the height results in a major difference in the power losses. The percentage
decrease in losses differs massively because of the change in the value of the height as
shown in Figure 15. It can be concluded that the change in the width has a minor effect
on the percentage decrease in the losses, while changing the height has the major effect.
Also, for all the widths and heights for a specific value of x%, there is a maximum value of
percentage reduction in losses that they all reach but at different frequencies.
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5.3. Changing All Dimensions but with the Same Conductor Cross-Sectional Area

In this section, bc and b are changed. The current is the same, and the cross-sectional
area of each conductor is kept the same by changing the hc as declared in Table 6. From
Figure 16, it is concluded that the small value of the ratio hc/bc results in lower losses,
especially at high frequencies.

Table 6. The Changed Values of bc and b Keeping the Same Conductor Cross Section Area.

Parameter bc b bc/b hc hc/bc

Case 1 10 mm 11.1 mm 0.9 1.5 mm 0.15

Case 2 5 mm 6.1 mm 0.82 3 mm 0.6

Case 3 3 mm 4.1 mm 0.73 5 mm 1.67
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5.4. Changing the Conductor Dimensions with Respect to the Slot Dimensions

In this section, bc is changed while keeping b and hc the same for all the cases. As
shown in Figure 17, Kr decreases with the reduction in the bc. The lower AC losses are
obtained at a low value of bc/b. The low value of bc/b for the same conductor height means
a lower fill factor, which means losing one of the most important advantages of hairpin
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winding. As a result, the conclusions that come from these curves cannot be followed to
make the best use of the volume of the machine.

Energies 2024, 17, 6494 13 of 20 
 

 

Table 6. The Changed Values of 𝑏𝑐 and 𝑏 Keeping the Same Conductor Cross Section Area. 

Parameter 𝒃𝒄 𝒃 𝒃𝒄 𝒃⁄  𝒉𝒄 𝒉𝒄 𝒃𝒄⁄  

Case 1 10 mm 11.1 mm 0.9 1.5 mm 0.15 

Case 2 5 mm 6.1 mm 0.82 3 mm 0.6 

Case 3 3 mm 4.1 mm 0.73 5 mm 1.67 

 

Figure 16. Resistance factor (𝐾𝑟) for various values of 𝑏, 𝑏𝑐 , and ℎ𝑐, keeping the same conductor 

cross area. 

5.4. Changing the Conductor Dimensions with Respect to the Slot Dimensions 

In this section, 𝑏𝑐 is changed while keeping b and ℎ𝑐 the same for all the cases. As 

shown in Figure 17, 𝐾𝑟 decreases with the reduction in the 𝑏𝑐. The lower AC losses are 

obtained at a low value of 𝑏𝑐 𝑏⁄ . The low value of 𝑏𝑐 𝑏⁄  for the same conductor height 

means a lower fill factor, which means losing one of the most important advantages of 

hairpin winding. As a result, the conclusions that come from these curves cannot be fol-

lowed to make the best use of the volume of the machine. 

 

Figure 17. Resistance factor (𝐾𝑟) for various values of 𝑏𝑐, keeping the same 𝑏 and ℎ𝑐. 

The following conclusions can be obtained from the previous investigations that can 

be taken as design rules for the motor with asymmetric hairpin winding: 

Figure 17. Resistance factor (Kr) for various values of bc, keeping the same b and hc.

The following conclusions can be obtained from the previous investigations that can
be taken as design rules for the motor with asymmetric hairpin winding:

• The increase in the percentage of height reduction (x%) results in a decrease in power
losses, especially at high frequencies, while it has a minor reverse effect at low frequencies.

• The lower the number of layers, the higher the value of x% that is required to achieve
lower losses, as the change in the conductor height has a major effect on the percentage
decrease in losses.

• It is found that a value of x < 10% results in a decrease in the losses over the whole
frequency range.

• For race car applications, x% can be chosen to have a high value (x = 30%) as higher
speeds are required through the whole period of the driving cycle.

• The percentage decrease in the losses is approximately independent of the conductor
width or the current density for a specific value of x%.

• The lower the ratio hc/bc, the lower the losses, especially at high frequencies.
• The lower the ratio of bc/b, the lower the losses, but this is at the account of the fill factor.

6. Thermal Impact of Asymmetric Windings: Electric Vehicle Motor
Case Study

The previous rules come from the analytical investigation for one slot. That is why a
full simulation for a full motor is important to validate the conclusions of the analytical
model and to include all the phenomena and nonlinearities related to motor operation. To
illustrate the effect of asymmetric hairpin windings, we implemented them for a specific
case study: a 150 kW, 16-pole interior permanent magnet (IPM) EV motor as follows:

• A 6-layer winding is chosen that leads to intermediate welding points.
• With a slot depth (dslot = 14.61 mm), a conductor height (hc = 1.95 mm) is practical

from the point of view of the losses and the value of x%.
• A high value of bc/b = 3.4/4.02 = 0.846 is chosen to guarantee a better fill factor.
• A low value of hc/bc = 1.95/3.4 = 0.574 is chosen to decrease the losses as much

as possible.

A 3D steady-state thermal model of the motor is carried out using MotorCAD.2023.1.2.
The simulation is operated for different operating points of speed and load when the
ambient temperature is 40 ◦C. The motor is cooled using a spiral-type housing water jacket.
Additionally, a 50/50 Ethylene Glycol + Water (EGW) Mix is used as a coolant with thermal
conductivity of 0.411 W/m/°C and a pressure of 2441 Pa. The flow rate of the coolant is
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10−4 m3/s from the front of the motor to the end. The cross-sectional area of the spiral
channel is 1.069 ∗ 10−4 m2 with a total length of 1.12 m. In Figure 18, the asymmetric
hairpin winding is used with different values of height reduction, and the effect on the
temperature of the coils is presented. The motor at this simulated operating point has full
load torque and a speed of 15,000 rpm, which is related to a frequency of 2000 Hz. It can
be noticed that the use of asymmetric winding results in a decrease in the temperature,
especially at the hotspot near the slot opening. The temperature decrease is observable
until x = 40%. For x > 40%, the temperature starts to increase.

In Figure 19, the speed of the motor is halved to 7500 rpm—corresponding to a
frequency of 1000 Hz—and operates again at full load. The use of an asymmetric winding
also results in a decrease in the winding temperature till x = 20%. The temperature
decrease is less spectacular than at 2000 Hz.

For low frequencies such as 100 Hz (750 rpm), the use of asymmetric windings is not
very useful. Figure 20 shows that asymmetric windings result in a minor increase in the
winding temperature. However, there will be no negative impact on insulation health as
the temperature is generally low, so this effect can be neglected.

The asymmetric winding results in a decrease in the AC power losses and the resistance
factor, mostly at high frequency, as shown in Figure 21.

These results, which take into account all the nonlinearities within a machine, validate
the conclusions of the analytical investigation, as there is no specific x% that is suitable for
all frequency ranges.

All the previous results are carried out for one specific operating point. However, it is
important to study the effect of using the asymmetric hairpin winding for a drive cycle, as
the choice of the value of x% is application-related. Two different drive cycles are studied
to investigate the effect of the application on the choice of the value of x%: the WLTP class
3 drive cycle, which represents the common vehicles driven in Europe, and the Artemis
Motorway 150 drive cycle, which represents vehicles always on the highway, are shown in
Figure 22.

The total power loss, which is the difference between the input power and the output
power, over the whole drive cycle is shown in Figure 23 for the two types of drive cycles. It
can be observed that the motor of a car moving with the WLTP class 3 drive cycle requires
a lower value of x% for the design of the asymmetric winding. Subsequently, using another
drive cycle with very low values of speed (frequencies), such as in very crowded cities,
requires a lower value of x%. The save in energy for over a distance of 12,000 km for the
WLTP class 3 drive cycle, when x = 15% is used, is 971 W·h, while the save in energy
over the same distance for the Artemis Motorway 150 drive cycle, when x = 25% is used,
is 4160 W·h. That is why using asymmetric winding with applications that require high
speed (high frequency), such as race cars, is more efficient.
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Figure 21. Resistance factor (Kr) for the EV motor (MotorCAD simulation).

From the thermal point of view, a transient simulation is carried out to present the
temperatures over the drive cycles. The hottest spot of the motor is the winding, especially
the top layer near the slot opening. The hotspot winding temperatures over the whole
two drive cycles for different values of x% are shown in Figure 24. A zoom-in shown
in Figure 25 is focused on the period of the highest temperature, which has the highest
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thermal stress on the winding insulation over long-term operation. Specifically, for Artemis
Motorway 150 in Figure 25b, the temperature decrease is about 13 ◦C. The temperature
decreases with the increase of x% until a certain limit. These results comply with the results
of the total power losses.
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Figure 24. Hotspot winding temperature over the whole drive cycle for different x%: (a) WLTP class
3; (b) Artemis Motorway 150.

A general conclusion of the previous results for this specific case study is that a value of
10% < x < 25% can give good results for both drive cycles, but this is under the condition
that the maximum speed is translated to high frequency. Otherwise, if the motor can work
at very high speeds with a low operating frequency due to a low number of poles, this
value of x > 10% cannot be guaranteed to give the best values.
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As a result, some factors should be considered before the choice of the optimum value
of x% as follows:

• The design of the motor decides the ratio between the speed and the frequency.
• The design of the gear system decides the ratio between the EV speed and the motor speed.
• In which application is the EV used? City car, highway truck, race car, etc.
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Figure 25. A zoom-in of Figure 24 to show the effect of x% on the hotspot temperature: (a) WLTP
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7. Conclusions

Great benefits regarding motor losses and thermal stress can be obtained by using
optimally designed asymmetric hairpin winding. It is advised to use a low number of layers
with a high value of height reduction to obtain lower losses and higher reliability with
lower welded points. The design of asymmetric winding is application-dependent. That
is why the application (which decides the majority of motor speeds over the drive cycle),
the gear system, and the relation between the speed and the frequency of the motor are
three important factors to be considered for the design of the asymmetric winding. These
factors are all translated into the operating frequency of the motor. It is advised that any
value of height reduction less than 10% will be suitable for most applications and will result
in good loss reduction. For applications that require a high-frequency motor operation,
such as a specific case of the Artemis Motorway 150 drive cycle, a height reduction of 25%
will guarantee optimum loss reduction and a temperature decrease at the hotspot of about
13 ◦C. Therefore, it is advised to use asymmetric winding for electric race cars. It is proved
that using the asymmetric hairpin winding decreases the hotspot temperature, which
protects the insulation of the winding over long-term operation. Experimental validation is
applicable after the manufacturing process of hairpin winding with three different heights
for two motors with the same dimensions.
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