Catch and Cover Crops’ Use in the Energy Sector via Conversion into Biogas—Potential Benefits and Disadvantages
Abstract
:1. Introduction
2. Materials and Methods
3. Characteristics and Spatial Distribution of Catch and Cover Crops
4. Catch and Cover Crop Biomass Bioconversion into Energy
4.1. Features of CCC Biomass Important Because of Biochemical Conversion into Biofuels
Species | Cellulose (% d.w.) | Hemicellulose (% d.w.) | Lignin (% d.w.) | References |
---|---|---|---|---|
Grasses | 37.85 | 27.33 | 9.65 | [98] |
Grass silage | 34.15 | 24.27 | 2.78 | [99] |
Sunflower (Helianthus annuus L.) | 34.06 | 5.18 | 7.72 | [98] |
Fodder radish (Raphanus sativus L.), flowering stage | 8.5 | 17.6 | 9.43 | [100] |
Fodder radish (Raphanus sativus L.), maturation stage | 18.99 | 14.54 | 10.63 | |
Pearl millet (Pennisetum glaucum), flowering stage | 22.44 | 29.87 | 4.7 | |
Pearl millet (Pennisetum glaucum), maturation stage | 12.96 | 27.64 | 10.56 | |
Orchard grass, cocksfoot (Dactylis glomerata L.) | 52.3 | 42.9 | 6.6 | [101] |
Abruzzi rye (Secale cereal L.) | 25.26 | 25.17 | 2.56 | [102] |
Black oat (Avena Strigosa Schreb) | 46.2 | 27.84 | 9.12 | [103] |
Black oat (Avena strigosa Schreb) | 25.17 | 20.82 | 1.77 | [102] |
Winter barley (Hordeum vulgare L.). | 19.36 | 20.88 | 1.42 | [102] |
Field (winter) pea (Pisum sativum L.) different varieties | 26.8–38.7 | 5.1–11.8 | l.d. | [104] |
Field (winter) pea (Pisum sativum L.) 17 different genotypes | 20.3–36.16 | 9.18–10.8 | 4.86–10.2 | [105] |
Crimson clover (Trifolium incarnatum) | 26–61.3 | 4.5–8.0 | [103] | |
Crimson clover (Trifolium incarnatum) | 17.33 | 12.65 | 3.37 | [106] |
Crimson clover (Trifolium incarnatum) | 25.58 | 9.53 | 3.35 | [102] |
Crimson clover (Trifolium incarnatum) | 29.1–36.88 * | 10.8–11.12 * | 7.5–10.10 * | [105] |
Hairy vetch (Vicia villosa Roth) | 26.84–33.53 | 10.84–11.63 | 8.3–11.2 | [107] |
Hairy vetch (Vicia villosa Roth) | 28.4 | 10.12 | 7.57 | [103] |
Hairy vetch (Vicia villosa Roth) | 27.24 | 14.29 | 4.86 | [102] |
Common vetch (Vicia sativa L.). | 13.4 | 25.8 | 7.3 | [108] |
White lupine (Lupinus albus L.) silage | 40.34 | 13.6 | 7.63 | [109] |
Broad bean (Vicia faba L.) silage | 28.12 | 18.59 | 7.22 | [109] |
Switchgrass (Panicum virgatum) | 39.5–45 | 20.3–31.5 | 12–20 | [110] |
4.2. Energy Potential of CCC Biomass Converted into Biogas
5. Status and Prospects of CCC Use in the Energy Sector
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fernández, L. Global Primary Energy Consumption 2000–2022. 2023. Available online: https://www.statista.com/statistics/265598/consumption-of-primary-energy-worldwide (accessed on 3 August 2023).
- SRD. Distribution of Electricity Generation Worldwide in 2022, by Energy Source. 2023. Available online: https://www.statista.com/statistics/269811/world-electricity-production-by-energy-source/StatistaResearchDepartment (accessed on 7 September 2023).
- Rogelj, J.; Shindell, D.; Jiang, K.; Fifita, S.; Forster, P.; Ginzburg, V.; Handa, C.; Kheshgi, H.; Kobayashi, S.; Kriegler, E.; et al. Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V.P., Zhai, H.-O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 93–174. [Google Scholar] [CrossRef]
- UNCC. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 2 August 2023).
- Ritchie, H.; Roser, M.; Rosado, P. CO2 and Greenhouse Gas Emissions. Published online at OurWorldInData.org. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 20 September 2023).
- EPA. GHG Reduction Programs & Strategies. Available online: https://www.epa.gov/climateleadership/ghg-reduction-programs-strategies (accessed on 20 September 2023).
- European Parliament. Reducing Carbon Emissions: EU Targets and Policies. 2023. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20180305STO99003/reducing-carbon-emissions-eu-targets-and-policies (accessed on 21 September 2023).
- GBS 2022, Global Bioenergy Statistics 2022. World Bioenergy Association. Available online: https://www.worldbioenergy.org/uploads/221223%20WBA%20GBS%202022.pdf (accessed on 21 September 2023).
- Penny, C.L. Cover Crops as Green Manure. Del. Coll. Agric. Exp. Stn. Bull. 1903, 60, 44. [Google Scholar]
- Robinson, T.R. The Fertilizing Value of Hairy Vetch for Connecticut Tobacco Fields; US. Department of Agriculture: Washington, DC, USA, 1908.
- Karaca, M.; Ince, A.G. Revisiting sustainable systems and methods in agriculture. In Sustainable Agriculture and the Environment; Farooq, M., Gogoi, N., Pisante, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 195–246. [Google Scholar]
- Peltonen-Sainio, P.; Rajala, A.; Känkänen, H.; Hakala, K. Chapter 4—Improving farming systems in northern Europe. In Crop Physiology, 2nd ed.; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 65–91. [Google Scholar]
- Kathage, J.; Smit, B.; Janssens, B.; Haagsma, W.; Adrados, J.L. How much is policy driving the adoption of cover crops? Evidence from four EU regions. Land Use Policy 2022, 116, 106016. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Survey on Agricultural Production Methods (SAPM); Eurostat: Luxembourg, 2010; Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Survey_on_agricultural_production_methods&oldid=441343 (accessed on 20 September 2023).
- Bergtold, J.S.; Ramsey, S.; Maddy, L.; Williams, J.R. A review of economic considerations for cover crops as a conservation practice. Renew. Agric. Food Syst. 2019, 34, 62–76. [Google Scholar] [CrossRef]
- Wooliver, R.; Jagadamma, S. Response of soil organic carbon fractions to cover cropping: A meta-analysis of agroecosystems. Agric. Ecosyst. Environ. 2023, 351, 108497. [Google Scholar] [CrossRef]
- Żuk-Gołaszewska, K.; Wanic, M.; Orzech, K. The role of catch crops in field plant production—A review. J. Elem. 2019, 24, 575–587. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Change Biol. 2022, 28, 4736–4749. [Google Scholar] [CrossRef] [PubMed]
- Ruis, S.J.; Blanco-Canqui, H. Cover Crops Could Offset Crop Residue Removal Effects on Soil Carbon and Other Properties: A Review. Agron. J. 2017, 109, 1785–1805. [Google Scholar] [CrossRef]
- Ruis, S.J.; Blanco-Canqui, H.; Creech, C.F.; Koehler-Cole, K.; Elmore, R.W.; Francis, C.A. Cover Crop Biomass Production in Temperate Agroecozones. Agron. J. 2019, 111, 1535–1551. [Google Scholar] [CrossRef]
- Launay, C.; Houot, S.; Frédéric, S.; Girault, R.; Levavasseur, F.; Marsac, S.; Constantin, J. Incorporating energy cover crops for biogas production into agricultural systems: Benefits and environmental impacts. A review. Agron. Sustain. Dev. 2022, 42, 57. [Google Scholar] [CrossRef]
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. (Eds.) Woodhead Publishing Series in Food Science, Technology and Nutrition, Lockhart & Wiseman’s Crop Husbandry Including Grassland, 9th ed.; Woodhead Publishing: Cambridge, UK, 2014; ISBN 9781782423713. [Google Scholar]
- Hołubowicz-Kliza, G. Uprawa Poplonów (Catch Crops Cultivation); Instrukcja Upowszechnieniowa (Dissemination Instruction) 166; Wyd. IUNG-PIB: Puławy, Poland, 2010. (In Polish) [Google Scholar]
- Thomas, F.; Archambeaud, M. Międzyplony w Praktyce; Oficyna Wydawnicza OIKOS: Warszawa, Poland, 2019; ISBN 978-83-64843-21-1. (In Polish) [Google Scholar]
- Szerencsits, M.; Weinberger, C.; Kuderna, M.; Feichtinger, F.; Erhart, E.; Maier, S. Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint. World Acad. Eng. Technol. Int. J. Environ. Ecol. Eng. 2015, 9, 413–416. [Google Scholar]
- Van Eerd, L.L.; Chahal, I.; Peng, Y.; Awrey, J.C. Influence of cover crops at the four spheres: A review of ecosystem services, potential barriers, and future directions for North America. Sci. Total Environ. 2023, 858, 159990. [Google Scholar] [CrossRef] [PubMed]
- Vogeler, I.; Hansen, E.M.; Thomsen, I.K. The effect of catch crops in spring barley on nitrate leaching and their fertilizer replacement value. Agric. Ecosyst. Environ. 2022, 343, 108282. [Google Scholar] [CrossRef]
- Gage, D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 2004, 68, 280–300. [Google Scholar] [CrossRef] [PubMed]
- Molinuevo-Salces, B.; Larsen, S.U.; Ahring, B.K.; Uellendahl, H. Biogas production from catch crops: Evaluation of biomass yield and methane potential of catch crops in organic crop rotations. Biomass Bioenergy 2013, 59, 285–292. [Google Scholar] [CrossRef]
- Richards, A.; Estaki, M.; Úrbez-Torres, J.R.; Bowen, P.; Lowery, T.; Hart, M. Cover Crop Diversity as a Tool to Mitigate Vine Decline and Reduce Pathogens in Vineyard Soils. Diversity 2020, 12, 128. [Google Scholar] [CrossRef]
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root exudates contribute to belowground ecosystem hotspots: A review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef] [PubMed]
- NPGS National Plant Germplasm System. United State Department of Agriculture. Agricultural Research Service. National Germplasm Resources Laboratory. Available online: https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch?t=pnlspecies (accessed on 25 October 2023).
- USDA. Plant Guide. Available online: https://plants.usda.gov/home (accessed on 25 October 2023).
- Gerhards, R.; Schappert, A. Advancing cover cropping in temperate integrated weed management. Pest Manag. Sci. 2020, 6, 42–46. [Google Scholar] [CrossRef]
- Büchi, L.; Wendling, M.; Amossé, C.; Jeangros, B.; Charles, R. Cover crops to secure weed control strategies in a maize crop with reduced tillage. Field Crops Res. 2020, 247, 107583. [Google Scholar] [CrossRef]
- Liu, X.; Hannula, S.E.; Li, X.; Hundscheid, M.P.J.; klein Gunnewiek, P.J.A.; Clocchiatti, A.; Ding, W.; de Boer, W. Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biol. Biochem. 2021, 160, 108343. [Google Scholar] [CrossRef]
- Heuermann, D.; Döll, S.; Schweneker, S.; Feuerstein, U.; Gentsch, N.; von Wirén, N. Distinct metabolite classes in root exudates are indicative for field- or hydroponically-grown cover crops. Front. Plant Sci. 2023, 14, 1122285. [Google Scholar] [CrossRef] [PubMed]
- Toom, M.; Talgre, L.; Mäe, A.; Tamm, S.; Narits, L.; Edesi, L.; Haljak, M.; Lauringson, E. Selecting winter cover crop species for northern climatic conditions. Agron. J. 2019, 35, 263–274. [Google Scholar] [CrossRef]
- Gentsch, N.; Riechers, F.L.; Boy, J.; Schwenecker, D.; Feuerstein, U.; Heuermann, D.; Guggenberger, G. Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions. EGUsphere, 2023; preprint. [Google Scholar] [CrossRef]
- Kwiatkowski, C.; Haliniarz, M.; Kolodziej, B.; Harasim, E.; Tomczyńska-Mleko, M. Content of some chemical components in carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. J. Elem. 2015, 20, 933–943. [Google Scholar] [CrossRef]
- Ren, L.; Nest, T.V.; Ruysschaert, G.; D’Hose, T.; Cornelis, W.M. Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil Tillage Res. 2019, 192, 76–86. [Google Scholar] [CrossRef]
- Arlauskienė, A.; Šarūnaitė, L. Cover Crop Yield, Nutrient Storage and Release under Different Cropping Technologies in the Sustainable Agrosystems. Plants 2023, 12, 2966. [Google Scholar] [CrossRef] [PubMed]
- Vogeler, I.; Hansen, E.M.; Thomsen, I.K.; Østergaard, H.S. Legumes in catch crop mixtures: Effects on nitrogen retention and availability, and leaching losses. J. Environ. Manag. 2019, 239, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Gieske, M.F.; Ackroyd, V.J.; Baas, D.G.; Mutch, D.R.; Wyse, D.L.; Durgan, B.R. Brassica Cover Crop Effects on Nitrogen Availability and Oat and Corn Yield. Soil Fertil. Crop Nutr. 2016, 108, 151–161. [Google Scholar] [CrossRef]
- Murrell, E.G.; Schipanski, M.E.; Finney, D.M.; Hunter, M.C.; Burgess, M.; LaChance, J.C.; Baraibar, B.; White, C.M.; Mortensen, D.A.; Kaye, J.P. Achieving Diverse Cover Crop Mixtures: Effects of Planting Date and Seeding Rate. Agron. J. 2017, 109, 259–271. [Google Scholar] [CrossRef]
- Findlay, N.; Manson, A. Cover crops: What Are They and Why ARE they Used. Agri Udatem Information from the KZN Department of Agriculture. Environmental Affairs & Rural Development, 2011/02. Available online: https://www.kzndard.gov.za/images/Documents/ (accessed on 12 September 2023).
- He, Q.; Liu, D.L.; Wang, B.; Cowie, A.; Simmons, A.; Waters, C.; Li, L.; Feng, P.; Li, Y.; de Voil, P.; et al. Modelling interactions between cowpea cover crops and residue retention in Australian dryland cropping systems under climate change, Agriculture. Ecosyst. Environ. 2023, 353, 108536. [Google Scholar] [CrossRef]
- Soares, M.B.; Tavanti, R.F.R.; Rigotti, A.R.; de Lima, J.P.; da Silva Freddi, O.; Petter, F.A. Use of cover crops in the southern Amazon region: What is the impact on soil physical quality? Geoderma 2021, 384, 114796. [Google Scholar] [CrossRef]
- Perdigão, A.; Coutinho, J.; Moreira, N. Cover crops as nitrogen source for organic farming in Southwest Europe. ISHS Acta Hortic. 2010, 933, 355–361. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Gruba, P.; Sproull, G. The effectiveness of yellow lupine (Lupinus luteus L.) green manure cropping in sand mine cast reclamation. Ecol. Eng. 2017, 102, 72–79. [Google Scholar] [CrossRef]
- Anderson, W.; Knoll, J.E.; Olson, D.; Scully, B.T.; Strickland, T.C.; Webster, T.M. Winter legume cover effects on yields of biomass-sorghum and cotton in Georgia. Agron. J. 2022, 114, 1298–1310. [Google Scholar] [CrossRef]
- Hansen, V.; Eriksen, J.; Jensen, L.S.; Thorup-Kristensen, K.; Magid, J. Towards integrated cover crop management: N, P and S release from aboveground and belowground residues. Agric Ecosyst Environ 2021, 313, 107392. [Google Scholar] [CrossRef]
- Zhao, M.; Jones, C.M.; Meijer, J.; Lundquist, P.-O.; Fransson, P.; Carlsson, G.; Sara Hallin, S. Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata. Appl. Soil Ecol. 2017, 119, 260–266. [Google Scholar] [CrossRef]
- Wang, W.; Han, L.; Zhang, X. Winter cover crops effects on soil microbial characteristics in sandy areas of Northern Shaanxi, China. Rev. Bras. Ciênc. Solo 2020, 44, e0190173. [Google Scholar] [CrossRef]
- Freeman, O.W.; Kirkham, M.B.; Roozeboom, K.L. Cover Crops to Protect Soil during Winter in the Great Plains of the USA. In Soil Constraints and Productivity; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Thomas, B.J.; Fychan, R.; McCalman, H.M.; Sanderson, R.; Thomas, H.; Marley, C.L. Vicia sativa as a grazed forage for lactating ewes in a temperate grassland production system. Food Energy Secur. 2023, 12, e374. [Google Scholar] [CrossRef]
- Ortas, I.; Yucel, C. Do mycorrhizae influence cover crop biomass production? Acta Agric. Scand. Sect. B Soil Plant Sci. 2020, 70, 657–666. [Google Scholar] [CrossRef]
- Casler, M.D.; Undersander, D.J. Identification of Temperate Pasture Grasses and Legumes. In Horse Pasture Management; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- DuPre, M.E.; Seipel, T.; Bourgault, M.; Boss, D.L.; Menalled, F.D. Predicted climate conditions and cover crop composition modify weed communities in semiarid agroecosystems. Weed Res. 2022, 62, 38–48. [Google Scholar] [CrossRef]
- Weinert, C.; de Sousa, R.O.; Bortowski, E.M.; Campelo, M.L.; da Silva Pacheco, D.; dos Santos, L.V.; Deuner, S.; Valente, G.B.; Matos, A.B.; Vargas, V.L.; et al. Legume winter cover crop (Persian clover) reduces nitrogen requirement and increases grain yield in specialized irrigated hybrid rice system. Eur. J. Agron. 2023, 142, 126645. [Google Scholar] [CrossRef]
- Caswell, K.; Wallace, J.M.; Curran, W.S.; Mirsky, S.B.; Ryan, M.R. Cover Crop Species and Cultivars for Drill-Interseeding in Mid-Atlantic Corn and Soybean. Agron. J. 2019, 111, 1060–1067. [Google Scholar] [CrossRef]
- Khanal, C.; Harshman, D. Evaluation of summer cover crops for host suitability of Meloidogyne enterolobii. Crop Prot. 2022, 151, 105821. [Google Scholar] [CrossRef]
- Vitalini, S.; Orlando, F.; Vaglia, V.; Bocchi, S.; Iriti, M. Potential Role of Lolium multiflorum Lam. in the Management of Rice Weeds. Plants 2020, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Behnke, G.D.; Villamil, M.B. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field Crops Res. 2019, 241, 107580. [Google Scholar] [CrossRef]
- Poudel, P.; Ødegaard, J.; Mo, S.J.; Andresen, R.K.; Tandberg, H.A.; Cottis, T.; Solberg, H.; Bysveen, K.; Dulal, P.R.; Mousavi, H.; et al. Italian Ryegrass, Perennial Ryegrass, and Meadow Fescue as Undersown Cover Crops in Spring Wheat and Barley: Results from a Mixed Methods Study in Norway. Sustainability 2022, 14, 13055. [Google Scholar] [CrossRef]
- Wang, H.; Beule, L.; Zang, H.; Pfeiffer, B.; Ma, S.; Karlovsky, P.; Dittert, K. The potential of ryegrass as cover crop to reduce soil N2O emissions and increase the population size of denitrifying bacteria. Soil Sci. 2021, 72, 1447–1461. [Google Scholar] [CrossRef]
- Elhakeem, A.; van der Werf, W.; Ajal, J.; Lucà, D.; Claus, S.; Vico, R.A.; Bastiaans, L. Cover crop mixtures result in a positive net biodiversity effect irrespective of seeding configuration. Agric. Ecosyst. Environ. 2019, 285, 106627. [Google Scholar] [CrossRef]
- Khan, Q.A.; McVay, K.A. Productivity and stability of multi-species cover crop mixtures in the northern great plains. Agron. J. 2019, 111, 1817–1827. [Google Scholar] [CrossRef]
- Heuermann, D.; Gentsch, N.; Boy, J.; Schweneker, D.; Feuerstein, U.; Groß, J.; Bauer, B.; Guggenberger, G.; von Wirén, N. Interspecific competition among catch crops modifies vertical root biomass distribution and nitrate scavenging in soils. Sci. Rep. 2019, 9, 11531. [Google Scholar] [CrossRef]
- Heuermann, D.; Gentsch, N.; Guggenberger, G.; Reinhold-Hurek, B.; Schweneker, D.; Feuerstein, U.; Heuermann, M.C.; Groß, J.; Kümmerer, R.; Bauer, B.; et al. Catch crop mixtures have higher potential for nutrient carry-over than pure stands under changing environments. Eur. J. Agron. 2022, 136, 126504. [Google Scholar] [CrossRef]
- Elhakeem, A.; Bastiaans, L.; Houben, S.; Couwenberg, T.; Makowski, D.; van der Werf, W. Do cover crop mixtures give higher and more stable yields than pure stands? Field Crops Res. 2021, 270, 108217. [Google Scholar] [CrossRef]
- Florence, A.M.; McGuire, A.M. Do diverse cover crop mixtures perform better than monocultures? A systematic review. Agron. J. 2020, 112, 3513–3534. [Google Scholar] [CrossRef]
- Plumhoff, M.; Connell, R.K.; Bressler, A.; Blesh, J. Management history and mixture evenness affect the ecosystem services from a crimson clover-rye cover crop. Agric. Ecosyst. Environ. 2022, 339, 108155. [Google Scholar] [CrossRef]
- Sievers, T.; Cook, R.L. Aboveground and Root Decomposition of Cereal Rye and Hairy Vetch Cover Crops. Soil Fertil. Plant Nutr. 2018, 82, 147–155. [Google Scholar] [CrossRef]
- Wright, C.; Ghezzi-Haeft, J. Hairy Vetch and Triticale Cover Crops for N Management in Soils. Open J. Soil Sci. 2020, 10, 244–256. [Google Scholar] [CrossRef]
- Sanderson, M.; Johnson, H.; Hendrickson, J. Cover Crop Mixtures Grown for Annual Forage in a Semi-Arid Environment. Agron. J. 2018, 110, 525–534. [Google Scholar] [CrossRef]
- Franco, J.G.; Gramig, G.G.; Beamer, K.P.; Hendrickson, J.R. Cover crop mixtures enhance stability but not productivity in a semi-arid climate. Agron. J. 2021, 113, 2664–2680. [Google Scholar] [CrossRef]
- Li, H.; Fang, Z.; Smith, R.I.; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combust. Sci. 2016, 55, 98–194. [Google Scholar] [CrossRef]
- Owczuk, M.; Kołodziejczyk, K. Ocena możliwości wykorzystania słomy i wytłoków z lnicznika siewnego jako alternatywnego surowca energetycznego (Assessment of the possibility of using straw and pomace from camelina as an alternative energy raw material). Chemik 2011, 6, 537–539. (In Polish) [Google Scholar]
- Mishra, S.; Upadhyay, R.K. Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. [Google Scholar] [CrossRef]
- Westerhof, R.J.M.; Kuipers, N.J.M.; Kersten, S.R.A.; van Swaaij, W.P.M. Controlling the Water Content of Biomass Fast Pyrolysis Oil. Ind. Eng. Chem. Res. 2007, 46, 9238–9247. [Google Scholar] [CrossRef]
- Shafizadeh, A.; Danesh, P. Biomass and Energy Production: Thermochemical Methods. In Biomass, Biorefineries and Bioeconomy; Samer, M., Ed.; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Koca, Y.O.; Erekul, O. Changes of dry matter, biomass and relative growth rate with different phenological stages of corn. Agric. Agric. Sci. Procedia 2016, 10, 67–75. [Google Scholar] [CrossRef]
- Piskier, T. Method of estimation of the caloric value of the biomass. Part I—Biomass energy potential. J. Mech. Energy Eng. 2017, 1, 189–194. [Google Scholar]
- Rabelo, C.H.S.; De Rezende, A.V.; Rabêlo, F.H.S.; Basso, F.C.; Härter, C.J.; Reis, R.A. Chemical composition, digestibility and aerobic stability of corn silages harvested at different maturity stages. Rev. Caatinga Mossoró 2015, 28, 107–116. [Google Scholar]
- Doyar, B.; Kiraz, A.B. Determination of Nutritional Value and Methane Production Potential of Phacelia tanacetifolia in Different Stages of Growth. Indian J. Anim. Res. 2023, BF-1575, 1–6. [Google Scholar] [CrossRef]
- Tekeli, A.S.; Ateş, E.; Varol, F. Nutritive Values of Some Annual Clovers (Trifolium sp.) at Different Growth Stages. J. Cent. Eur. Agric. 2005, 6, 323–330. [Google Scholar]
- Iakovou, E.; Karagiannidis, A.; Vlachos, D.; Toka, A.; Malamakis, A. Waste Biomass-To-Energy Supply Chain Management: A Critical Synthesis. Waste Manag. 2010, 30, 186–187. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmuller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef]
- Seppäla, M.; Paavola, T.; Lehtomaki, A.; Rintala, J. Biogas production from boreal herbaceous grasses—Specific methane yield and methane yield per hectare. Bioresour. Technol. 2009, 100, 2952–2958. [Google Scholar] [CrossRef]
- Coban, H.; Miltner, A.; Elling, F.J.; Hinrichs, K.U.; Kästner, M. The contribution of biogas residues to soil organic matter formation and CO2 emissions in an arable soil. Soil Biol. Biochem. 2015, 86, 108–115. [Google Scholar] [CrossRef]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Pokój, T.; Klimiuk, E.; Bułkowska, K.; Kowal, P.; Ciesielski, S. Effect of Individual Components of Lignocellulosic Biomass on Methane Production and Methanogen Community Structure. Waste Biomass Valorization 2020, 11, 1421–1433. [Google Scholar] [CrossRef]
- Chaves, A.V.; Waghorn, G.C.; Tavendale, M.H. A simplified method for lignin measurement in a range of forage species. Proc. New Zealand Grassl. Assoc. 2002, 64, 129–133. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Przybył, J.; Ratajczak, I.; Goliński, P.; Janczak, D.; Waśkiewicz, A.; Szentner, K.; Woźniak, M. Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process. Energy 2020, 198, 17258. [Google Scholar] [CrossRef]
- Nowicka, A.; Zieliński, M.; Dębowski, M.; Dudek, M. Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment. Energies 2021, 14, 8018. [Google Scholar] [CrossRef]
- Tutt, M.; Olt, J. Suitability of various plant species for bioethanol production. Agron. Res. 2011, 1, 261–267. [Google Scholar]
- Szwarc, D.; Nowicka, A.; Głowacka, K. Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency. Energies 2022, 15, 5122. [Google Scholar] [CrossRef]
- Moreira de Carvalho, A.; Pereira de Souza, L.L.; Guimarães, R., Jr.; Castro Alves, P.C.A.; Vivaldi, L.J. Cover plants with potential use for crop-livestock integrated systems in the Cerrado region. Pesq. Agropec. Bras. 2011, 46, 1200–1205. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Shahi, N.; Joshi, G.; Min, B. Potential sustainable biomaterials derived from cover crops. BioResources 2020, 15, 5641–5652. [Google Scholar] [CrossRef]
- Ferreira, P.A.A.; Girotto, E.; Trentin, G.; Miotto, A.; Melo, G.W.D.; Ceretta, C.A.; Kaminski, J.; Frari, B.K.D.; Marchezan, C.; Silva, L.O.S.; et al. Biomass decomposition and nutrient release from black oat and hairy vetch residues deposited in a vineyard. Rev. Bras. Ciênc. Solo 2014, 38, 1621–1632. [Google Scholar] [CrossRef]
- Gebremeskele, Y.; Gebrem, A.E.; Melaku, S. Crop–Livestock Interaction for Improved Productivity: Effect of Selected Varieties of Field Pea (Pisum sativum L.) on Grain and Straw Parameters. In Challenges and Opportunities for Agricultural 137 Intensification of the Humid Highland Systems of Sub-Saharan Africa; Vanlauwe, B., van Asten, P., Blomme, G., Eds.; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Vann, R.A.; Reberg-Horton, S.C.; Castillo, M.S.; Murphy, J.P.; Martins, L.B.; Mirsky, S.B.; Saha, U.; McGee, R.J. Differences among eighteen winter pea genotypes for forage and cover crop use in the southeastern United States. Crop Sci. 2020, 61, 947–965. [Google Scholar] [CrossRef]
- Brozzoli, V.; Bartocci, S.; Terramoccia, S.; Contò, G.; Federici, F.; D’Annibale, A.; Petruccioli, M. Stoned olive pomace fermentation with Pleurotus species and its evaluation as a possible animal feed. Enzym. Microb. Technol. 2010, 46, 223–228. [Google Scholar] [CrossRef]
- Woodruff, L.K.; Kissel, D.E.; Cabrera, M.L.; Habteselassie, M.Y.; Hitchcock, R.; Gaskin, J.; Vigil, M.; Sonon, L.; Saha, U.; Romano, N.; et al. A Web-Based Model of N Mineralization from Cover Crop Residue Decomposition. Nutr. Manag. Soil Plant Anal. 2018, 82, 983–993. [Google Scholar] [CrossRef]
- Lanyasunya, P.; Rong Wang, H.; Abdulrazak, S.A.; Mukisira, E.A.; Zhang, J. In sacco determination of dry matter, organic matter and cell wall degradation characteristics of common vetch (Vicia sativa L.). Trop. Subtrop. Agroecosystems 2006, 6, 117–123. [Google Scholar]
- Kintl, A.; Huňady, I.; Vítěz, T.; Brtnický, M.; Sobotková, J.; Hammerschmiedt, T.; Vítězová, M.; Holátko, J.; Smutný, V.; Elbl, J. Effect of Legumes Intercropped with Maize on Biomass Yield and Subsequent Biogas Production. Agronomy 2023, 13, 2775. [Google Scholar] [CrossRef]
- Ning, P.; Yang, G.; Hu, L.; Sun, J.; Shi, L.; Zhou, Y.; Wang, Z.; Yang, J. Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 2021, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Bareha, Y.; Girault, R.; Jimenez, J.; Trémier, A. Characterization and prediction of organic nitrogen biodegradability during anaerobic digestion: A bioaccessibility approach. Bioresour. Technol. 2018, 263, 425–436. [Google Scholar] [CrossRef]
- Bertrand, I.; Viaud, V.; Daufresne, T.; Pellerin, S.; Recous, S. Stoichiometry constraints challenge the potential of agroecological practices for the soil C storage. A review. Agron. Sustain. Dev. 2019, 39, 54. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45C, 540–555. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Zhuan, R.; Yang, A.; Wang, Y. Transformations, Inhibition and inhibition control methods of sulfur in sludge anaerobic digestion: A review. Curr. Org. Chem. 2016, 20, 2780–2789. [Google Scholar] [CrossRef]
- Peu, P.; Picard, S.; Diara, A.; Girault, R.; Béline, F.; Bridoux, G.; Dabert, P. Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. Bioresour. Technol. 2012, 121, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Greinert, A.; Mrówczyńska, M.; Grech, R.; Szefner, W. The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces. Energies 2020, 13, 463. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Graß, R.; Heuser, F.; Stülpnagel, R.; Piepho, H.P.; Wachendorf, M. Energy crop production in double-cropping systems: Results from an experiment at seven sites. Eur. J. Agron. 2013, 51, 120–129. [Google Scholar] [CrossRef]
- Lehtomäki, A.; Viinikainen, T.A.; Rintala, J. Screening boreal energy crops residues for methane biofuel production. Biomass Bioenergy 2008, 32, 541–550. [Google Scholar] [CrossRef]
- Petersson, A.; Thomsen, M.H.; Hauggaard-Nielsen, H.; Thomsen, A.B. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oil seed rape and faba bean. Biomass Bioenergy 2007, 31, 812–819. [Google Scholar] [CrossRef]
- Gunaseelan, N. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 2004, 26, 389–399. [Google Scholar] [CrossRef]
- Weiland, P. Production and energetic use of biogas from energy crops and wastes in Germany. Appl. Biochem. Biotech. 2003, 109, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Molinuevo-Salces, B.; Fernández-Varela, R.; Uellendahl, H. Key factors influencing the potential of catch crops for methane production. Environ. Technol. 2014, 35, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Pakarinen, A.; Maijala, P.; Jaakkola, S.; Stoddard, F.L.; Kymäläinen, M.; Viikari, L. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnol. Biofuels 2011, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Kaparaju, P.; Luostarinen, S.; Kalmari, E.; Kalmari, J.; Rintala, J. Codigestion of energy crops and industrial confectionery byproducts with cow manure: Batch-scale and farm-scale evaluation. Water Sci Technol. 2002, 45, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Heggenstaller, A.H.; Anex, R.P.; Liebman, M.; Sundberg, D.N.; Gibson, L.R. Productivity and nutrient dynamics in bioenergy doublecropping systems. Agron. J. 2008, 100, 1740–1748. [Google Scholar] [CrossRef]
- Wahid, R.; Ward, A.J.; Møller, H.B.; Søegaard, K.; Eriksen, J. Biogas potential from forbs and grass-clover mixture with the application of near infrared spectroscopy. Bioresour. Technol. 2015, 198, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, M.J.; Mushtaq, M.; Tian, L.; Jiménez-Rodríguez, A.; Rincón, B.; Gilroyed, B.H.; Borja, R. Evaluation and modelling of methane production from corn stover pretreated with various physicochemical techniques. Waste Manag. Res. 2022, 40, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, B.; Nowak, J.; Fabiszewska, A.; Paszkiewicz-Jasińska, A.; Przystupa, W. Dry Matter Losses in Silages Resulting from Epiphytic Microbiota Activity—A Comprehensive Study. Agronomy 2023, 13, 450. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]
- Villa, R.; Ortega Rodriguez, L.; Fenech, C.; Anika, O.C. Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields. Renew. Sustain. Energy Rev. 2020, 134, 110401. [Google Scholar] [CrossRef]
- Franco, R.T.; Buffière, P.; Bayard, R. Ensiling for biogas production: Critical parameters. A review. Biomass Bioenergy 2016, 94, 94–104. [Google Scholar] [CrossRef]
- Van Vlierberghe, C.; Chiboubi, A.; Carrere, H.; Bernet, N.; Santa Catalina, G.; Frederic, S.; Escudie, R. Improving the storage of cover crops by co-ensiling with different waste types: Effect on fermentation and effluent production. Waste Manag. 2022, 154, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.; Plogsties, V.; Willms, M.; Hengelhaupt, F.; Eberl, V.; Eckner, J.; Strauß, C.; Idler, C.; Heiermann, M. Methane production potential of various crop species grown in energy crop rotations. Landtechnik 2016, 71, 194–208. [Google Scholar]
- Hutňan, M. Maize Silage as Substrate for Biogas Production. In Advances in Silage Production and Utilization; da Silva, T., Santo, E.M., Eds.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Negri, M.; Bacenetti, J.; Brambila, M.; Manfredini, A.; Cantore, A.; Bocchi, S. Biomethane production from different crop systems of cereals in Northern Italy. Biomass Bioenergy 2014, 63, 321–329. [Google Scholar] [CrossRef]
- Wannasek, L.; Ortner, M.; Kaul, H.P.; Amon, B.; Amon, T. Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield. Eur. J. Agron. 2019, 110, 125934. [Google Scholar] [CrossRef]
- Appels, L.; Lauwers, J.; Degrve, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Di Maria, F.; Sisani, F.; Contini, S. Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste? Appl. Energy 2018, 230, 1557–1572. [Google Scholar] [CrossRef]
- Marsac, S.; Quod, C.; Leveau, V.; Heredia, M.; Delaye, N.; Labalette, F.; Lecomte, V.; Bazet, M.; Sanner, E.A. Optimisation of French energy cover crop production in double cropping systems for on-farm biogas use. In Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27–30 May 2019; pp. 40–49. [Google Scholar]
- Riau, V.; Burgos, L.; Camps, F.; Domingo, F.; Torrellas, M.; Antón, A.; Bonmatí, A. Closing nutrient loops in a maize rotation. Catch crops to reduce nutrient leaching and increase biogas production by anaerobic co-digestion with dairy manure. Waste Manag. 2021, 126, 719–727. [Google Scholar] [CrossRef]
- Verrier, D.; Morfaux, J.N.; Albagnac, G.; Touzel, J.P. The French programme on methane fermentation. Biomass 1982, 2, 17–28. [Google Scholar] [CrossRef]
- LIST. Cover Crops for Energy Production. Available online: https://www.list.lu/fileadmin//files/projects/ARBOR/CoverCrops.pdf (accessed on 23 September 2023).
- Cepsa and CSIC Partner on Energy Cover Crop Research. Available online: https://bioenergyinternational.com/cepsa-and-csic-partner-on-energy-cover-crop-research/ (accessed on 23 September 2023).
- Eyl-Mazzega, M.-A.; Mathieu, C. (Eds.) Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy; Études de l’Ifri, Ifri: Paris, France, 2019; Available online: https://www.ifri.org/sites/default/files/atoms/files/mathieu_eyl-mazzega_biomethane_2019.pdf (accessed on 20 September 2023).
- Sommer, S.G.; Knudsen, L. Impact of Danish Livestock and Manure Management Regulations on Nitrogen Pollution, Crop Production, and Economy. Front. Sustain. Sec. Sustain. Supply Chain. Manag. 2021, 2, 658231. [Google Scholar] [CrossRef]
- INL. Cover Crop Valorization for Biofuels and Products, OE Bioenergy Technologies Office (BETO) 2023 Project Peer Review; William Smith—Idaho National Laboratory, 1.1.2.1; Idaho National Laboratory: Idaho Falls, ID, USA, 2023.
- Herbstritt, S.; Richard, T.L.; Lence, S.H.; Wu, H.; O’Brien, P.L.; Emmett, B.D.; Kaspar, T.C.; Karlen, D.L.; Kohler, K.; Malone, R.W. Rye as an Energy Cover Crop: Management, Forage Quality, and Revenue Opportunities for Feed and Bioenergy. Agriculture 2022, 12, 1691. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; Larsen, S.U.; Ahring, B.K.; Uellendahl, H. Biogas production from catch crops: Increased yield by combined harvest of catch crops and straw and preservation by ensiling. Biomass Bioenergy 2015, 79, 3–11. [Google Scholar] [CrossRef]
- Franco, R.T.; Buffière, P.; Bayard, R. Optimizing storage of a catch crop before biogas production: Impact of ensiling and wilting under unsuitable weather conditions. Biomass Bioenergy 2017, 100, 84–91. [Google Scholar] [CrossRef]
- Siegrist, A.; Bowman, G.; Burg, V. Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production. Appl. Energy 2022, 327, 120075. [Google Scholar] [CrossRef]
- IEA. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 23 July 2023).
- FAO. Emissions Due to Agriculture. Global, Regional and Country Trends 1990–2018; FAOSTAT Analytical Brief 18; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/3/cb3808en/cb3808en.pdf (accessed on 23 July 2023).
- Franzluebbers, A.J. Organic residues, decomposition. In Encyclopedia of Soils in the Environment; Hillel, D., Hatfield, J.L., Powlson, D.S., Rosenzweig, C., Scow, K.M., Singer, M.J., Sparks, D.L., Eds.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2004; pp. 112–118. [Google Scholar]
- Ghimire, B.; Ghimire, R.; VanLeeuwen, D.; Mesbah, A. Cover Crop Residue Amount and Quality Effects on Soil Organic Carbon Mineralization. Sustainability 2017, 9, 2316. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kuzyakov, Y.; Heitkamp, F. Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma 2017, 304, 76–82. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, W.; Chen, C.; Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 2019, 18, e00606. [Google Scholar] [CrossRef]
- Clements, J.; White, P.F.; Buirchell, B. The root morphology of Lupinus angustifolius in relation to other Lupinus species. Aust. J. Agric. Res. 1993, 44, 1367–1375. [Google Scholar] [CrossRef]
- Redin, M.; Recous, S.; Aita, C.; Chaves, B.; Pfeifer, I.C.; Bastos, L.M.; Pilecco, G.E.; Giacomini, S.J. Root and Shoot Contribution to Carbon and Nitrogen Inputs in the Topsoil Layer in No-Tillage Crop Systems under Subtropical Conditions. Rev. Bras. Ciênc. Solo 2018, 42, e0170355. [Google Scholar] [CrossRef]
- Wilczewski, E. Utilization of Nitrogen and other Macroelements by Non-Papilionaeceous Plants Cultivated in Stubble Intercop. Ecol. Chem. Eng. A 2010, 17, 689–698. [Google Scholar]
- Inostroza, L.; Ortega-Klose, F.; Vásquez, C.; Wilckens, R. Changes in Root Architecture and Aboveground Traits of Red Clover Cultivars Driven by Breeding to Improve Persistence. Agronomy 2020, 10, 1896. [Google Scholar] [CrossRef]
- Igos, E.; Golkowska, K.; Koster, D.; Vervisch, B.; Benetto, E. Using rye as cover crop for bioenergy production: An environmental and economic assessment. Biomass Bioenergy 2016, 95, 116–123. [Google Scholar] [CrossRef]
- Maier, S.; Szerencsits, M.; Shahzad, K. Ecological evaluation of biogas from catch crops with Sustainable rocess Index (SPI). Energy. Sustain. Soc. 2017, 7, 4. [Google Scholar] [CrossRef]
- Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 2016, 179, 669–686. [Google Scholar] [CrossRef]
Family | Species | Application/Function | Distribution | References with Regard to Use as CCC |
---|---|---|---|---|
Asteraceae (alt. Compositae) | Niger, Niger seed (Guizotia abyssinica) | Soil improver, fodder; source of oil | Africa: Ethiopia (n) Africa (cult., natur.) Asia (cult. natur.) Australia (cult.) South. Europe (natur.) | [35,36,37] |
Sunflower (Helianthus annuus L.) | Fodder; honey production, oil production, ornamental, human food, | North. America (n) Widely cult. | [36] | |
Boraginaceae | Lacy phacelia, purple tansy (Phacelia tanacetifolia Benth.) | Soil improver: cover crops; honey production; ornamental function; phyto sanitary function | North America (n) Australia (natur.) Europe (natur.) | [36,37,38,39,40,41] |
Brassicaceae (alt. Cruciferae) | White mustard (Sinapis alba) | Soil improver (deep root system): cover crops; fodder; source of lipids; medicine herbs; phytosanitary function | Europe North. Africa West. Asia | [39,40,42,43,44] |
Fodder radish, Oilseed radish (Raphanus sativus) | Soil improver (deep and bulky root system), cover crop; fodder; phytosanitary function | Widely cult. | [37,39,45] | |
Camelina, false flax (Camelina sativa L.) | Soil improver: cover crop, green manure, source of oil; fodder | Asia (n) Europe (n), North America (n) Widely natur. | [35] | |
Turnip, field mustard, colbaga (Brassica rapa L.) | Soil improver: cover crop, human food; fodder | Widely cult. | [39,45] | |
Rape, rapeseed, winter canola (Brassica napus L.) | Soil improver: cover crop; fodder | Widely cult. | [45,46] | |
Fabaceae (alt. Leguminosae) | Cowpea, field pea (Vigna unguiculata L. Walp) | Soil improver: green manure, cover crop; catch crop; forage; human food | Africa (n) Widely cult. | [47,48] |
Sunn hemp, Indian hemp (Crotalaria juncea L.) | Soil improver: green manure, cover crop; forage; catch crop, nitrogen-fixing, fiber production | Asia (n) South Africa Cult. throughout tropics | [47,49] | |
Yellow lupine (Lupinus luteus L.) | Soil improver: cover and catch crops; fodder; forage; medicine herbs | North. Africa (n) South. Europe (n) Australia (cult.) West. Asia (natur.) South. Africa (natur.) | [50,51] | |
Narrowleaf lupin, narrow-leaved lupin, blue lupin (Lupinus angustifolius) | Soil improver: catch crop; fodder; forage | North. Africa (n) West. Asia (n) South. Europe (n) Australia (cult.) | [52] | |
White lupine (Lupinus albus L.) | Soil improver; cover crop; fodder; forage; ornamental function | Asia (n) Europe (n) Widely cult. | [53] | |
Alfalfa, lucerne (Medicago sativa L.) | Soil improver, cover crop, fodder | Africa (n) Asia (n) Europa (n) Widely cult. | [54,55,56] | |
Common vetch (Vicia sativa L.) | Soil improver: catch crop; fodder; forage | Africa (n) Asia (n) Europe (n) Widely cult. | [35,36,37,44,57,58] | |
Fodder vetch, hairy vetch, winter vetch (Vicia villosa Roth.) | Soil improver: catch crop; fodder; forage (but can be toxic to horses) | Africa (n) Asia (n) Europe (n) Widely cult. | [39,59,60] | |
Faba bean, fava bean, broad bean (Vicia faba L.) | Soil improver: catch crop, cover crop | Widely cult. | [39,50,58] | |
Seradela, French serradella (Ornithopus sativus Brot.) | Soil improver: catch crop; forage | North. Africa (n) South. Europe (n) Australia (cult.) Europa (cult.) Africa (natur.) | ||
Egyptian clover, berseem clove (Trifolium alexandrinum L.) | Soil improver: catch crop; forage | Africa (cult.) Asia (cult.) Australia (cult.) Europa (cult.) Northern America (cult.) | [39,58] | |
Reversed clover, Persian clover (Trifolium resupinatum L.) | Soil improver: catch crop; forage; fodder | Africa (n) Asia (n) Europa (n) Widely cult. | [61] | |
White clover (Trifolium repens L.) | Soil improver: catch crop; forage; | Africa (n) Asia (n) Europa (n) Widely cult. in temperate regions | [44] | |
Red clover (Trifolium pratense L) | Soil improver: catch crop; forage; fodder; honey production, food additive | Africa (n) Asia (n) Europa (n) Widely cult. and natur. in temperate regions | [43,46,56,62] | |
Crimson clover (Trifolium incarnatum) | Soil improver: catch crop; forage; fodder; honey production | Africa (n) Asia (n) Europa (n) Widely cult. in temperate regions | [50,52,62] | |
Pea, field pea (diverse Pisum sativum L.) | Soil improver: catch crop; human food | Africa (n) Asia (n) Europa (n) Worldwide (cult.) | [36,46,52,58,60] | |
Poaceae (alt. Gramineae) | Black oat, lopsided oat, bristle oat (Avena strigose) | Soil improver: cover crop, green manure; forage; fodder; source of oil used in cosmetics | Europe (n) South America (cult.) South. part of North America (cult.) South Africa (cult.) | [35,37,47] |
Common oat (Avena sativa L.) | Soil improver: cover crop; human food; fodder; forage | Widely cult. | [46,47,56,60] | |
Rye, common rye, winter rye, stooling rye (Secale cereale) | Soil improver: cover crop, green manure, human food; forage; fodder | Asia (n) Europa (n) Widely cult. | [39,47,52] | |
Triticale (Triticale A. Müntzing) | Soil improver: cover crop, green manure; forage, human food | Europe (cult.) Asia (cult.) South Africa (cult.) | [47,56] | |
Italian millet, foxtail millet (Setaria italica L.) | Forage, fodder, cover, green manure | South. Asia (n) Asia (cult.) Africa (cult.) South. Part of North America (cult.or natur.) | [47,60] | |
Finger millet (Eleusine coracana L. Gaertn.) | Cover, human food, fodder | Asia (cult.) South Africa (cult) | [47,49] | |
Pearl millet, bajra (Pennisetum glaucum) | Soil improver: cover crops, erosion control; forage; fodder; human food; ornamental | Asia (cult.) Africa (cult.) North America (cult.) | [47,49,58,63] | |
Japanese millet, white millet (Echinochloa esculenta) | Soil improver: cover crop; fodder; forage; human food | Africa (cult.) Asia (cult.) North America (cult.) South America (cult.) | [63] | |
Westerwold ryegrass, Italian ryegrass (Lolium multiflorum Lam.) | Soil improver: cover crop, erosion control; fodder; forage | Africa (n) Asia (n) Europa (n) North. America (natur.) | [62,64,65,66] | |
Perennial ryegrass, English ryegrass (Lolium perenne L.) | Soil improver: cover crop, erosion control; fodder; forage | Africa (n) Asia (n) Europa (n) North, America (natur.) South. America (natur.) Australasia (natur.) | [62,66,67] | |
Meadow fescue, English bluegrass (Festuca pratensis Huds.) | Soil improver: cover crop, erosion, forage | Africa (n) Asia (n) Europa (n) Widely natur. | [66] | |
Orchard grass, cocksfoot (Dactylis glomerata L.) | Soil improver: cover crop; fodder; forage; ornamental | Africa (n) Asia (n) Europa (n) North. America (cult.) Australasia (natur.) South. America (natur.) | [54,62] | |
Polygonaceae | Common buckwheat (Fagopyrum esculentum Moench) | Soil improver: cover crops, green manure; human food; forage; fodder; honey production | Asia (n) Widely cult. and natur. | [35,37,39,59] |
Crop | Part of the Plant | Methane Yield (m3 Mg−1VS) | Reference |
---|---|---|---|
White mustard (Sinapis alba) | Tops | 352 | [120] |
Oil seed rape (Brassica napus spp. oleifera) | Straw | 420 | [121] |
Radish (Raphanus sativus) | Shoots | 293–304 | [122] |
Rape (Brassica napus arvensis) | Tops | 334 | [120] |
Rape (Brassica napus) | Not reported | 340 | [123] |
Winter rye (Secale cereale montanum) | Straw | 360 | [121] |
Rye (Secale cereale) | Whole plants | 140–275 | [87] |
Triticale (Triticale) | Whole plants | 212–286 | [87] |
Triticale (Triticale) | Whole plants | 396 | [124] |
Faba bean (Vicia faba) | Straw | 440 | [125] |
Faba bean (Vicia faba) | Whole plants | 387 | [126] |
Ryegrass (Lolium sp.) | - | 410 | [123] |
Ryegrass (Lolium sp.) | - | 490 | [104] |
Clover (Trifolium sp.) | Vegetative stage | 210 | [127] |
Clover (Trifolium sp.) | Flowering stage | 140 | [127] |
Grass hay | - | 350 | [127] |
Oat | - | 260 | [127] |
Lupine (Lupinus polyphyllus) | Whole plants | 310–360 | [120] |
Vetch oat (50% Vicia sativa) | Whole plants | 400–410 | [120] |
Red clover (Trifolium pratense) | Whole plants | 310–320 | [120] |
Red clover (Trifolium pratense) | Whole plants | 238–293 | [128] |
Red/white clover–ryegrass Trifolium pratense, Trifolium repens L, Lolium perenne L.) | Whole plants | 281–315 | [128] |
Corn | Corn stover | 256 ± 15 | [129] |
Family | Species | Shoot | Roots | Root/Shoot Ratio (-) | References |
---|---|---|---|---|---|
Brassicaceae | Oilseed radish (Raphanus sativus) | 2.035 Mg/ha | 1.053 Mg/ha | 0.52 | [53] |
Oilseed radish (Raphanus sativus) | 6.81 Mg/ha | 0.86 Mg/ha | 0.13 | [160] | |
Oilseed rape (Brassica napus) | 2.77 Mg/ha | 0.84 Mg/ha | 0.30 | [160] | |
Boraginaceae | Phacelia (Phacelia tanacetifolia) | 4.36 Mg/ha | 2.56 Mg/ha | 0.59 | [161] |
Fabaceae | Crimson clover (Trifolium incarnatum) | 2.088 Mg/ha | 0.296 Mg/ha | 0.14 | [53] |
Red clover (Trifolium pratense), diff. populat., av. value | 43.65 g/meso-cosm | 6.38 g/meso-cosm | 0.15 | [162] | |
Yellow lupine (Lupinus luteolus) | 1.06 g/pot | 0.26 g/pot | 0.25 | [159] | |
Narrowleaf lupin (Lupinus angustifolius) | 1.43 g/pot | 0.29 g/pot | 0.20 | [159] | |
White lupin (Lupinus albus) | 2.842 Mg/ha | 0.416 Mg/ha | 0.15 | [53] | |
White lupin (Lupinus albus) | 2.13 g/pot | 0.51 g/pot | 0.24 | [159] | |
Hairy vetch (Vicia villosa) | 1.376 Mg/ha | 0.142 Mg/ha | 0.10 | [53] | |
Common vetch (Vicia sativa) | 3.67 Mg/ha | 1.33 Mg/ha | 0.36 | [160] | |
Pea (Pisum sativum) | 5.43 Mg/ha | 0.66 Mg/ha | 0.12 | [160] | |
Blue lupine (Lupinus angustifolius) | 5.54 Mg/ha | 0.85 Mg/ha | 0.15 | [160] | |
Indian hemp (Crotalaria juncea) | 8.90 Mg/ha | 0.88 Mg/ha | 0.10 | [160] | |
Poaceae | Italian ryegrass (Lolium multiflorum) | 2.456 Mg/ha | 0.862 Mg/ha | 0.35 | [53] |
Triticale (Triticale rimpaui) | 4.26 Mg/ha | 1.40 Mg/ha | 0.32 | [160] | |
Ryegrass (Lolium multiflorum) | 5.48 Mg/ha | 1.15 Mg/ha | 0.21 | [160] | |
Black oat (Avena strigosa) | 7.98 Mg/ha | 1.85 Mg/ha | 0.23 | [160] | |
Polygonaceae | Common buckwheat (Fagopyrum esculentum) | 3.854 Mg/ha | 0.373 Mg/ha | 0.10 | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słomka, A.; Pawłowska, M. Catch and Cover Crops’ Use in the Energy Sector via Conversion into Biogas—Potential Benefits and Disadvantages. Energies 2024, 17, 600. https://doi.org/10.3390/en17030600
Słomka A, Pawłowska M. Catch and Cover Crops’ Use in the Energy Sector via Conversion into Biogas—Potential Benefits and Disadvantages. Energies. 2024; 17(3):600. https://doi.org/10.3390/en17030600
Chicago/Turabian StyleSłomka, Alicja, and Małgorzata Pawłowska. 2024. "Catch and Cover Crops’ Use in the Energy Sector via Conversion into Biogas—Potential Benefits and Disadvantages" Energies 17, no. 3: 600. https://doi.org/10.3390/en17030600
APA StyleSłomka, A., & Pawłowska, M. (2024). Catch and Cover Crops’ Use in the Energy Sector via Conversion into Biogas—Potential Benefits and Disadvantages. Energies, 17(3), 600. https://doi.org/10.3390/en17030600