A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues
Abstract
:1. Introduction
2. Fuel Cells Technologies
3. Fuel Cell Modelling
4. State of Health (SOH)
5. Fault Diagnostics
5.1. Permanent Faults
5.1.1. Absence of Catalyst
5.1.2. CO Poisoning
5.1.3. Reactant Leakage
5.1.4. Fuel Cell Aging
5.2. Transient Fault
5.2.1. Water Management
- Cell design (GDL effect)
- Flooding/drying
5.2.2. Fuel Starvation
5.2.3. Short Circuit
5.3. Hardware/External Faults
6. Diagnostic Tools
6.1. Residual-Based Approaches
6.2. Data-Based Approaches
6.2.1. Signal-Based Techniques
6.2.2. Statistical Methods
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FC | Fuel Cell |
MCFC | Molten Carbonate Fuel Cell |
AFC | Alkaline Fuel Cell |
PAFC | Phosphoric Acid Fuel Cell |
DMFC | Direct Methanol Fuel Cell |
SOFC | Solid Oxide Fuel Cell |
PEMFC | Proton Exchange Membrane Fuel Cell |
GDL | Gas Diffusion Layer |
ACC | Accuracy |
CTR | Computational time required |
CCR | Computational Capacity Required |
EIS | Electrical Impedance Spectroscopy |
SOH | State Of Health |
RUL | Remaining Useful Lifetime |
PTFE | Poly tetrafluoroethylene |
FFT | Fast Fourier Transform |
BN | Bayesian Network |
DWT | Discrete Wavelet Transform |
UC | Ultracapacitor |
LSV | Linear Sweep Voltammetry |
PCA | Principal Component Analysis |
KPCA | Kernel Principal Component Analysis |
WPT | Wavelet Packet Transform |
SVD | Singular Value Decomposition |
FTA | Fault Tree Analysis |
DFT | Discrete Fourier Transform |
IMFs | Intrinsic Mode Functions |
ANN | Artificial Neural Networks |
ENN | Elman Neural Network |
DEA | Dead-End Mode |
SVM | Support Vector Machine |
EN | Electrochemical Noise |
Symbols | |
°C | Temperature |
Ni | Nickel |
NiO | Nickel Oxide |
Li2CO3 | Lithium carbonate |
KOH | Potassium hydroxide |
C | Carbon |
Pt | Platinum |
YSZ | Yttria-Stabilized Zirconia |
LSM | Lanthanum Strontium Manganite |
SiC | Silicon carbide |
CO | Carbon Monoxide |
Fuel Cell Voltage | |
Fuel Cell Current | |
Number of Cells | |
Nerst Potential | |
Universal Gas Constant | |
Partial Pressure of the Reactants | |
Charge Transfer Coefficient | |
Farad Constant | |
Exchange Current Density | |
Internal Current density | |
Fuel Cell Internal Resistance | |
Number of Exchange Electrons | |
Maximum current | |
Fuel Cell Temperature | |
W | watt |
OCV | Open-Circuit Voltage |
References
- Lagioia, G.; Spinelli, M.P.; Amicarelli, V. Blue and green hydrogen energy to meet European Union decarbonisation objectives. An overview of perspectives and the current state of affairs. Int. J. Hydrogen Energy 2023, 48, 1304–1322. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Herve Bang, Y.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Dutta, S. A review on production, storage of hydrogen and its utilization as an energy resource. J. Ind. Eng. Chem. 2014, 20, 1148–1156. [Google Scholar] [CrossRef]
- Spiegel, C.; York, N.; San, C.; Lisbon, F.; Madrid, L.; City, M.; New, M.; San, D.; Singapore, J.S.; Toronto, S. Designing and Building Fuel Cells; McGraw-Hill: New York, NY, USA, 2007; ISBN 0-07-148977-0. [Google Scholar]
- Al-Baghdadi, M.A.R.S. Proton exchange membrane fuel cells modeling: A review of the last ten years results of the Fuel Cell Research Center-IEEF. Int. J. Energy Environ. 2017, 8, 1–28. [Google Scholar]
- Lin, R.H.; Xi, X.N.; Wang, P.N.; Wu, B.D.; Tian, S.M. Review on hydrogen fuel cell condition monitoring and prediction methods. Int. J. Hydrogen Energy 2019, 44, 5488–5498. [Google Scholar] [CrossRef]
- Onanena, R.; Oukhellou, L.; Candusso, D.; Same, A.; Hissel, D.; Aknin, P. Estimation of fuel cell operating time for predictive maintenance strategies. Int. J. Hydrogen Energy 2010, 35, 8022–8029. [Google Scholar] [CrossRef]
- Knowles, M.; Ren, Q.; Baglee, D. The state of the art in Fuel Cell condition monitoring and maintenance. World Electr. Veh. J. 2010, 4, 487–494. [Google Scholar] [CrossRef]
- Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y.S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 2007, 107, 3904–3951. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Zhang, P.; Du, C.; Wu, D. A review of fault diagnosis and fault-tolerant control of vehicular polymer electrolyte membrane fuel cell power system. J. Phys. Conf. Ser. 2022, 2206, 012015. [Google Scholar] [CrossRef]
- Brik, K.; Ben Ammar, F.; Djerdir, A.; Miraoui, A. Causal and fault trees analysis of proton exchange membrane fuel cell degradation. J. Fuel Cell Sci. Technol. 2015, 12, 051002. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, B. Diagnosis of PEM fuel cell stack dynamic behaviors. J. Power Sources 2008, 177, 83–95. [Google Scholar] [CrossRef]
- Miller, M.; Bazylak, A. A review of polymer electrolyte membrane fuel cell stack testing. J. Power Sources 2011, 196, 601–613. [Google Scholar] [CrossRef]
- Aitouche, A.; Olteanu, S.C.; Ould Bouamama, B. A Survey of Diagnostic of Fuel Cell Stack Systems; IFAC: Prague, Czech Republic, 2012; Volume 45, ISBN 9783902823090. [Google Scholar]
- Zheng, Z.; Petrone, R.; Péra, M.C.; Hissel, D.; Becherif, M.; Pianese, C.; Yousfi Steiner, N.; Sorrentino, M. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. Int. J. Hydrogen Energy 2013, 38, 8914–8926. [Google Scholar] [CrossRef]
- Silveira, J.L.; Martins Leal, E.; Ragonha, L.F. Analysis of a molten carbonate fuel cell: Cogeneration to produce electricity and cold water. Energy 2001, 26, 891–904. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, G.; Hassanpour, A.; Zheng, D.; Wang, S.; Liao, S.; Chen, Z.; Sun, S. Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system. Appl. Energy 2021, 283, 116376. [Google Scholar] [CrossRef]
- Sammes, N.; Bove, R.; Stahl, K. Phosphoric acid fuel cells: Fundamentals and applications. Curr. Opin. Solid State Mater. Sci. 2004, 8, 372–378. [Google Scholar] [CrossRef]
- Kamarudin, S.K.; Achmad, F.; Daud, W.R.W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energy 2009, 34, 6902–6916. [Google Scholar] [CrossRef]
- Das, S.; Das, D.; Patra, A. Operation of Solid Oxide Fuel Cell based Distributed Generation. Energy Procedia 2014, 54, 439–447. [Google Scholar] [CrossRef]
- Andrade, P.; Bento, F.; Alcaso, A.N.; Marques Cardoso, A.J. Output Current Control for Two-Switch Boost Buck Converters in Fuel Cell Applications for DC Microgrids. In Proceedings of the 2023 International Conference on Clean Electrical Power (ICCEP), Terrasini, Italy, 27–29 June 2023; pp. 136–140. [Google Scholar] [CrossRef]
- Jiang, S.P.; Li, Q. Phosphoric Acid Fuel Cells. In Introduction to Fuel Cells; Springer: Singapore, 2021; pp. 649–671. ISBN 0387355375. [Google Scholar]
- Sun, Q.; Lin, D.; Khayatnezhad, M.; Taghavi, M. Investigation of phosphoric acid fuel cell, linear Fresnel solar reflector and Organic Rankine Cycle polygeneration energy system in different climatic conditions. Process Saf. Environ. Prot. 2021, 147, 993–1008. [Google Scholar] [CrossRef]
- Szablowski, L.; Dybinski, O.; Szczesniak, A.; Milewski, J. Mathematical Model of Steam Reforming in the Anode Channel of a Molten Carbonate Fuel Cell. Energies 2022, 15, 608. [Google Scholar] [CrossRef]
- Contreras, R.R.; Almarza, J.; Rincón, L. Molten carbonate fuel cells: A technological perspective and review. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 7, 1273–1283. [Google Scholar] [CrossRef]
- Izurieta, E.M.; Cañete, B.; Pedernera, M.N.; López, E. Biofuels-based hybrid MCFC/gas turbine plant design and simulation for power and heat generation. Braz. J. Chem. Eng. 2022, 39, 759–771. [Google Scholar] [CrossRef]
- Archit Rai, S.P. Prabhansu Renewable energy for sustainable growth assessment. In Renewable Energy for Sustainable Growth Assessment; Nayan Kumar, P., Ed.; John Wiley & Sons: New York, NY, USA, 2022; pp. 1–656. ISBN 9781119785460. [Google Scholar]
- Jang, I.; Ahn, M.; Lee, S.; Yoo, S.J. Surfactant assisted geometric barriers on PtNi@C electrocatalyst for phosphoric acid fuel cells. J. Ind. Eng. Chem. 2022, 110, 198–205. [Google Scholar] [CrossRef]
- Nohara, T.; Arita, T.; Tabata, K.; Saito, T.; Shimada, R.; Nakazaki, H.; Suzuki, Y.; Sato, R.; Masuhara, A. Novel Filler-Filled-Type Polymer Electrolyte Membrane for PEFC Employing Poly(vinylphosphonic acid)-b-polystyrene-Coated Cellulose Nanocrystals as a Filler. ACS Appl. Mater. Interfaces 2022, 14, 8353–8360. [Google Scholar] [CrossRef] [PubMed]
- Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 1997, 38, 445–457. [Google Scholar] [CrossRef]
- Rao, A.S.; Rashmi, K.R.; Manjunatha, D.V.; Jayarama, A.; Veena Devi Shastrimath, V.; Pinto, R. Methanol crossover reduction and power enhancement of methanol fuel cells with polyvinyl alcohol coated Nafion membranes. Mater. Today Proc. 2019, 35, 344–351. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4269. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Chaedir, B.A.; Sasmito, A.P.; Shamim, T. Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions. Appl. Energy 2021, 283, 116359. [Google Scholar] [CrossRef]
- Yan, S.; Yang, M.; Sun, C.; Xu, S. Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Barbir, F. PEM Fuel Cells: Theory and Practice, 1st ed.; Dorf, R.C., Ed.; Elsevier Academic Press: San Diego, CA, USA, 2005. [Google Scholar]
- Kazim, A. Determination of an Optimum Performance of a PEM Fuel Cell Based on Its Limiting Current Density; Springer: Dordrecht, The Netherlands, 2004; pp. 159–166. [Google Scholar] [CrossRef]
- Corrêa, J.M.; Farret, F.A.; Popov, V.A.; Simões, M.G. Sensitivity Analysis of the Modeling Parameters Used in Simulation of Proton Exchange Membrane Fuel Cells. IEEE Trans. Energy Convers. 2005, 20, 211–218. [Google Scholar] [CrossRef]
- Santarelli, M.G.; Torchio, M.F.; Cochis, P. Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature. J. Power Sources 2006, 159, 824–835. [Google Scholar] [CrossRef]
- Fraser, S.D.; Hacker, V. An empirical fuel cell polarization curve fitting equation for small current densities and no-load operation. J. Appl. Electrochem. 2007, 38, 451–456. [Google Scholar] [CrossRef]
- Boscaino, V.; Miceli, R.; Capponi, G.; Casadei, D. Fuel cell modelling and test: Experimental validation of model accuracy. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 1795–1800. [Google Scholar] [CrossRef]
- Forrai, A.; Funato, H.; Yanagita, Y.; Kato, Y. Fuel-cell parameter estimation and diagnostics. IEEE Trans. Energy Convers. 2005, 20, 668–675. [Google Scholar] [CrossRef]
- Guarino, A.; Trinchero, R.; Canavero, F.; Spagnuolo, G. A fast fuel cell parametric identification approach based on machine learning inverse models. Energy 2022, 239, 122140. [Google Scholar] [CrossRef]
- Nabag, M.; Fardoun, A.; Hejase, H.; Al-Marzouqi, A. Review of Dynamic Electric Circuit Models for PEM Fuel Cells. In Proceedings of the ICREGA’14: The Third International Conference on Renewable Energy: Generation and Applications, Al-Ain, United Arab Emirates, 4–6 February 2014; Springer: Cham, Switzerland, 2014; pp. 59–71. [Google Scholar] [CrossRef]
- Restrepo, C.; Garcia, G.; Calvente, J.; Giral, R.; Martinez-Salamero, L. Model identification of a Proton-Exchange Membrane Fuel-Cell from an input-output experiment: The diffusive representation approach. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3578–3583. [Google Scholar] [CrossRef]
- Restrepo, C.; Torres, C.; Calvente, J.; Giral, R.; Leyva, R. Simulator of a PEM fuel-cell stack based on a dynamic model. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 2796–2801. [Google Scholar] [CrossRef]
- Gruber, J.K.; Bordons, C.; Oliva, A. Nonlinear MPC for the airflow in a PEM fuel cell using a Volterra series model. Control. Eng. Pract. 2012, 20, 205–217. [Google Scholar] [CrossRef]
- Ziogou, C.; Papadopoulou, S.; Georgiadis, M.C.; Voutetakis, S. On-line nonlinear model predictive control of a PEM fuel cell system. J. Process Control 2013, 23, 483–492. [Google Scholar] [CrossRef]
- Restrepo, C.; Konjedic, T.; Guarnizo, C.; Avino-Salvado, O.; Calvente, J.; Romero, A.; Giral, R. Simplified mathematical model for calculating the oxygen excess ratio of a PEM fuel cell system in real-time applications. IEEE Trans. Ind. Electron. 2014, 61, 2816–2825. [Google Scholar] [CrossRef]
- Djilali, N.; Lu, D. Influence of heat transfer on gas and water transport in fuel cells. Int. J. Therm. Sci. 2002, 41, 29–40. [Google Scholar] [CrossRef]
- St-Pierre, J. Simple mathematical model for water diffusion in Nafion® membranes. Proc.-Electrochem. Soc. 2005, 2002-31, 373–387. [Google Scholar] [CrossRef]
- Chang, P.A.C.; St-Pierre, J.; Stumper, J.; Wetton, B. Flow distribution in proton exchange membrane fuel cell stacks. J. Power Sources 2006, 162, 340–355. [Google Scholar] [CrossRef]
- Owejan, J.P.; Trabold, T.A.; Gagliardo, J.J.; Jacobson, D.L.; Carter, R.N.; Hussey, D.S.; Arif, M. Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation. J. Power Sources 2007, 171, 626–633. [Google Scholar] [CrossRef]
- Du, F.; Dao, T.A.; Peitl, P.V.J.; Bauer, A.; Preuss, K.; Bonastre, A.M.; Sharman, J.; Spikes, G.; Perchthaler, M.; Schmidt, T.J.; et al. Effects of PEMFC Operational History under Dry/Wet Conditions on Additional Voltage Losses due to Ionomer Migration. J. Electrochem. Soc. 2020, 167, 144513. [Google Scholar] [CrossRef]
- Hinaje, M.; Sadli, I.; Martin, J.P.; Thounthong, P.; Raël, S.; Davat, B. Online humidification diagnosis of a PEMFC using a static DC-DC converter. Int. J. Hydrogen Energy 2009, 34, 2718–2723. [Google Scholar] [CrossRef]
- Grötsch, M.; Mangold, M.; Kienle, A. Analysis of the coupling behavior of PEM fuel cells and DC-DC converters. Energies 2009, 2, 71–96. [Google Scholar] [CrossRef]
- Hissel, D.; Candusso, D.; Harel, F. Fuzzy-clustering durability diagnosis of polymer electrolyte fuel cells dedicated to transportation applications. IEEE Trans. Veh. Technol. 2007, 56, 2414–2420. [Google Scholar] [CrossRef]
- Sutharssan, T.; Montalvao, D.; Chen, Y.K.; Wang, W.C.; Pisac, C.; Elemara, H. A review on prognostics and health monitoring of proton exchange membrane fuel cell. Renew. Sustain. Energy Rev. 2017, 75, 440–450. [Google Scholar] [CrossRef]
- Becherif, M.; Péra, M.C.; Hissel, D.; Zheng, Z. Determination of the health state of fuel cell vehicle for a clean transportation. J. Clean. Prod. 2018, 171, 1510–1519. [Google Scholar] [CrossRef]
- Pang, R.; Zhang, C.; Dai, H.; Bai, Y.; Hao, D.; Chen, J.; Zhang, B. Intelligent health states recognition of fuel cell by cell voltage consistency under typical operating parameters. Appl. Energy 2022, 305, 117735. [Google Scholar] [CrossRef]
- Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M.C.; Zerhouni, N. Prognostics and Health Management of PEMFC—State of the art and remaining challenges. Int. J. Hydrogen Energy 2013, 38, 15307–15317. [Google Scholar] [CrossRef]
- Zhang, X.; Pisu, P. Prognostic-oriented fuel cell catalyst aging modeling and its application to health-monitoring and prognostics of a PEM fuel cell. Int. J. Progn. Heal. Manag. 2014, 5, 1–16. [Google Scholar] [CrossRef]
- Cardoso, A.J.M. Introduction. In Diagnosis and Fault Tolerance of Electrical Machines, Power Electronics and Drives; The Institution of Engineering and Technology: Stevenage, UK, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Salim, R.I.; Noura, H.; Fardoun, A. A review on fault diagnosis tools of the proton exchange Membrane Fuel Cell. In Proceedings of the 2013 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, 9–11 October 2013; pp. 686–693. [Google Scholar] [CrossRef]
- Khan, S.S.; Shareef, H.; Ibrahim, A.A. Improved Semi-empirical Model of Proton Exchange Membrane Fuel Cell Incorporating Fault Diagnostic Feature. J. Mod. Power Syst. Clean Energy 2021, 9, 1566–1573. [Google Scholar] [CrossRef]
- Singh, Y.; White, R.T.; Najm, M.; Boswell, A.; Orfino, F.P.; Dutta, M.; Kjeang, E. Mitigation of Mechanical Membrane Degradation in Fuel Cells by Controlling Electrode Morphology: A 4D In Situ Structural Characterization. J. Electrochem. Soc. 2021, 168, 034521. [Google Scholar] [CrossRef]
- Hernandez, A.; Hissel, D.; Outbib, R. Modeling and fault diagnosis of a polymer electrolyte fuel cell using electrical equivalent analysis. IEEE Trans. Energy Convers. 2010, 25, 148–160. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, C.H.; Liu, Y. The fault analysis and diagnosis of proton exchange membrane fuel cell stack. Adv. Mater. Res. 2011, 197–198, 705–710. [Google Scholar] [CrossRef]
- Frappé, E.; De Bernardinis, A.; Bethoux, O.; Candusso, D.; Harel, F.; Marchand, C.; Coquery, G. PEM fuel cell fault detection and identification using differential method: Simulation and experimental validation. EPJ Appl. Phys. 2011, 54, 1–11. [Google Scholar] [CrossRef]
- Wasterlain, S.; Candusso, D.; Harel, F.; Hissel, D.; Franois, X. Development of new test instruments and protocols for the diagnostic of fuel cell stacks. J. Power Sources 2011, 196, 5325–5333. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, X.; Hu, X.; Guo, Z.; Ye, Q.; Li, L.; Song, J.; Song, P. The review of the degradation mechanism of the catalyst layer of membrane electrode assembly in the proton exchange membrane fuel cell. IOP Conf. Ser. Earth Environ. Sci. 2020, 558, 052041. [Google Scholar] [CrossRef]
- Yousfi-Steiner, N.; Moçotéguy, P.; Candusso, D.; Hissel, D. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation. J. Power Sources 2009, 194, 130–145. [Google Scholar] [CrossRef]
- Gottesfeld, W.G.S. Degradation of Catalyst for PEMFCs. J. Electrochem. Soc. 1993, 1, 2872–2877. [Google Scholar]
- Yu, X.; Ye, S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J. Power Sources 2007, 172, 145–154. [Google Scholar] [CrossRef]
- Silva, R.E.; Harel, F.; Jemeï, S.; Gouriveau, R.; Hissel, D.; Boulon, L.; Agbossou, K. Proton exchange membrane fuel cell operation and degradation in short-circuit. Fuel Cells 2014, 14, 894–905. [Google Scholar] [CrossRef]
- Dijoux, E.; Steiner, N.Y.; Benne, M.; Péra, M.C.; Pérez, B.G. A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems. J. Power Sources 2017, 359, 119–133. [Google Scholar] [CrossRef]
- Fukuhara, S.; Marx, N.; Ettihir, K.; Boulon, L.; Ait-Amirat, Y.; Becherif, M. A lumped fluidic model of an anode chamber for fault tolerant strategy design. Int. J. Hydrogen Energy 2016, 41, 5037–5047. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Wang, H.; Blanco, M.; Martin, J.J.; Zhang, J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques. Int. J. Hydrogen Energy 2008, 33, 1735–1746. [Google Scholar] [CrossRef]
- Wu, J.; Zi Yuan, X.; Wang, H.; Blanco, M.; Martin, J.J.; Zhang, J. Diagnostic tools in PEM fuel cell research: Part II. Physical/chemical methods. Int. J. Hydrogen Energy 2008, 33, 1747–1757. [Google Scholar] [CrossRef]
- Sung, L.Y.; Hwang, B.J.; Hsueh, K.L.; Tsau, F.H. Effects of anode air bleeding on the performance of CO-poisoned proton-exchange membrane fuel cells. J. Power Sources 2010, 195, 1630–1639. [Google Scholar] [CrossRef]
- Schonvogel, D.; Büsselmann, J.; Wagner, P.; Kraus, H.; Misz, U.; Langnickel, H.; Dyck, A. Effect of air contamination by sulfur dioxide on the high temperature PEM fuel cell. Int. J. Hydrogen Energy 2021, 46, 6751–6761. [Google Scholar] [CrossRef]
- Wagner, N.; Schulze, M. Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt-Ru anodes in a membrane fuel cell (PEFC). Electrochim. Acta 2003, 48, 3899–3907. [Google Scholar] [CrossRef]
- Le Canut, J.-M.; Abouatallah, R.M.; Harrington, D.A. Detection of Membrane Drying, Fuel Cell Flooding, and Anode Catalyst Poisoning on PEMFC Stacks by Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2006, 153, A857. [Google Scholar] [CrossRef]
- Baschuk, J.J.; Li, X. Carbon monoxide poisoning of proton exchange membrane fuel cells. Int. J. Energy Res. 2001, 713, 695–713. [Google Scholar] [CrossRef]
- Murthy, M.; Esayian, M.; Lee, W.; Zee, J.W. Van The Effect of Temperature and Pressure on the Performance of a PEMFC Exposed to Transient CO Concentrations The Effect of Temperature and Pressure on the Performance of a PEMFC Exposed to Transient CO Concentrations. J. Electrochem. Soc. 2003, 150, A29. [Google Scholar] [CrossRef]
- Choi, W.; Enjeti, P.N.; Appleby, A.J. An Advanced Power Converter Topology to Significantly Improve the CO Tolerance of the PEM Fuel Cell Power Systems. In Proceedings of the Conference Record of the 2004 IEEE Industry Applications Conference, 2004, 39th IAS Annual Meeting, Seattle, WA, USA, 3–7 October 2004; Volume 2, pp. 1185–1191. [Google Scholar] [CrossRef]
- Collong, S.; Kouta, R. Fault tree analysis of proton exchange membrane fuel cell system safety. Int. J. Hydrogen Energy 2015, 40, 8248–8260. [Google Scholar] [CrossRef]
- Ingimundarson, A.; Stefanopoulou, A.G.; McKay, D.A. Model-based detection of hydrogen leaks in a fuel cell stack. IEEE Trans. Control. Syst. Technol. 2008, 16, 1004–1012. [Google Scholar] [CrossRef]
- Tian, G.; Wasterlain, S.; Endichi, I.; Candusso, D.; Harel, F.; François, X.; Péra, M.C.; Hissel, D.; Kauffmann, J.M. Diagnosis methods dedicated to the localisation of failed cells within PEMFC stacks. J. Power Sources 2008, 182, 449–461. [Google Scholar] [CrossRef]
- Tian, G.; Wasterlain, S.; Candusso, D.; Harel, F.; Hissel, D.; François, X. Identification of failed cells inside PEMFC stacks in two cases: Anode/cathode crossover and anode/cooling compartment leak. Int. J. Hydrogen Energy 2010, 35, 2772–2776. [Google Scholar] [CrossRef]
- Zhou, S.; Jervis, R. A Review of Polymer Electrolyte Fuel Cells Fault Diagnosis: Progress and Perspectives. Chemistry-Methods 2024, 4, e202300030. [Google Scholar] [CrossRef]
- Escobet, T.; Feroldi, D.; de Lira, S.; Puig, V.; Quevedo, J.; Riera, J.; Serra, M. Model-based fault diagnosis in PEM fuel cell systems. J. Power Sources 2009, 192, 216–223. [Google Scholar] [CrossRef]
- Rosich, A.; Nejjari, F.; Sarrate, R. Fuel Cell System Diagnosis Based on a Causal Structural Model; IFAC: Prague, Czech Republic, 2009; Volume 42, ISBN 9783902661463. [Google Scholar]
- Cadet, C.; Jemeï, S.; Druart, F.; Hissel, D. Diagnostic tools for PEMFCs: From conception to implementation. Int. J. Hydrogen Energy 2014, 39, 10613–10626. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, H.; Zhu, J.; Guo, Y. Fault monitoring and control of PEM fuel cell as backup power for UPS applications. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 631–638. [Google Scholar] [CrossRef]
- Onanena, R.; Oukhellou, L.; Candusso, D.; Harel, F.; Hissel, D.; Aknin, P. Fuel cells static and dynamic characterizations as tools for the estimation of their ageing time. Int. J. Hydrogen Energy 2011, 36, 1730–1739. [Google Scholar] [CrossRef]
- Wasterlain, S.; Candusso, D.; Harel, F.; François, X.; Péra, M.C.; Hissel, D. Durability test results of a polymer electrolyte membrane fuel cell operated at overnominal temperature with low humidified reactants. J. Fuel Cell Sci. Technol. 2010, 7, 0245021–0245024. [Google Scholar] [CrossRef]
- Gerard, M.; Poirot-Crouvezier, J.P.; Hissel, D.; Ṕra, M.C. Ripple current effects on PEMFC aging test by experimental and modeling. J. Fuel Cell Sci. Technol. 2011, 8, 021004. [Google Scholar] [CrossRef]
- Yildiz, E.; Vural, B.; Akar, F. Current ripple minimization of a PEM fuel cell via an interleaved converter to prolong the stack life. In Proceedings of the 2016 19th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 29 May–1 June 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, J.; Song, C.; Zhang, J. Accelerated Lifetime Testing for Proton Exchange Membrane Fuel Cells Using Extremely High Temperature and Unusually High Load. J. Fuel Cell Sci. Technol. 2011, 8, 051006. [Google Scholar] [CrossRef]
- Yousfi-Steiner, N.; Moçotéguy, P.; Candusso, D.; Hissel, D.; Hernandez, A.; Aslanides, A. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. J. Power Sources 2008, 183, 260–274. [Google Scholar] [CrossRef]
- Steiner, N.Y.; Candusso, D.; Hissel, D.; Mooteguy, P. Model-based diagnosis for proton exchange membrane fuel cells. Math. Comput. Simul. 2010, 81, 158–170. [Google Scholar] [CrossRef]
- Zawodzinski, T.A.; Derouin, C.; Radzinski, S.; Sherman, R.J.; Smith, V.T.; Springer, T.E.; Gottesfeld, S. Water Uptake by and Transport Through Nafion® 117 Membranes. J. Electrochem. Soc. 1993, 140, 1041–1047. [Google Scholar] [CrossRef]
- Eckl, R.; Zehtner, W.; Leu, C.; Wagner, U. Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack. J. Power Sources 2004, 138, 137–144. [Google Scholar] [CrossRef]
- Wilkinson, D.P.; Voss, H.H.; Prater, K. Water management and stack design for solid polymer fuel cells. J. Power Sources 1994, 49, 117–127. [Google Scholar] [CrossRef]
- Bevers, D.; Rogers, R.; Von Bradke, M. Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells. J. Power Sources 1996, 63, 193–201. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 2008, 178, 103–117. [Google Scholar] [CrossRef]
- Jordan, L.R.; Shukla, A.K.; Behrsing, T.; Avery, N.R.; Muddle, B.C.; Forsyth, M. Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure. J. Appl. Electrochem. 2000, 30, 641–646. [Google Scholar] [CrossRef]
- Passalacqua, E.; Squadrito, G.; Lufrano, F.; Patti, A.; Giorgi, L.; Conversion, E.E. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes. J. Appl. Electrochem. 2001, 31, 449–454. [Google Scholar] [CrossRef]
- Ge, S.; Wang, C.-Y. Liquid Water Formation and Transport in the PEFC Anode. J. Electrochem. Soc. 2007, 154, B998. [Google Scholar] [CrossRef]
- Holmström, N.; Ihonen, J.; Lundblad, A.; Lindbergh, G. The influence of the gas diffusion layer on water management in polymer electrolyte fuel cells. Fuel Cells 2007, 7, 306–313. [Google Scholar] [CrossRef]
- Chen, J. Dominant frequency of pressure drop signal as a novel diagnostic tool for the water removal in proton exchange membrane fuel cell flow channel. J. Power Sources 2010, 195, 1177–1181. [Google Scholar] [CrossRef]
- Hakenjos, A.; Muenter, H.; Wittstadt, U.; Hebling, C. A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding. J. Power Sources 2004, 131, 213–216. [Google Scholar] [CrossRef]
- Barbir, F.; Gorgun, H.; Wang, X. Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. J. Power Sources 2005, 141, 96–101. [Google Scholar] [CrossRef]
- Ma, H.P.; Zhang, H.M.; Hu, J.; Cai, Y.H.; Yi, B.L. Diagnostic tool to detect liquid water removal in the cathode channels of proton exchange membrane fuel cells. J. Power Sources 2006, 162, 469–473. [Google Scholar] [CrossRef]
- White, R.J.; Ghez, A.M. Current Interruption—Instrumentation and Applications. J. Electrochem. Soc. 1987, 134, 539–546. [Google Scholar]
- Wang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M.E. Electrochemical impedance spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 41. [Google Scholar] [CrossRef]
- Legros, B.; Thivel, P.X.; Bultel, Y.; Nogueira, R.P. First results on PEMFC diagnosis by electrochemical noise. Electrochem. Commun. 2011, 13, 1514–1516. [Google Scholar] [CrossRef]
- Gebregergis, A.; Pillay, P.; Rengaswamy, R. PEMFC fault diagnosis, modeling, and mitigation. IEEE Trans. Ind. Appl. 2010, 46, 295–303. [Google Scholar] [CrossRef]
- Qin, C.; Wang, J.; Yang, D.; Li, B.; Zhang, C. Proton exchange membrane fuel cell reversal: A review. Catalysts 2016, 6, 197. [Google Scholar] [CrossRef]
- Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques. J. Power Sources 2010, 195, 984–993. [Google Scholar] [CrossRef]
- Riascos, L.A.M.; Cozman, F.G.; Miyagi, P.E.; Simões, M.G. Bayesian network supervision on fault tolerant fuel cells. In Proceedings of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 8–12 October 2006; Volume 2, pp. 1059–1066. [Google Scholar] [CrossRef]
- Riascos, L.A.M.; Simoes, M.G.; Miyagi, P.E. A Bayesian network fault diagnostic system for proton exchange membrane fuel cells. J. Power Sources 2007, 165, 267–278. [Google Scholar] [CrossRef]
- Candusso, D.; De Bernardinis, A.; Péra, M.C.; Harel, F.; François, X.; Hissel, D.; Coquery, G.; Kauffmann, J.M. Fuel cell operation under degraded working modes and study of diode by-pass circuit dedicated to multi-stack association. Energy Convers. Manag. 2008, 49, 880–895. [Google Scholar] [CrossRef]
- De Bernardinis, A.; Candusso, D.; Harel, F.; François, X.; Coquery, G. Experiments of a 20 cell PEFC operating under fault conditions with diode by-pass circuit for uninterrupted power delivery. Energy Convers. Manag. 2010, 51, 1044–1054. [Google Scholar] [CrossRef]
- Zheng, Z.; Petrone, R.; Pera, M.C.; Hissel, D.; Becherif, M.; Pianese, C. Diagnosis of a commercial PEM fuel cell stack via incomplete spectra and fuzzy clustering. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1595–1600. [Google Scholar] [CrossRef]
- Zheng, Z.; Péra, M.C.; Hissel, D.; Becherif, M.; Agbli, K.S.; Li, Y. A double-fuzzy diagnostic methodology dedicated to online fault diagnosis of proton exchange membrane fuel cell stacks. J. Power Sources 2014, 271, 570–581. [Google Scholar] [CrossRef]
- Pahon, E.; Yousfi Steiner, N.; Jemei, S.; Hissel, D.; Moçoteguy, P. A signal-based method for fast PEMFC diagnosis. Appl. Energy 2016, 165, 748–758. [Google Scholar] [CrossRef]
- Bianchi, F.D.; Ocampo-Martinez, C.; Kunusch, C.; Sánchez-Peña, R.S. Fault-tolerant unfalsified control for PEM fuel cell systems. IEEE Trans. Energy Convers. 2015, 30, 307–315. [Google Scholar] [CrossRef]
- Liu, J.; Luo, W.; Yang, X.; Wu, L. Robust Model-Based Fault Diagnosis for PEM Fuel Cell Air-Feed System. IEEE Trans. Ind. Electron. 2016, 63, 3261–3270. [Google Scholar] [CrossRef]
- Niroumand, A.M.; Mérida, W.; Saif, M. PEM fuel cell low flow FDI. J. Process Control 2011, 21, 602–612. [Google Scholar] [CrossRef]
- Polak, A.; Grzeczka, G.; Piłat, T. Influence of cathode stoichiometry on operation of PEM fuel cells’ stack supplied with pure oxygen. J. Mar. Eng. Technol. 2018, 16, 283–290. [Google Scholar] [CrossRef]
- Hinaje, M.; Raël, S.; Caron, J.P.; Davat, B. An innovating application of PEM fuel cell: Current source controlled by hydrogen supply. Int. J. Hydrogen Energy 2012, 37, 12481–12488. [Google Scholar] [CrossRef]
- De Bernardinis, A.; Candusso, D.; Harel, F.; Coquery, G. Power electronics interface for an hybrid PEMFC generating system with fault management strategies for transportation. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009. [Google Scholar]
- Rao, S.S.L.; Shaija, A.; Jayaraj, S. Performance analysis of a transparent PEM fuel cell at theoptimized clamping pressure applied on its bolts. Mater. Today Proc. 2018, 5, 58–65. [Google Scholar] [CrossRef]
- Hua, J.; Li, J.; Ouyang, M.; Lu, L.; Xu, L. Proton exchange membrane fuel cell system diagnosis based on the multivariate statistical method. Int. J. Hydrogen Energy 2011, 36, 9896–9905. [Google Scholar] [CrossRef]
- Mao, L.; Jackson, L.; Davies, B. Investigation of PEMFC fault diagnosis with consideration of sensor reliability. Int. J. Hydrogen Energy 2018, 43, 16941–16948. [Google Scholar] [CrossRef]
- Bento, F.; Cardoso, A.J.M. Novel Fault Tolerant DC-DC Converter Architecture for LED Lighting Systems Operating in DC Microgrids. In Proceedings of the 2019 IEEE Third International Conference on DC Microgrids (ICDCM), Matsue, Japan, 20–23 May 2019; pp. 16–21. [Google Scholar] [CrossRef]
- Bento, F.; Cardoso, A.J.M. Open-Circuit Fault Diagnosis and Fault Tolerant Operation of Interleaved DC-DC Boost Converters for Homes and Offices. IEEE Trans. Ind. Appl. 2019, 55, 4855–4864. [Google Scholar] [CrossRef]
- Cardoso, A.J.M.; Bento, F. Diagnostics and Fault Tolerance in DC–DC Converters and Related Industrial Electronics Technologies. Electronics 2023, 12, 2341. [Google Scholar] [CrossRef]
- Bento, F. Fault Tolerant DC-DC Converters at Homes and Offices. Ph.D. Dissertation, University of Beira Interior, Covilhã, Portugal, 2022. [Google Scholar]
- Yousfi Steiner, N.; Hissel, D.; Moçotéguy, P.; Candusso, D.; Marra, D.; Pianese, C.; Sorrentino, M. Application of fault tree analysis to fuel cell diagnosis. Fuel Cells 2012, 12, 302–309. [Google Scholar] [CrossRef]
- Webb, D.; Møller-Holst, S. Measuring individual cell voltages in fuel cell stacks. J. Power Sources 2001, 103, 54–60. [Google Scholar] [CrossRef]
- Mulder, G.; De Ridder, F.; Coenen, P.; Weyen, D.; Martens, A. Evaluation of an on-site cell voltage monitor for fuel cell systems. Int. J. Hydrogen Energy 2008, 33, 5728–5737. [Google Scholar] [CrossRef]
- Sorrentino, A.; Sundmacher, K.; Vidakovic-Koch, T. Polymer electrolyte fuel cell degradation mechanisms and their diagnosis by frequency response analysis methods: A review. Energies 2020, 13, 5825. [Google Scholar] [CrossRef]
- Wasterlain, S.; Candusso, D.; Harel, F.; François, X.; Hissel, D.; Member, S. Diagnosis of a Fuel Cell Stack Using Electrochemical Impedance Spectroscopy and Bayesian Networks. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–6. [Google Scholar]
- Yang, Q.; Aitouche, A.; Ould Bouamama, B. Model based Fault detection and isolation of PEM fuel cell. In Proceedings of the 2010 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, 6–8 October 2010; pp. 825–830. [Google Scholar] [CrossRef]
- Shao, M.; Zhu, X.J.; Cao, H.F.; Shen, H.F. An artificial neural network ensemble method for fault diagnosis ofproton exchange membrane fuel cell system. Energy 2014, 67, 268–275. [Google Scholar] [CrossRef]
- Li, Z.; Outbib, R.; Hissel, D.; Giurgea, S. Data-driven diagnosis of PEM fuel cell: A comparative study. Control Eng. Pract. 2014, 28, 1–12. [Google Scholar] [CrossRef]
- Benouioua, D.; Candusso, D.; Harel, F.; Oukhellou, L. Fuel cell diagnosis method based on multifractal analysis of stack voltage signal. Int. J. Hydrogen Energy 2014, 39, 2236–2245. [Google Scholar] [CrossRef]
- Benouioua, D.; Candusso, D.; Harel, F.; Oukhellou, L. PEMFC stack voltage singularity measurement and fault classification. Int. J. Hydrogen Energy 2014, 39, 21631–21637. [Google Scholar] [CrossRef]
- Sethi, A.; Verstraete, D. A Comparative Study of Wavelet-based Descriptors for Fault Diagnosis of Self-Humidified Proton Exchange Membrane Fuel Cells. Fuel Cells 2020, 20, 131–142. [Google Scholar] [CrossRef]
- Benouioua, D.; Candusso, D.; Harel, F.; François, X.; Picard, P. Characterization of low and high frequency phenomena in a PEM fuel cell using singularity analysis of stack voltage. J. Energy Storage 2020, 28, 101298. [Google Scholar] [CrossRef]
- Benouioua, D.; Candusso, D.; Harel, F.; Picard, P. Diagnosis of fuel cells using instantaneous frequencies and envelopes extracted from stack voltage signal. Int. J. Hydrogen Energy 2022, 47, 9706–9718. [Google Scholar] [CrossRef]
- Ao, Y.; Laghrouche, S.; Depernet, D.; Candusso, D. Diagnosis of PEMFC based on autoregressive model and voltage fluctuation. In Proceedings of the 2022 10th International Conference on Systems and Control (ICSC), Marseille, France, 23–25 November 2022; pp. 346–351. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Chen, H.; Cao, Y. A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells. Appl. Energy 2021, 286, 116481. [Google Scholar] [CrossRef]
- Narjiss, A.; Depernet, D.; Candusso, D.; Gustin, F.; Hissel, D. Online diagnosis of PEM fuel cell. In Proceedings of the 2008 13th International Power Electronics and Motion Control Conference, Poznan, Poland, 1–3 September 2008; pp. 734–739. [Google Scholar] [CrossRef]
- Dotelli, G.; Ferrero, R.; Stampino, P.G.; Latorrata, S.; Toscani, S. Low-cost PEM fuel cell diagnosis based on power converter ripple with hysteresis control. IEEE Trans. Instrum. Meas. 2015, 64, 2900–2907. [Google Scholar] [CrossRef]
- Katayama, N.; Kogoshi, S. Real-Time Electrochemical Impedance Diagnosis for Fuel Cells Using a DC-DC Converter. IEEE Trans. Energy Convers. 2015, 30, 707–713. [Google Scholar] [CrossRef]
- Frappé, E.; De Bernardinis, A.; Bethoux, O.; Marchand, C.; Coquery, G. Fault detection and identification using simple and non-intrusive on-line monitoring techniques for pem fuel cell. In Proceedings of the 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2010; pp. 2029–2034. [Google Scholar] [CrossRef]
- Damour, C.; Benne, M.; Grondin-Perez, B.; Bessafi, M.; Hissel, D.; Chabriat, J.P. Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition. J. Power Sources 2015, 299, 596–603. [Google Scholar] [CrossRef]
- Riascos, L.A.M.; Simoes, M.G.; Miyagi, P.E. On-line fault diagnostic system for proton exchange membrane fuel cells. J. Power Sources 2008, 175, 419–429. [Google Scholar] [CrossRef]
- Yousfi Steiner, N.; Hissel, D.; Moçtéguy, P.; Candusso, D. Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural networks modeling. Int. J. Hydrogen Energy 2011, 36, 3067–3075. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Q.; Gan, R.; Chen, W. Fault diagnosis for pemfc water management subsystem based on learning vector quantization neural network and kernel principal component analysis. World Electr. Veh. J. 2021, 12, 255. [Google Scholar] [CrossRef]
- Zuo, B.; Zhang, Z.; Cheng, J.; Huo, W.; Zhong, Z.; Wang, M. Data-driven flooding fault diagnosis method for proton-exchange membrane fuel cells using deep learning technologies. Energy Convers. Manag. 2022, 251, 115004. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Choi, H.; Kwon, O.; Jang, Y.; Ryu, S.; Lee, H.; Shim, K.; Park, T.; Cha, S.W. Pre-diagnosis of flooding and drying in proton exchange membrane fuel cells by bagging ensemble deep learning models using long short-term memory and convolutional neural networks. Energy 2023, 266, 126441. [Google Scholar] [CrossRef]
- Lebreton, C.; Benne, M.; Damour, C.; Yousfi-Steiner, N.; Grondin-Perez, B.; Hissel, D.; Chabriat, J.P. Fault Tolerant Control Strategy applied to PEMFC water management. Int. J. Hydrogen Energy 2015, 40, 10636–10646. [Google Scholar] [CrossRef]
- Li, Z.; Giurgea, S.; Outbib, R.; Hissel, D. Online diagnosis of PEMFC by combining support vector machine and fluidic model. Fuel Cells 2014, 14, 448–456. [Google Scholar] [CrossRef]
- Li, Z.; Outbib, R.; Giurgea, S.; Hissel, D.; Jemei, S.; Giraud, A.; Rosini, S. Online implementation of SVM based fault diagnosis strategy for PEMFC systems. Appl. Energy 2016, 164, 284–293. [Google Scholar] [CrossRef]
- Bharath, K.V.S.; Blaabjerg, F.; Haque, A.; Khan, M.A. Model-based data driven approach for fault identification in proton exchange membrane fuel cell. Energies 2020, 13, 3144. [Google Scholar] [CrossRef]
- Khanafari, A.; Alasty, A.; Kermani, M.J.; Asghari, S. Flooding and dehydration diagnosis in a polymer electrolyte membrane fuel cell stack using an experimental adaptive neuro-fuzzy inference system. Int. J. Hydrogen Energy 2022, 47, 34628–34639. [Google Scholar] [CrossRef]
- Ibrahim, M.; Antoni, U.; Steiner, N.Y.; Jemei, S.; Kokonendji, C.; Ludwig, B.; Moçotéguy, P.; Hissel, D. Signal-Based Diagnostics by Wavelet Transform for Proton Exchange Membrane Fuel Cell. Energy Procedia 2015, 74, 1508–1516. [Google Scholar] [CrossRef]
- Steiner, N.Y.; Hissel, D.; Moçotéguy, P.; Candusso, D. Non intrusive diagnosis of polymer electrolyte fuel cells by wavelet packet transform. Int. J. Hydrogen Energy 2011, 36, 740–746. [Google Scholar] [CrossRef]
- Ramamoorthy, D.; Che Mid, E. Fault detection for PEM fuel cell using kalman filter. J. Phys. Conf. Ser. 2020, 1432, 012070. [Google Scholar] [CrossRef]
- Giurgea, S.; Tirnovan, R.; Hissel, D.; Outbib, R. An analysis of fluidic voltage statistical correlation for a diagnosis of PEM fuel cell flooding. Int. J. Hydrogen Energy 2013, 38, 4689–4696. [Google Scholar] [CrossRef]
- Maizia, R.; Dib, A.; Thomas, A.; Martemianov, S. Statistical short-time analysis of electrochemical noise generated within a proton exchange membrane fuel cell. J. Solid State Electrochem. 2017, 22, 1649–1660. [Google Scholar] [CrossRef]
- Benmouna, A.; Becherif, M.; Depernet, D.; Gustin, F.; Ramadan, H.S.; Fukuhara, S. Fault diagnosis methods for Proton Exchange Membrane Fuel Cell system. Int. J. Hydrogen Energy 2017, 42, 1534–1543. [Google Scholar] [CrossRef]
- Rubio, M.A.; Bethune, K.; Urquia, A.; St-Pierre, J. Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise. Int. J. Hydrogen Energy 2016, 41, 14991–15001. [Google Scholar] [CrossRef]
Type | Anode | Cathode | Electrolyte | Temperature (°C) | Application |
---|---|---|---|---|---|
Molten Carbonate Fuel Cells (MCFC) | Ni | NiO | Molten Li2CO3 in LiAlO−2 | 550–700 (HT-FC) | Energy Storage/Cogeneration [16] |
Alkaline Fuel Cell (AFC) | Carbon (C)/Platinum (Pt) catalyst | Carbon (C)/Platinum (Pt) catalyst | Aqueous KOH | Ambient–250 (LT-FC) | Space Exploration [17] |
Phosphoric Acid Fuel Cell (PAFC) | C/Pt catalyst | C/Pt catalyst | Phosphoric acid in SiC matrix | 150–220 (LT-FC) | Stationary Power [18] |
Direct Methanol Fuel Cell (DMFC) | C/Pt catalyst | C/Pt catalyst | Acidic Polymer | 60–90 (LT-FC) | Portable Applications [19] |
Solid Oxide Fuel Cell (SOFC) | Ni-YSZ | LSM* Perovskite | YSZ* | 600–1000 (HT-FC) | Stationary and Distributed Power [20] |
Polymer Electrolyte Membrane Fuel Cell (PEMFC) | C/Pt catalyst | C/Pt catalyst | Acidic Polymer | Ambient–90 (LT-FC) | Stationary, Portable and Vehicle Applications [21] |
Membrane Deterioration | ||||
---|---|---|---|---|
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[60] long hours of operation | [63] significant alteration in the pressure gradient between cathode and node channels | [64,65] small cracks in the membrane [63,69] EIS semi-circle increase, high impedance and high CDL | [66] equivalent model parameter evolution [66] statical approach [67] manufacture’s power data information comparison OR parallel high load resistance placement with individual voltage monitoring [63,69] EIS | Not reported |
Absence of catalyst | ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[63,67] excessive water content and temperature [75] poor fuel distribution or fuel starvation [76] anode flooding | [63,67] output power of a single cell increases with the decrease in load resistance [71] higher exchange current density, therefore, higher activation overpotential | [72] reduction in the OCV efficiency and rated power | Not a specific technique is reported; however, this fault typically occurs after more than thousands of operating hours | Not reported |
CO Poisoning | ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[75] hydrogen purity [75] sulfur dioxide in the air | [79] sudden reduction in current when operated at nominal conditions [82] reduction in OCV | [81,82] inductive behavior for F < 3 Hz on EIS Nyquist plot [82] impedance 6 × higher for F < 100 Hz | [75] time of exposure [75] cyclic voltammetry [81] EIS | [75] filtering intake air [79] air bleeding [83,84] increase temperature [75,85] high power converter pulsating current |
Reactant Leakage | ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[63,86] supply system, cracked graphite plates, seal-valves, and membrane cross-leaks. [10] cracks in the cooling leakage | [87] water vapor content in the anode electrode [94] abnormal variation in H2 pressure and mass flow | [88,89] reduction in OCV | [87] pressure and humidity monitorization [88,89] OCV using a signal-based technique [90,91,92] fault sensitivity model-based approach [93] model-based on-air mass flow residuals | [94] control switch between the FC and UPS system |
Fuel Cell Aging | ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[95] long hours of operation [97,98] current ripple [56,99] excessive temperature | [54] increase in internal equivalent resistance | Overall voltage reduction; Low power output [56,99] higher activation and ohmic losses | [95,96] EIS and pattern recognition tool [54] monitoring of internal equivalent resistance [55] current ripple to estimate activation zone parameters, using buck and conventional buck-boost converters | Not reported |
Water management | ||||
| ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[104] operation at nominal power [107,108] electrode poor current distribution. [106,107,108] poor mechanical compatibility between layers [109] anode flooding (carbon corrosion-mostly for low current densities) [110] low levels of reactant humidity | [109] excessive back-diffusion phenomena [109] water condensation on the channel surfaces | [110] decrease in the overall efficiency [110] increase in membrane resistance [111] increase in the concentration losses [111] elevated frequency peaks on the denominal frequency in the pressure drop signal | [109] infrared lighting technique [111] pressure drop signal FFT analyzed | [104] improved MEA design [105] electrode and GDL PTFE coating [109] slowly increase the hydrogen and temperature |
| ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[104] operation at nominal power [112] low temperature, and poor air distribution [52] water droplets retained at the GDL [76] anode flooding (unoptimized exhaustion system) | [112] excess of water at the anode [113] increased pressure drops [54,118] increased membrane resistance [156] high level of overall impedance [159] double layer effect affected [101] temperature decreasing rapidly (oscillating dewpoint) + increased cathode pressure [76] voltage degradation [169] internal humidity levels higher than 100% [169] high reactants pressure [174] reactants hygrometry higher than 1.1 [125] low air stoichiometry | [100] decrease in electric power [118] increased imaginary and real part in EIS results–Nyquist plot-(cathode flooded) [118] decrease temperature (bigger EIS semi-circle diameter) | [52,53] neutron imaging [101] online machine learning: ENN (cathode pressure residuals) [112] infrared spectroscopy [113] pressure, mass flow rate and humidity monitorization [114] anode to cathode pressure drop [115,116,117] EIS [118] empirical equivalent model parameter estimation [156] harmonic impedance measurement [159] online threshold around the nominal polarization curve (current interrupt method) [160] online signal based (EMD) [161] online machine learning: BN [163,164,165] online machine learning algorithm [166] online Artificial Neural Network (ANN): cathode pressure and voltage residuals [167,168] online SVM with FC fluidic model (air mass flow residuals) [169] 3D electrochemical, and thermal semi-empirical FC model [125,126,170] EIS-fuzzy clustering algorithm [151,171,172,177] WVT signal processing [173] Kalman filter [174] statistical fluidic model approach [175] EN analysis | [114] optimized fan velocity [118] power convert optimized power-switch control [156] online DC/DC converter control, which causes little perturbation to excess of the remaining water [166] self-tuning PID controller for supplying oxygen |
| ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[104] operation at nominal power [54] excess air intake | [113] increase equivalent cell resistance [156] high level of overall impedance [54,118] increased membrane resistance [169] internal humidity levels below 60% [125] high air stoichiometry [125] EIS results: high-frequency semi-loop because of the charge transfer phenomena | [100] decrease in electric power [118] increase imaginary and real parts in EIS results–Nyquist plot- plus appearance of another semicircle in the low-frequency region. Negative slop in the magnitude response | [112] infrared spectroscopy [115,116,117] EIS [118] empirical equivalent model parameter estimation [54] Randles’ electric equivalent circuit [156,157,158] Online equivalent resistance estimation using voltage and current ripple content [159] online threshold around the nominal polarization curve (current interrupt method) [160] online signal based (EMD) [161] Machine learning: BN [101] Machine learning: ENN (cathode pressure residuals) [163,164,165] online Machine Learning algorithm (online) [167] SVM with FC fluidic model [169] 3D electrochemical, and thermal semi-empirical FC model [125,126,170] EIS-fuzzy clustering algorithm [171,172,177] WVT signal processing [175] EN analysis | Cell operation [118] power convert optimized power-switch control [156] online DC/DC converter control, which causes little perturbation to excess of the remaining water |
Fuel Starvation | ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[71] undersupply of reactants (local or global) [75] inefficient self-humidification technique (local starvation) [71] reactant supply defective (global starvation) [119] sudden load changes, or improper start-up conditions | [119,120] * hydrogen molar flow higher than the ratio between the current and the double of the Faraday’s constant (mathematically) [122,131] oxygen stoichiometry close to 1 ** [131] air stoichiometry close to 2 ** [123] sudden voltage decrease (output power reduction) [125] low air stoichiometry [127] temperature increase [127] irregular pressure gradient between inlet and outlet | [119] carbon corrosion for extreme H2 depletions [121,122] water accumulation on the cathode [122] voltage and current decrease until plateau, followed by an exponentially decreased (if air stoichiometry is continuously reduced) [125] elevated mass transportations [125] cathode flooding | [121] empirical model [122] air stoichiometry BN model [123] output power tracking [125] EIS [123] fuzzy c-means clustering [127] pressure, stack voltage and individual cell voltage DWT signal processing [128] oxygen stoichiometry rate UC adaptable control, using cathode pressure signal [129] dynamic behavior of the cathode partial pressure, the air supply manifold, and the compressor dynamics | [123] multi-stack FC paired with antiparallel by-pass diodes [128] oxygen stoichiometry rate UC adaptable control [129,130] modified super-twisting sliding mode residuals |
Short-circuit | ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[74] self-humidification techniques, and high current peaks [120] cell’s electrodes short-circuit (fuel crossover) | [74] suddenly water accumulation at the cathode [74,132] poor H2 distribution, for high cell number stack, (especially in cells further from the H2 inlet) | [74] temperature hot spots in the membrane | [120] Linear Sweep Voltammetry | Not reported |
Hardware/external faults | ||||
Causes | Symptoms | Consequences | Diagnostics | Recovering mechanism |
[135] sensor’s network failure [137,138,139,140] power electronics | [135] discrepancy in different sensors in the network | [136] hinder the correct use of diagnosis tools | [135] PCA in a bus fleet–Shanghai Expo [136] faulty humidity sensor KPCA, WPT, and SVD | [137,138,139,140] Fault-tolerance in power electronics (interleaved converters, adaptative controllers) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, P.; Laadjal, K.; Alcaso, A.N.; Cardoso, A.J.M. A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues. Energies 2024, 17, 657. https://doi.org/10.3390/en17030657
Andrade P, Laadjal K, Alcaso AN, Cardoso AJM. A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues. Energies. 2024; 17(3):657. https://doi.org/10.3390/en17030657
Chicago/Turabian StyleAndrade, Pedro, Khaled Laadjal, Adérito Neto Alcaso, and Antonio J. Marques Cardoso. 2024. "A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues" Energies 17, no. 3: 657. https://doi.org/10.3390/en17030657
APA StyleAndrade, P., Laadjal, K., Alcaso, A. N., & Cardoso, A. J. M. (2024). A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues. Energies, 17(3), 657. https://doi.org/10.3390/en17030657