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Abstract: Understanding the adoption patterns of clean energy is crucial for designing government
subsidies that promote the use of these technologies. Existing work has examined a variety of
adoption models to explain and predict how economic factors and other technology and demographic
attributes influence adoption, helping to understand the cost-effectiveness of government policies.
This study explores the impact of adoption modeling choices on optimal subsidy design within a
single techno–economic framework for residential solar PV technology. We applied identical datasets
to multiple adoption models and evaluated which model forms appear feasible and how using
different choices affects policy decisions. We consider three existing functional forms for rooftop
solar adoption: an error function, a mixed log-linear regression, and a logit demand function. The
explanatory variables used are a combination of net present value (NPV), socio-demographic, and
prior adoption. We compare how the choice of model form and explanatory variables affect optimal
subsidy choices. Among the feasible model forms, there exist justified subsidies for residential solar,
though the detailed schedule varies. Optimal subsidy schedules are highly dependent on the social
cost of carbon and the learning rate. A learning rate of 10% and a social carbon cost of USD 50/ton
suggest an optimal subsidy starting at USD 46/kW, while the initial subsidy is 10× higher (USD
540/kW) with a learning rate of 15% and social carbon cost of USD 70/ton. This work illustrates the
importance of understanding the true drivers of adoption when developing clean energy policies.

Keywords: optimal subsidy; adoption models; modeling uncertainty; techno–economic framework;
residential solar PV

1. Introduction
1.1. Motivation

The residential sector accounts for about a third of the total electricity sales in the
US [1]. Electricity use in this sector constituted 43% of US electricity consumption in
2021 [2]. About 38% of CO2 emissions from the electric power sector come from the
residential sector [3]. Rooftop (or “residential”) solar is one approach to decarbonizing the
residential sector.

Despite considerable cost reductions in recent decades, residential solar is often too
expensive to be economically attractive in many parts of the world. Studies have shown
that subsidies are required in all US states, except Hawaii, to achieve economic parity for
consumers, while only six states achieve this parity through the use of subsidies [4]. A
study by Tibebu et al. also shows that with no subsidy, the net present value (NPV) of
adopting solar is positive in only five states (HI, CA, RI, CT, and MA), where there is high
electricity prices and/or high insolation potential [5]. Whether NPV is positive or negative,
subsidies can be a way to improve the attractiveness of residential solar. Previous work has
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shown that adoption of residential solar increases with increased NPV [6], meaning that
subsidy should increase adoption rates regardless of the starting NPV.

Many governments subsidize rooftop solar. For example, the US federal government
has long granted an income tax reduction for residential solar purchases [7], and the 2022
US Inflation Reduction Act creates and expands federal government subsidies for a variety
of technologies, including residential solar [8].

1.2. Background

Given the prevalence of government subsidies for residential solar, it is important to
characterize their benefits and costs in order to better manage them. Technology subsidies
have direct and indirect benefits. Direct benefits arise from emissions reductions resulting
from additional adoption stimulated at the time of the subsidy. Indirect benefits come from
direct adoption, leading to technological progress and lower prices for customers in the
future.

A benefit–cost analysis of residential solar subsidies has been examined in the previous
literature. Van Bentham and collaborators combined adoption, technological progress and
benefit modeling to find optimal solar subsidies in California [9]. Newbery investigated
how multiple technology attributes (learning rate, technology capacity factor, and social
cost of CO2) affect renewable energy subsidies [10]. In our prior work, we found that an
appropriate schedule of solar subsidies is justified (i.e., benefits exceed costs) and that
allowing subsidies to vary between sub-regions (US states) improves their effectiveness [5].
We later found that different technologies have different structures in terms of optimal
subsidy, e.g., utility wind delivers environmental benefits (i.e., emission reductions) that
exceed costs even when they do not lead to cost reductions. However, subsidies for
residential solar need to drive future cost reductions to be justified, leading to the eventual
phase-out of the subsidy as an optimal strategy [11].

1.3. Research Gap

As with other energy system models that quantify the future of a complex techno–
economic–social system, models that evaluate solar subsidies are uncertain. Uncertainty
leads to less robust recommendations for policy. There are many previous examples
where energy system model forecasts deviated significantly from real-world behavior. For
example, the World Energy Outlook model from the International Energy Agency has
consistently and drastically underpredicted solar power capacity additions [12]. In 2000,
the Annual Energy Outlook “projections” from the Energy Information Administration
(EIA) reported US wind capacity in 2020 as 6 GW for the “Reference case” and 18 GW
for the “High renewables case” [13]. The actual wind capacity in 2020 was 118 GW, over
five times higher than even the optimistic case for renewables [14]. There is also a lack of
consensus among model results in which different models produce disparate results for
policy-related outcomes. For example, estimates of the cost to mitigate 25% of US carbon
emissions vary from USD 40/ton to USD 300/ton, depending on the model [15].

It is thus important to better characterize uncertainty in energy system models. The
general theory categorizes uncertainty into three epistemic types: parametric, model
and scenario [16]. Parametric uncertainty arises from the numerical values of the input
data, model uncertainty arises from questions of appropriate model form, and scenario
uncertainty arises from the basic assumptions under which the model is constructed [17,18].
Nearly all work to characterize uncertainty in energy system models focuses on parametric
uncertainty. “Scenario analysis” is the study of parameter uncertainty conducted by
choosing a set of parameter values and recalculating outputs for these different values. Note
that this type of “scenario analysis” uses the word “scenario” differently from the previous
division of epistemology info types. Often, three values are explored—low, baseline and
high—where the baseline values are considered most likely, along with “plausible” lower
and upper values. Scenario analysis is used in energy system modeling to study the
effect of different parameter values on future energy technology portfolios [19] and climate
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policies [20]. An alternative approach to parametric uncertainty involves using probabilistic
distributions to characterize uncertainties in input parameters and then applying Monte
Carlo analysis to find the distribution of the modeling outputs [21].

While the characterization of parametric uncertainty is common, the treatment of
modeling uncertainty in energy systems is rare. Typically, there are many modeling choices
and assumptions to be made when selecting what driving factors to account for, how to
model them, and how the factors combine to estimate a change in the system. For example,
predicting the adoption of a technology under some price and other conditions is part of
many energy system models. There are many different adoption model forms, e.g., Bass
diffusion [22], discrete choice [23], and error function [6]. Within these forms, different
driving variables can be included or excluded based on data availability and analyst
preference. Models are often calibrated and tested against historical data, but this process
rarely identifies a single modeling approach as unilaterally preferable. Analysts often
choose a modeling form without clarifying why this choice is best, and we as a community
should perhaps apply a level of rigor closer to that used when selecting parameter values.

There is a research gap in studying and recommending how to choose adoption models.
This gap applies to energy system modeling in general, not just assessing technology
subsidies, which is the focus of our work. There have been prior efforts to address modeling
choices, and we have divided them into three types. In the first, a set of integrated energy
system models developed by different research groups is selected, and the outputs are
compared and contrasted [24,25]. Often, the same parametric inputs are chosen to clarify
how differences in the models, as opposed to differences in the inputs, change the results.
While this approach clarifies the degree of consensus among analysts in a modeling domain,
it does not address the question of which model is more “realistic” or “preferable”. A
second stream of work builds a theoretical model of an energy system and explores how
different assumptions affect the relationships [26,27]. For example, Goulder and Mathai [26]
developed models of optimal technology subsidies, exploring how answers change if
technological change is driven by research and development expenditures versus “learning
by doing”. This provides theoretical insight, but application is limited because the models
are not based on the empirical data, so there is no means to validate the framework. A
third approach compares and contrasts results from multiple modeling choices, calibrating
them with the same empirical data [28,29]. For example, Dong et al. compared forecasts
of California’s adoption of residential solar using the model they developed, dBase, with
others, such as the Bass diffusion model [28]. A limitation of this approach is that it is not
clear if there are empirically preferred approaches and how modeling choice affects policy
decisions.

We argued above that prior approaches to characterizing modeling uncertainty have
significant limitations. Here, we propose a generally applicable approach that will yield
new insights: considering an empirically grounded integrated energy system model in-
forming a policy decision; in this case, determining optimal subsidies for residential solar
in the US. Next, choose an element of the modeling framework— in this case the adoption
model for solar adoption —and analyze multiple choices of functional form and explana-
tory variables. That is, using a common modeling framework and set of calibration data,
evaluate different modeling approaches for the same phenomenon. This model evaluation
has three elements. The first is whether the results are consistent with basic theory: check
if the form of the model matches the expected trends in terms of adoption (example: is
adoption always non-negative?) and includes, in some way, variables that are known to
be important. The second element is conventional statistical argumentation to compare
the goodness-of-fit or statistical significance of different model forms and variable choices
against historical data. The third element of analysis is testing models with plausible bound-
ary conditions for which analysts have reasonably certain expectations. In our example, if
solar panels suddenly became much more expensive, there should be a noticeable reduc-
tion in adoption. Models that contradict these expectations can be rejected as unrealistic.
Combining these three elements, modeling choices are down-selected to a subset that yields
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reasonable results. The next step is to use the remaining “feasible” choices of the modeling
elements to determine the range of decision outcomes that emerge. The robustness of the
resulting decisions is considered, given the range of outcomes arising from model choice
and parameter uncertainty.

We explore the above approach to assessing and mitigating modeling uncertainty with
a case study using a model that finds optimal government subsidies for residential solar in
the US. The integrated model combines elements of adoption, technological progress and
monetized emissions benefits, determining the optimal subsidy by maximizing emissions
benefits less than subsidy expenditures. We analyze the different choices of regression-
based adoption models with three different functional forms (error function, mixed log-
linear regression, and logit demand function) and combinations of three sets of explanatory
variables (net present value (NPV), socio-demographic, and prior adoption). The models
are calibrated with county-level residential PV price, adoption, and socio-demographic
data from three states, namely Arizona, California, and Massachusetts. We first compare
the different adoption model choices from a theoretical and statistical perspective and then
apply boundary testing as described above. From this, a subset of models is used to find the
different values of optimal subsidies, considering variations in two uncertain parameters:
the social cost of carbon (SCC) and learning rate (LR). We then examine and discuss the
robustness of subsidy decisions considering adoption modeling choices and parameter
uncertainty.

1.4. Contributions

In the analysis of rooftop solar subsidies, previous work has not evaluated modeling
choices and how those choices affect the conclusions regarding how to set the subsidy. We
will screen adoption modeling choices to potentially reject those that might otherwise be
used but are likely to lead to erroneous results. The remaining “feasible” options provide
information on what range of subsidies are expected to deliver net benefits.

More generally, we open up an important line of inquiry into characterizing uncer-
tainty for energy system models. In this study, we show that it is crucial to account for
uncertainties in both parameters and modeling choices when analyzing practical policy
decisions. The approach methodically explores and evaluates modeling choices and their
effect on specific decision outcomes (in this case, subsidy amount and schedule).

To clarify the differences in prior work, we note that one body of literature described
above [24,26–29] compares the outcomes among integrated models developed by different
groups. Our work is not concerned with measuring consensus among modelers but rather
with quantifying preferable sub-model choices and how decisions are affected by model
selection. This is related to the approach of Cohen et al., who constructed a theoretical
understanding of how the presence or absence of uncertainty in the demand function
affects subsidy decisions [27]. In contrast, we focused on empirical models, i.e., those
calibrated with historical data and that are used to predict numerical results. A study by
Dong et al. [28] compared the forecasts of different solar diffusion models, but they did
not evaluate the preferability of models or how the choices affect policy decisions. While
our work is focused on a case study of optimal solar subsidy, it offers broader insights
into subsidy design in the US and a general approach to assess and mitigate modeling
uncertainty.

The remainder of this paper proceeds as follows. In Section 2, we introduce the
integrated framework used in this study, followed by a specific focus on the components of
the adoption model. We present three different adoption model formulations and calibrate
the parameters of these models with identical datasets. In Section 3, the results from
the adoption model fitting are evaluated from both theoretical and statistical perspectives.
Section 3 also establishes the role of adoption models in estimating the optimal subsidies for
residential solar under different technological learning and social costs of carbon conditions.
The discussions and conclusions of this study are discussed in Sections 4 and 5.
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2. Methods

In this section, we first summarize an integrated model that determines optimal
subsidies for clean energy technology, combining elements of adoption, technological
progress, and benefit–cost analysis of emissions reductions. We then develop different
adoption models for rooftop solar photovoltaics, with three functional forms and three
different sets of explanatory variables (9 combinations). These adoption models are then
used to explore the effects of functional formulations and parameter choices on optimal
subsidy design.

2.1. Techno–Economic Framework

In this study, we apply a techno–economic framework developed by Tibebu et al. [5]
that is used to analyze US state-level residential solar PV subsidies. Conceptually, the
idea is that clean energy subsidies are justified for two reasons: first, the subsidy drives
consumer adoption of clean energy technology, thereby reducing the use of fossil fuels
and emissions (known as direct environmental benefits). Second, because of the direct
adoption, the subsidy induces technological progress and learning by doing in the industry,
which leads to cost reductions and performance improvements in terms of the technology
for future consumers (known as indirect technological progress benefits). The integrated
modeling framework enables the measurement of these two motivations to subsidize.
Three separate models quantify consumer adoption, technological progress, and benefits
and costs of emissions reductions. The adoption model predicts residential solar purchases
in a region based on economic and demographic variables [6,30,31]. The technological
progress model forecasts cost reductions as a function of adoption using an experience
curve model [32]. Using emissions factors [33], the benefit–cost model estimates emission
reductions in CO2 and criteria pollutants (PM, SOX, and NOX) attributable to solar adoption
and then uses the social cost of carbon [34] and the EASIUR model [35] to monetize the
health benefits in terms of emission reductions. The three models are connected, and the
effects of any schedule of solar subsidies can be calculated, including the resulting adoption,
price reductions, and monetized emission benefits from 2020 to 2050. Optimization is then
carried out to find the subsidy schedule that minimizes net social benefit, which is defined
as the total emissions benefits less than government subsidy costs. The structure of the
model is summarized in Figure 1. In previous work, we used this framework to analyze
the effects of different adoption model formulations on the optimal subsidy design for
residential solar PV [5,11].
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2.2. Adoption Models

A variety of diffusion models to predict residential solar adoption have been developed
in the existing literature. These studies applied different mathematical structures to the
diffusion process, including linear functions with log variants, nonlinear functions, and
discrete choice models [5,9,23]. Different explanatory variables have been used, including
economic (e.g., price, subsidy, net present value [6]), socio-demographic variables [30], user
perceptions [36], and cumulative historical installations [31]). System dynamics models
have also included the interaction among different PV market factors, such as national
energy mix, economic status, and environmental goals [37]. In our study, the selection of the
models is based on multiple factors like integration into a comprehensive framework, data
availability, and ability to empirically validate model parameters. We consider models that
are capable of generating long-term time series of the adoption rates for multiple regions.
Our choice also includes non-economic variables such as socio-demographic characteristics
and prior adoption to account for their influence on consumer behaviors.

Our goal is to try different combinations of functional form and explanatory variables
for diffusion to compare modeling approaches in a systematic way. First, we explore
whether certain choices appear more robust. We expect that conventional statistical ar-
gumentation will not indicate a single model form as unilaterally preferable, so we also
analyzed how different adoption models affect the final decision (subsidy schedule). We
selected three functional forms of diffusion models and three sets of explanatory variables
(9 combinations) selected from the literature (Table 1) and calibrated the models using
a common set of time series county-level data in the US. The first functional form is the
integral of a Gaussian distribution, resulting in an “error function” form. The theoretical un-
derpinning of the model is the idea that as the NPV of solar adoption increases, additional
customers ought to follow a Gaussian distribution. Empirically, this model has been shown
to fit historical data well for three US states (AZ, CA, and MA) and two countries (Japan
and Germany) [6]. The second functional form is a mixed log-linear approach, chosen to
reflect common modeling choices in multivariable regression approaches [30,38]. The third
form is based on a logit function, frequently used in decision modeling [31]. We consider
three sets of explanatory variables for each adoption model. The first case only uses a
single economic variable, the net present value (NPV) of a rooftop system for a consumer,
as the singular driver of technology adoption. The second case uses NPV and multiple
socio-demographic variables, including per capita personal income, unemployment rate,
and population density at the county level. The third case uses NPV and cumulative prior
adoption in a county as variables. In the literature, previous adoption is considered an
indicator of consumer awareness and installation experience, which grows over time and
enhances adoption separately from economic considerations [31].

Table 1. Three functional forms and choices of explanatory variables were chosen to model rooftop
solar adoption (NPV = net present value; Socio = socio-demographic variables; ERF = error function;
MLL = mixed log-linear; Adopt = prior adoption).

Functional Forms Model Framing
Explanatory Variable

NPV NPV and
Socio-Demographic

NPV and Previous
Cumulative Adoption

Error function (ERF) Adoption is modeled as an integral
of a Gaussian distribution ERF_NPV ERF_NPV+Socio ERF_NPV+Adopt

Mixed log-linear
(MLL)

Adoption is modeled by
logarithmically transformed

regression model
MLL_NPV MLL_NPV+Socio MLL_NPV+Adopt

Logit
Probability of adoption is modeled

as integral of extreme value
distribution

LOGIT_NPV LOGIT_NPV+Socio LOGIT_NPV+Adopt
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2.2.1. Data

We report the sources and descriptive statistics of the data used to calibrate the adop-
tion models in Table 2. The geographic level chosen was a US county because it was possible
to collect sufficient annual data for all variable choices for regression: 48 counties over
9–14 years in Arizona, California, and Massachusetts (655 observations total). We collected
and compiled data from multiple government agencies and national research institution
reports. Annual adoption and the price of residential solar PV systems were obtained
from project-level datasets collected by the Lawrence Berkeley National Laboratory (LBNL)
from state agencies and utilities [35]. State-level retail electricity prices were gathered
from utilities by the EIA [38]. We collected socio-demographic data, such as population,
income, population density, and unemployment rate, from the Census Bureau, Bureau
of Economic Analysis, and Bureau of Labor Statistics databases [36,37,39]. The NPV of
purchasing a rooftop solar system is calculated from the economic and solar insolation
data, assuming a lifetime of 20 years and a lending rate varying across years between 3.3%
and 8.1%. To forecast future income and population, we used annual data from 2000 to
2019 and performed a simple linear regression to project the values. For unemployment
projections, we used the mean of the unemployment rate from 2000 to 2019, as these rates
did not show any long-term trend over the years, but the mean varied between counties.

Table 2. Descriptive statistics of the variables were used to fit the adoption models for all
655 observations—48 counties in Arizona, California and Massachusetts; 10–15 years of data.
(NPV = net present value; MW = megawatt; PV = photovoltaic; Std. Dev = standard deviation).

Variable Unit Mean Std. Dev Min Max Data Source

Annual adoption MW/million free detached houses 69 82 0.14 442 [39,40]
Annual adoption Watt/capita 10.6 0.0118 0.04 62.3 [39,41]
PV system price USD/W 5.7 1.6 3.2 9.3 [39]
Electricity price cents/kWh 16.5 3.3 8.8 25.8 [42]

NPV USD/kW 236 1918 −5636 3305
Income USD/capita 57,191 20,200 27,730 143,504 [41]

Unemployment % 7.5 3.9 2.3 27.5 [43]
Population density Population/mile sq. 1222 3066 24.1 18,880 [41,44]

Prior adoption Share of households with PV 1.2 1.4 0.004 7.8

Number of observations 655

The details of the three adoption models are discussed below.

2.2.2. Error Function Model

The first adoption model used in this study is derived from a residential solar dif-
fusion model developed by Williams et al. [6]. This model exclusively uses an economic
factor—the net present value (NPV) of adopting a rooftop solar system over a 20-year
period—calculated using government incentives, electricity price, and solar energy poten-
tial. The “error function” is the integral of a normal distribution and is used to model
adoption (Equation (1)). Conceptually, this model assumes that the profitability required to
convince different consumers to adopt a rooftop solar system follows a normal distribution,
with some consumers willing to adopt even when they lose money and other consumers
still unwilling to adopt at high payback.

Annual adoptiont

(
MW

million f ree detached houses

)
= k ×

(
1 + erf

(
NPVt − α1

α2

))
(1)

where t is a year, and α1 and α2 are empirically determined parameters. k is a vari-
able that reflects the maximum feasible adoption in one year, set at 2000 MW/million
households. Number o f f ree detached housest is the difference between the total number of
detached houses in a county and the number of households that have already adopted
solar PV. NPVt is the average net present value of a rooftop solar in a region for year
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t. In addition to the adoption variables shown in Equation (1), we also considered two
alternative cases, including additional variables. We employed a multi-variable extension
of this model that includes NPV and socio-demographic variables (Equation (2)):

Annual adoption t

(
MW

million f ree detached houses

)
= k ×

(
1 + erf

(
NPVt − (β1incomet + β2 unemploymentt + β3 popn_densityt + β4)

β5 incomet + β6 unemploymentt + β7 popn_densityt + β8

))
(2)

We also considered a model that includes NPV and “consumer awareness”, the latter
measured through prior adoption, represented by the cumulative quantity of prior PV
adoption normalized to the total market size (Equations (3) and (4)).

Prior adoptiont =
∑t−1

j=starting year Number o f households with PVt

Total households
(3)

Annual adoptiont

(
MW

million f ree detached houses

)
= k ×

(
1 + erf

(
NPVt − (γ1log(Prior adoption t) + γ2)

γ3log(Prior adoption t) + γ4

))
(4)

A nonlinear least squares method was applied to estimate the values of the parameters,
and the results are given in Table 3. Note that the first model (Equation (1)) has two
regression parameters (α1 and α2), the second has eight (β1−8), and the third has four (γ1−4).
Table 3 shows the results of the nonlinear regression parameter fitting from the historical
data.

Table 3. Estimated values of model parameters for error function (ERF) adoption model using least
squares method (nonlinear). NPV = net present value; MW = megawatt; ERF = error function;
Socio = socio-demographic variables; Adopt = prior adoption. (see Equations (2)–(4) for model
definitions).

Dependent Variable: Annual Adoption in MW/Million Free Detached Houses

Models

ERF_NPV ERF_NPV+Socio ERF_NPV+Adopt

Numerator:
Income (β 1) 966

Unemployment (β 2) −197
Population density (β 3) −166

Prior adoption (γ 1) −12,200
Constant (α1, β4, γ2) 8074 2 5890

Denominator :
Income (β 5) 665

Unemployment (β 6) −150
Population density (β 7) −245

Prior adoption (γ 1) −4900
Constant (α2, β8, γ4) 4679 5 7790

Number of observations 655 655 655

2.2.3. Log-Linear Regression Model

The second diffusion model takes the form of a mixed log-linear regression to predict
adoption. This type of model has been extensively used to analyze the adoption of clean
energy technologies [30,38]. The first model (Equation (4)) only uses NPV as the main
predictor variable (Equation (5)):

log (Annual adoptiont) =β1 × NPVt + βo + ε (5)

where t again refers to year. Taking the logarithm ensures that Annual adoptiont will be
positive, an approach commonly applied for non-negative quantities. The second model
(Equation (6)) includes the socio-demographic explanatory variables:
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log (Annual adoptiont) =β1 × NPVt + β2 × log(incomet) + β3 × unemploymentt + β4 × log(population densityt) + βo + ε (6)

The third log-linear model considers NPV and prior adoption as explanatory variables:

log (Annual adoptiont) = β1 × NPVt + β2 × log(prior adoptiont) + βo + ε (7)

where βi and ε represent empirically fitted coefficients and the error term, respectively. For
convenience, we use β to denote regression variables for all three forms. Note that this
means, e.g., that β1 for Equation (5) is not the same as β1 in Equations (6) and (7).

The economic and socio-demographic explanatory variables that we chose for inclu-
sion in our study are those consistently found to be significant PV adoption predictors in
earlier analyses [38,45]: income, unemployment rate, and population density.

Table 4 shows the regression results for the three cases. The R2 for the first model
that consists of only the NPV variable is 0.58. This indicates that this variable can explain
around half of the variation in terms of adoption. Adding socio-demographic variables
in the second model increased the adjusted R2 to 0.64. The second model shows that
unemployment and population density coefficients are negative. This result implies that
areas with high unemployment and population density tend to have lower adoption rates,
which is expected. The model with NPV and the share of the previous years’ adoption
as explanatory variables has the highest adjusted R2 value (0.83). The relevance and
interpretation of this will be discussed in depth later, but the high value is thought to
be due to the high correlation between the NPV and prior adoption rates. Note that the
coefficient for NPV is very different (though similarly significant) for the model that uses
prior adoption compared to the other two models.

Table 4. Estimated values for parameters of mixed log-linear (MLL) adoption model using least
squares regression, see Equations (5)–(7) for model definitions. Values in parentheses are standard
errors. (NPV = net present value; Socio = socio-demographic variables; Adopt = prior adoption).

Dependent Variable: Annual Adoption in Watt/Capita (Log)

Models

MLL_NPV MLL_NPV+Socio MLL_NPV+Adopt

NPV (β1) 0.000568 ***
(0.000019)

0.000544 ***
(0.000018)

0.000130 ***
(0.000019)

Income 0.604 ***
(0.169)

Unemployment −0.05 ***
(0.0106)

Population density −0.288 ***
(0.0329)

Prior adoption 1.3 ***
(0.0425)

Constant 1.48 ***
(0.0365)

−3.03 *
(1.77)

4.05 ***
(0.0875)

Number of observations 655 655 655
R2 0.58 0.638 0.827

Adjusted R2 0.579 0.636 0.826
Residual std. error 0.928 0.863 0.597

F Statistic 901 *** 287 *** 1554 ***
Note: * p < 0.1; *** p < 0.01.
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2.2.4. Logit Demand Function Model

For the third model, we employed an adoption model developed by Lobel and Per-
akis [31]. In our notation, the number of households adopting rooftop solar in a region in
year t follows a logit function (Equation (8)).

Number o f households adoptingt = Number o f f ree detached housest ×
(

eV(t)

1 + eV(t)

)
. (8)

V(t) = β1 × NPVt + β2 × log(Prior Adoptiont) + β0 + ε (9)

where

Prior adoptiont =
∑t−1

j=starting year Number o f households with PVt

Total households
βi represents empirically determined demand parameters, and ε is the error term

referring to the demand shock that is not captured by the data. In our application, only the
deterministic components are considered, and ε is set to zero. From Equations (8) and (9),
the demand function can be written as follows:

Number o f households adoptingt = Number o f f ree detached housest ×
(

eβ1×NPVt+β2×log(Prior Adoptiont)+β0

1 + eβ1×NPVt+β2×log(Prior Adoptiont)+β0

)
(10)

Rearranging Equation (10) yields a linear function that can be used to determine the
parameters of the demand model (Equation (11)).

ln
(

Number o f households adoptingt
Number o f f ree detached housest − Number o f households adoptingt

)
= β1 × NPVt + β2 × log(Prior Adoptiont) + β0 (11)

The annual adoption in year t is determined by multiplying the demand function
(Equation (10)) with the average size of rooftop solar installation and is shown in Equation (12).

Annual adoptiont

(
MW

million f ree detached houses

)
= Average roo f top solar size (W)×

(
eβ1∗NPVt+β2∗log(Prior Adoptiont)+β0

1 + eβ1∗NPVt+β2∗log(Prior Adoptiont)+β0

)
(12)

A second model considers that NPV is the only determinant of utility:

Number o f households adoptingt = Number o f f ree detached housest ×
(

eβ1×NPVt+β0

1 + eβ1×NPVt+β0

)
(13)

A third model considers that utility is a function of NPV and socio-demographic
variables:

Number o f households adoptingt = Number o f f ree detached housest×(
eβ1×NPVt+β2×log(incomet)+β3×unemploymentt+β4×log(population densityt)+βo

1+eβ1×NPVt+β2×log(incomet)+β3×unemploymentt+β4×log(population densityt)+βo

) (14)

We use β to denote the regression parameters in all three models. Note that this means
that β1 will be different for Equations (10), (13), and (14).

Table 5 shows the regression results for the three cases of the logit model. Adding
socio-demographic variables did little to increase the statistical fit view through the lens of
R-squared (0.558 to 0.572). Including prior cumulative adoption increased R-squared more
substantially (to 0.869) and significantly reduced the coefficient associated with NPV. See
Section 3.1 for further discussion of this change.
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Table 5. Estimated values for parameters for log adoption model using logistic (LOGIT) regression,
see Equations (10), (13) and (14) for model definitions. Values in parentheses are standard errors.
(NPV = net present value; Socio = socio-demographic variables).

LOGIT_NPV+Prior Adoption LOGIT_NPV LOGIT_NPV+Socio

NPV (β1) 0.000064 ***
(0.000016)

0.00055 ***
(0.000019)

0.000535 ***
(0.000019)

Income 0.459 **
(−0.181)

Unemployment −0.0297 ***
(−0.0114)

Population density −0.118 ***
(−0.0352)

Prior adoption 1.44 ***
(−0.036)

Constant −2.41 ***
(0.0749)

−5.26 ***
(0.037)

−9.35 ***
(1.89)

Number of
Observations 655 655 655

R2 0.869 0.558 0.575
Adjusted R2 0.869 0.557 0.572

Residual Std. Error 0.511 0.94 0.92
F Statistic 2171 *** 823 *** 220 ***

Note: ** p < 0.05; *** p < 0.01.

3. Results
3.1. Evaluation of Adoption Models

In this section, we evaluate the developed adoption curves from different perspectives:
theory, statistical reasoning, and expectation testing. Combining these, we discuss model
and variable preferability.

Theory: By theory, we mean clarifying the goals of the model, expectations about the
effect of explanatory variables on adoption, and commentary on how the measured quanti-
ties reflect intention. The goal of these models is to explain and predict with reasonable
accuracy the adoption of residential solar PV while including a dependent variable that
measures the effect of government subsidies (which is required when studying optimal
subsidy design and justified by empirical analysis). There are many factors that contribute
to the economic value of a PV system (e.g., capital costs, electricity costs, and solar insola-
tion), and we assume that the total economic value proposition, measured via NPV, is the
most effective metric for measuring a consumer’s economic preferences. We expect that
many consumers do not actually calculate NPV but are attentive to some similar quantity
(e.g., payback time) presented to them by the installer or other source. Factors other than
NPV presumably also affect purchase decisions, e.g., wealthier households will have more
savings and better credit and so are expected to adopt more. This leads to the inclusion
of socio-demographic variables: income, unemployment, and population density. It is
expected that lower population density leads to higher adoption due to a greater share
of large, detached houses suitable for rooftop solar. Finally, a greater scale of the local
solar industry presumably enhances the degree to which solar is marketed and thus sold
to consumers. Industry experience/scale and network effect on diffusion are measured
using cumulative prior adoption [31,46]. Note that cumulative prior adoption does not
directly measure industry experience/scale but represents the totality of conditions that
led to adoption, including economic factors. Because favorable (or unfavorable) economic
and demographic conditions tend to persist over time (e.g., high insolation, income levels,
and electricity prices), the degree to which prior cumulative adoption reflects industry
scale/experience versus other persistent conditions that favor/disfavor solar is not clear.

Statistical reasoning: One approach is to compare the total square error (TSE) in the
prediction model of adoption versus actual historical adoption. TSE is used instead of
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R-squared because the error function and logit models are nonlinear. Table 6 shows the
TSE for the nine combinations of three functional forms and three sets of explanatory vari-
ables. The error function/previous cumulative adoption model has the lowest TSE (1068),
followed by the logit model/previous cumulative adoption and error function/NPV+socio-
demographic and error function/NPV. Note that adding socio-demographic variables
results in only a small reduction in TSE.

Table 6. Total squared error (TSE) of the adoption models fitted using historical county data.
(NPV = net present value).

Functional Forms

Explanatory Variable

NPV NPV and
Socio-Demographic

NPV and Previous Cumulative
Adoption

Error function 1400 1340 1070
Mixed log-linear 1590 1480 1600

Logit 1720 1720 1250

A second statistical approach is to check the correlations between the independent
variables. Given the objective of the model to predict adoption given interventions that
change NPV (subsidy), it is important to ensure that no other independent variable is
strongly correlated with NPV. Such a correlation would affect regression results that define
the effect of changing NPV on adoption. Table 7 shows the correlation matrix between
the different explanatory variables. NPV and prior cumulative adoption have the highest
correlation, 0.82, followed by income and population density, which is about 0.7. The high
correlation between prior cumulative adoption and NPV suggests that a model including
both variables may misattribute their effects, forcing the analyst to consider which of the
two is truly driving adoption.

Table 7. Correlation matrix between the different input variables. (NPV = net present value).

NPV Income Unemployment Population
Density

Prior Cumulative
Adoption

NPV 1
Income 0.17 1

Unemployment −0.24 −0.60 1
Population density −0.01 0.69 −0.32 1
Prior cumulative

adoption 0.82 0.22 −0.32 −0.02 1

Expectation/hypothesis testing: By expectation testing, we mean testing the model’s
forecasting power with different values of NPV and judging if the outcomes make sense.
Table 8 shows all of the model results for California in terms of adoption in 2021 for select
sample values of NPV. The idea is to test what each adoption model predicts in cases where
the subsidy is removed or increased or where prices change due to supply chain issues.
It is plausible that NPV could fall sharply or even become negative if a government’s
subsidy policy changed. History suggests that the consumer base that purchases rooftop
solar with negative NPV is a relatively small submarket of environmentally conscious
consumers [47]. Given this history, we expect that adoption in 2021 would be much
lower if NPV turns substantially negative relative to our estimated positive value of USD
949/kW. Table 8 shows the results. Most of the nine models suggest that adoption decreases
steadily with lower NPV, with very low adoption rates when NPV = −USD 1000/W.
However, models with prior cumulative adoption as a variable show very small changes
in adoption as homeowner benefits go from substantially positive (+1500 USD/kW) to
negative NPV (−USD 1000 USD/kW). We find this to be unrealistic, and it suggests that the
high correlation between NPV and prior cumulative adoption has artificially suppressed
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the dependency of adoption on NPV. In short, we propose that cumulative prior adoption
is a good predictor of future adoption mainly because it is a good predictor of NPV and
that consumers are mainly adopting because of low NPV rather than other factors relating
to prior adoption.

Table 8. 2021 Adoption (MW) of rooftop solar in California for different values of net present value
for 9 model combinations. Note that any model with Prior Adoption as variable indicates high
adoption rate even with negative NPV. (NPV = net present value; ERF = error function; Socio = socio-
demographic; MLL = mixed log-linear).

NPV, USD/kW ERF_NPV ERF_NPV+Socio ERF_NPV+Prior Adoption

1500 534 554 1066
949 356 373 924
500 251 265 819

0 167 178 715
(1000) 69 75 539

NPV, USD/kW MLL_NPV MLL_NPV+Socio MLL_NPV+Prior Adoption

1500 416 475 1050
949 305 352 977
500 236 276 922

0 178 210 864
(1000) 101 122 758

NPV, USD/kW LOGIT_NPV LOGIT_NPV+Socio LOGIT_NPV+Prior Adoption

1500 333 360 911
949 247 269 880
500 193 212 855

0 147 163 829
(1000) 85 95 779

We conclude that prior cumulative adoption should be rejected as an explanatory
variable for our purposes despite the better TSE results; it is incompatible with the objective
of an adoption model that reasonably captures the effect of changes to NPV, which is needed
to assess the benefits of subsidy. The high correlation between prior cumulative adoption
and NPV suggests that this regression coefficient might not appropriately reflect exogenous
changes in NPV only. Prior adoption is a good predictor variable for current adoption in
the absence of NPV data, but causality becomes confused when both are included due
to their covariance. The expectation analysis (Table 8) shows that adoption models using
prior cumulative adoption have, we argue, an unrealistically weak dependence on NPV,
suggesting that consumers are generally indifferent to gaining or losing USD 1000.

The next best model in terms of TSE is the error function model using NPV+socio-
demographic variables, but the fit for the error function model with NPV only is almost
the same. Even though we propose that the models using NPV+prior adoption do not
give reasonable results, we continue to use all nine models in the following results because
both demographic variables and prior cumulative adoption are used in the literature as
explanatory variables, and it is important to understand how that modeling choice affects
subsidy decisions.

3.2. Optimal Subsidy

The adoption models described above are used in the techno–economic framework
to estimate optimal national subsidies for residential solar. The techno–economic frame-
work integrates adoption, technological progress, and benefit–cost models to determine
the optimal subsidy that maximizes national net benefit, i.e., the benefits resulting from
emissions reductions and technological progress minus the cost of the subsidy. Different
annual schedules of national subsidies (USD/W) are considered, and a generalized reduced
gradient nonlinear method is used to find the one that minimizes emissions benefits less
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than government expenditures. Figure 2 shows the optimal subsidy results for different
cases of learning rate and the social cost of carbon. For the base case learning rate of 15%
and a carbon cost of USD 45/ton, the error function models with NPV and NPV+Socio-
demographic variables yield non-zero subsidies, while the other seven models suggest
that the optimal subsidy is zero, i.e., the benefits do not justify the costs (Figure 2a). For
the models that use previous cumulative adoption as an explanatory variable, this is not
surprising given their assumed irrelevance in terms of NPV: if you assume that adoption
does not depend on the economics of solar, then offering a subsidy will have little effect on
adoption and is thus a waste of government funds. Figure 2b–d show optimal subsidies for
higher values of learning rate and/or the social cost of carbon. Higher values lead to more
modeling scenarios yielding non-zero subsidies. Note that the precise schedule of subsidy
is sensitive to both model and parameter value choices but in different ways.
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Figure 2. Optimal subsidy schedule for four combinations of learning rate (LR) and social cost of
carbon (SCC) for all nine adoption models considered. A model does not appear on a graph when the
optimal subsidy is zero (i.e., is it socially preferable not to subsidize). As the values of LR and SCC
increase, optimal subsidy and number of models that indicate that a subsidy is justified also increase.
(ERF = error function; MLL= mixed log-linear; NPV = net present value; Socio = socio-demographic;
Adopt = prior adoption).

There are several general features of importance shown in Figure 2: First, justifying
residential solar subsidies requires a reasonably high learning rate, i.e., both direct benefits
from stimulating adoption and indirect future benefits from inducing cost reductions are
needed. The social cost of carbon is an important but uncertain input parameter [48]. Note
that the value prescribed by the US government in benefit–cost analysis has varied from
USD 43/ton during the Obama administration to USD 3–5/ton under Trump and USD
53/ton during the early Biden presidency [49]. However, many argue that the real social
costs are notably higher, e.g., USD 100/ton or more [50]. Second, in all cases where a
rooftop solar subsidy is justified, the optimal subsidy schedule declines over time, usually
with a finite duration. This was not a model assumption: subsidy schedule was free to take
any value in any year and thus follow any type of trend. We also ran another version of
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the model omitting benefits from reduced emissions of criteria pollutants (PM, SOx, and
NOx) and found that subsidy was zero except at the highest SCC cases. Thus, accounting
for non-carbon emission benefits is key in justifying solar subsidie.

Figure 3 shows the first-year (2021 only) optimal subsidy level for many combinations
of learning rates and social costs of carbon. Across the nine models, the optimal subsidy is
zero for lower values of learning rate and carbon cost, with a threshold combination of both
that leads to a non-zero subsidy. Unsurprisingly, the figure shows that the optimal subsidies
are either mostly zero or always zero when the prior cumulative adoption variable is used
in the error function and logit demand function adoption models. This is because those
models implicitly believe that rooftop solar adoption is naturally high and rising and that
the private economics of rooftop solar is unimportant, suggesting that the use of subsidies
has little effect. For the mixed log-linear model with a prior cumulative adoption variable,
a high subsidy value is offered in the early period to stimulate adoption, which could, in
turn, drive adoption in later years. The optimal subsidy obtained with a given adoption
model is similar to the single variable with NPV and the multi-variable models with NPV
and socio-demographic variables. This indicates that the choice of adoption model may
impact the optimal subsidy estimates more than the choice/inclusion of socio-demographic
variables, or at least those considered in this study.
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Figure 3. First-year optimal subsidy determined using the different adoption models for different
values of learning rate (LR, %) and the social cost of carbon (SCC, USD/ton). While the three
adoption models (error function, mixed log-linear, and logit) differ, adding socio-demographic
variables to the NPV variable has only a small effect on optimal subsidy levels. Only the left two
columns are considered “feasible” models, because adoption models that include prior adoption
(right column) are problematic for reasons discussed in Section 3, and generally propose zero or very
large subsidy of rooftop solar. (ERF = error function; MLL = mixed log-linear; NPV = net present
value; Socio = socio-demographic; Adopt = prior adoption).
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4. Discussion

Energy system modeling needs to treat both parameter uncertainty and model-
ing choices: This analysis demonstrates the need to analyze different model choices in
energy system modeling. The current norm for uncertainty analysis, when carried out,
only considers parameter uncertainty. The few prior examples that address modeling
uncertainty compare how outcomes differ by choices of modeling groups [21], but con-
necting the different results to specific choices in sub-models is not evaluated. However,
Figures 2 and 3 demonstrate that the final decision outcome of the model—subsidy sched-
ule, in this case—varies considerably under different sub-models and parameter choices.
Even though the paper by Dong et al. [28] considers different adoption models, their study
has a much narrower focus and lacks an analysis of the policy implications particularly
related to the design of clean energy subsidies. The research conducted by Goulder and
Mathai [26] shows that carbon taxes and CO2 abatement vary under two forms of technolog-
ical progress models, but their study is not empirically validated. Given the many possible
options for sub-models within an energy system model, it is thus important to evaluate
these choices as well as parameter uncertainty. This work is intended as a proof-of-concept:
We investigated the effect of one sub-model choice (adoption) in a larger modeling system.
Future practice in energy system modeling should include evaluations and comparisons of
multiple sub-models.

Evaluation of models should combine statistical argumentation with theory/
expectations: Models using prior cumulative adoption as an explanatory variable showed
the best statistical fit through the lens of R-squared and total square error metrics, which
may also explain why this modeling approach has been used by other researchers. How-
ever, the analysis in Section 3.2 combining statistical measures with theory and expectation
for the model (the predicted effect of NPV changes on adoption) led us to reject prior
cumulative adoption as a useful explanatory variable for our application. Including prior
adoption in the model led to the erroneous conclusion that rooftop solar subsidies in the
US are never justified because the resulting adoption model suggests that consumers are
largely indifferent to the price of rooftop solar (Table 8). This is an example with general
implications, showing that the form of the model needs to be appropriate for the analysis
at hand.

The systems model, when considering both model and parameter uncertainty, does
not narrow the optimal subsidy to a specific schedule, but suggests that policy makers
pay close attention to cost reductions and the scope of environmental benefits expected:
One might hope that a model predicting optimal subsidies would yield a narrow scope of
schedules that a policy maker could use directly. However, the optimal subsidy schedule
changes substantially across different choices in terms of adoption models and the values of
learning rate/social cost of carbon. In addition to the factors considered, there are also other
sub-model choices in terms of cost reductions, emissions benefits, and other parameters
that could differ from the base case. This is not a deficiency in the model but a simple
acknowledgment that there is substantial uncertainty in predicting optimal multi-decade
policy decisions for an energy system.

It is also important to emphasize that optimization is far from the only factor that
policy makers use in deciding subsidy policies. For example, there are typically politically
driven goals, such as targets concerning the adoption of a certain technology by a certain
year. Furthermore, subsidy schedules are not set in stone decades in advance; they can
be and are often adjusted. This said, there are common features in terms of the optimal
subsidy in all of the cases considered. First, the model indicates that a rooftop solar subsidy
needs to induce substantial cost reductions through some form of technological progress
to be justified. This indicates that policy makers should pay close attention to cost trends
to justify rooftop solar subsidies, even during the adjustment process. Second, the scope
of environmental benefits included substantially affects the justification of subsidy. While
arguments for renewable energy subsidies often focus on carbon reductions, emissions
benefits from reducing criteria pollutants are of a similar magnitude. Third, even across
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a wide range of model and parametric choices, the optimal subsidy schedule for rooftop
solar declines over time, suggesting a general trend for rooftop solar subsidy to follow.

Lastly, it is important to acknowledge the limitations of the integrated techno–economic
frameworks and their sub-models. The technological progress model implements a one-
factor experience curve equation. This model ignores other factors, such as R&D and
emerging technologies, which may contribute to technological progress and cost reduction.
The benefit–cost model applies carbon price and emission factor using estimates that are
uncertain due to the future grid–energy mix. In addition to these limitations, our study
singles out residential solar PV and does not account for the interactions with other compo-
nents, such as transmission and distribution (T and D) in the power system, considering
that such a systematic view may influence future electricity prices, emissions estimates,
and cost estimates as additional T and D expenses are incurred to integrate the growing
residential solar PV market.

5. Conclusions

In this work, we have shown how a practical policy decision—the design of an optimal
rooftop solar subsidy—is affected by different choices about the modeling of consumer
adoption and examined the results under different technological learning and social carbon
cost assumptions. While we do not take a position on which model is correct, it is notable
that all nine scenarios (three model structure times and three sets of input variables) used
the same data sources, the same benefit–cost model, and the same technological progress
model, resulting in considerably different conclusions. The basic finding of the work is that
different plausible adoption models can lead to drastically different practical conclusions
varying from “residential solar should never be subsidized” to “residential solar subsidies
should be several times higher than they are today”. This finding has broader implications
in both analysis and policy design. While many analysts pay attention to parametric
uncertainty by considering different values for things like installation cost and learning
rate, there is much less attention given to model structure uncertainty, which can affect the
conclusions to a similar degree. Our findings suggest that studies on renewable energy
policy should incorporate multiple perspectives of analytical and modeling inputs. For
policy implementation, this work illustrates that the prudent choice of subsidy for rooftop
solar is strongly dependent on one’s belief about how the adoption of the technology works,
which can be further studied. Future research could use this work as a basis to explore and
identify systematic ways to evaluate the effectiveness of technology adoption models and
their application in policy design.
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https://www.mdpi.com/article/10.3390/en17030728/s1, Figure S1. US annual adoption starting
from 2012 under the Federal Tax Credit (30% until 2020, 26% for 2020–2022, 22% for 2023, and zero
afterwards) and learning rate of 15% predicted by the nine different adoption models. Figure S2.
Forecasted annual adoption for all of the US with and without planned FTC (30% until 2020, 26%
for 2020–2022, 22% for 2023, and zero afterwards). Learning rate for rooftop solar is 15%. The gap
between the two lines represents the subsidy-induced adoption, which can continue after subsidies
are removed due to the technological progress effect that the subsidy had on future solar costs. The
Excel file contains details of data for 8 variables used in calibrating regression models with 665 data
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