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Abstract: Molecular and stable carbon isotopic compositions of 32 crude oils from the Kekeya area
of the Southwest Depression, Tarim Basin, were analyzed comprehensively to clarify oil groups
and trace oil sources. The results indicate that lacustrine shale sequences within the Upper-Middle
Permian Pusige Formation (P3–2p) are the major effective oil sources; the thermal maturation effects
exert the crucial impact on geochemical compositions of crude oils. In the Kekeya structural belt,
crude oils produced from the Lower-Neogene, Middle-Paleogene and Middle-Cretaceous sandstone
reservoirs were generated mainly from deeply buried P3–2p at the late-to-high maturity stage. These
condensates are depleted in terpanes, steranes and triaromatic steranes and enriched in adamantanes
and diamantanes. The evaluated thermal maturity levels of crude oils by terpanoids and steranes are
generally lower than that of diamondoids, implying at least two phases of oil charging. In the Fusha
structural belt, oils produced from the Lower-Jurassic reservoirs (J1s) of Well FS8 were generated
from the local P3–2p at the middle to late mature stage. On the contrary, these oils are relatively
rich in molecular biomarkers such as terpanes and steranes and depleted in diamondoids with only
adamantanes detectable. The P3–2p-associated oils can migrate laterally from the Kekeya to Fusha
structural belt, but not to the location of Well FS8. The Middle-Lower Jurassic (J1–2) lacustrine shales
as the major oil sources are limited to the area around Well KS101 in the Kekeya structural belt.
Crude oils originated from J1–2 and P3–2p can mix together within the Cretaceous reservoirs of Well
KS101 by presenting the concurrence of high concentrations of terpane and sterane biomarkers and
diamondoids as well as 2–4% 13C-enriched n-alkanes than those of P3–2p derived oils. This study
provides a better understanding of hydrocarbon sources and accumulation mechanisms and hence
petroleum exploration in this region.

Keywords: Tarim Basin; Kekeya area; biomarkers; diamondoids; carbon isotope; oil sources

1. Introduction

The Southwestern Depression of Tarim Basin is a typical foreland basin developed in
Miocene and Pliocene [1] (Figure 1a). The Kekeya Oilfield is located at the southwestern
margin of the Southwestern Depression [1] (Figure 1b), which was formed during the
Pliocene to Early Pleistocene [2]. The current oil reserves of around 19.0 million tones
have been proved to be hosted in the Lower-Neogene, Middle-Paleogene and Cretaceous
sandstone reservoirs [2] (Figure 2). This suggests the promising potential for hydrocarbon
exploration and exploitation in this region [3]. The discovery of the Kekeya Oilfield is
hence considered to be the second important milestone for petroleum exploration in the
Tarim Basin [4].
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Figure 1. (a) The location of study area and (b) the tectonic elements and well distribution of the
Kekeya area (modified after [5]).

Two sets of hydrocarbon source rocks have been disclosed in the Kekeya area. They
are composed of the Permian lacustrine mudstones within the Pusige Formation and the
Middle-Lower Jurassic sequences [3]. Specifically, the Permian lacustrine mudstones in
the Pusige Formation contain mainly Type II kerogen with the TOC value of 0.33–4.19%
and have entered into the high mature stage with %Ro = 0.84–1.40 [6,7]. The extractable
biomarkers within source rocks are enriched in the unknown C30 terpenoids, C29 and C30
rearranged hopanes and C29 regular steranes [8,9]. The δ13C values of individual n-alkanes
range from −34.0% to −28.0%, indicating the major role of aquatic organic matter inputs
within the Permian Pusige shale sequences. [9,10].

The Jurassic source rocks were deposited in the fluivial/lacustrine bog setting and con-
tain mainly Type II kerogen within the shales and Type III kerogen within the coaly shales
and coals [3,6]. The Middle-Lower Jurassic source rocks are depleted in C30 rearranged
hopanes and C27-trisnorneohopane (Ts) and also enriched in C29 regular steranes with
the C29 ααα 20S/(20S + 20R) value of <0.3, indicating the immature and/or low-matured
organic matters within the Jurassic source rocks [6,11,12]. The δ13C values of Jurassic
kerogens range from −27.2% to −23.3% [3,13].

The occurrence of multiple source rocks results in a big challenge of hydrocarbon
sources in this region. In general, four opinions have been proposed:

(I). Jurassic source rocks. At the early stage of petroleum exploration, the Carboniferous,
Permian and Jurassic source rocks were discovered in the northern area of the south-
western margin of the Tarim Basin, the Carboniferous and Permian source rocks were
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deposited in the marine setting and the Jurassic source rocks were deposited in the
terrestrial environments [3,14]. Previous investigators thought that these three sources
were also developed in the Kekeya area. The occurrence of spore pollen, V/Ni < 1
and the enrichment of C29 regular steranes for crude oils from the Kekeya Oilfield led
some investigators to believe that crude oils were generated mainly from the Jurassic
lacustrine source rocks [15], since the spore pollen can only be detected in the Jurassic
Yangye Formation [3,15];

(II). Permian shales. Some investigators have suggested that crude oils from the Kekeya
Oilfield were originated mainly from the Permian source rocks, the relevant evidence
refers to the enrichments of Ts, C30 rearranged hopanes, and C27 or C29 regular
steranes and depletion of hopanes in oils. The δ13C value of individual n-alkanes
range from −32% to −28% [6,8–10];

(III). Permian and Jurassic source rocks. Diterpenoids are considered to be the typical
biomarkers to indicate the inputs of higher plants [16]. With the development of
petroleum exploration in this region, these compounds were detected in the newly
produced crude oils, and these oils are isotopically 2–3% heavier than the Permian-
sourced oils. The higher plants act as the major role in the Jurassic source rocks [5].
This indicates that except for the Permian lacustrine shales, the Jurassic source rocks
may also have a major contribution [5];

(IV). Carboniferous and Permian source rocks. Crude oils from the Kekeya Oilfield are
relatively enriched in dibenzothiophene, tricyclic and tetracyclic diterpanes and
3β-methyl steranes [17,18]. This indicates that these oils may be originated from pre-
Mesozoic formations. The δ13C values of saturated and aromatic fractions suggest the
mixed contributions of terrigenous and aquatic alge [19]. These two lines of evidence
highlight the major contribution of Carboniferous and Permian source rocks in study
area [19]. In fact, only the Permian lacustrine shales and Jurassic source rocks were
discovered in this region later [8,11].

The abovementioned research arrives at the relevant conclusions regarding oil sources
based mainly on the geochemical data of small pieces of oil samples in the Kekeya structural
belt, hence introducing the unpredictable uncertainty into the whole map of oil sources
in this region. More recently, a new discovery well, Well FS8, was drilled in the Fusha
structural belt (Figure 1b). Crude oils were produced from the Lower-Jurassic Shalitashi
sandstone reservoirs with the daily production of 20.6 m3 (Figure 2) [20]. This highlights
the promising potential of hydrocarbon resources in the Fusha structural belt. However,
several questions induced by this new discovery: where is this oil derived mainly from? Is
it generated from the local source rocks or a migrated oil from the Kekeya structural belt?
Is this oil similar to oils from the neighbor Well FS4 in the Fusha structural belt? All these
questions require us to make a comprehensive reevaluation of hydrocarbon sources in this
region. Accordingly, 32 oil samples were collected from the Fusha and Kekeya structural
belts; this study focuses on the molecular and stable carbon isotopic compositions of these
oil samples to clarify the whole map of oil groups and their possible hydrocarbon sources.
The result provides a better understanding of hydrocarbon sources and accumulation
mechanisms and hence petroleum exploration in this region.
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Figure 2. Comprehensive stratigraphy histogram of the Southwest Depression, Tarim Basin (modified
after [21]).

2. Samples and Methods
2.1. Oil Samples

A total of 32 oil samples were collected from the Kekeya area (Figure 1 and Table 1),
including 20 samples from the Lower Neogene Xiehefu Formation (N1x), 5 samples from
the Middle Paleogene Kalataer Formation (E2k), 3 samples from the Middle Cretaceous
Kukebai Formation (K2k), 2 samples from the Middle Cretaceous Kezilesu Formation (K1kz)
and 2 oil samples from the Lower-Jurassic Shalitashi reservoir (J1s) (Figure 1). Most oils are
the condensate, while 2 J1s samples are the normal oil.
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Table 1. Molecular parameters and concentrations of terpanes and steranes for oil samples from the Kekeya area.

Oil
Group Well

Depth
(m) Formation

C19-C23TT/
C30H

C24Ter/
C26TT

Ts/
(Ts + Tm)

DiaC30H/
C30H

Ga/
C30H

C29-ααα20S/
(20S + 20R)

C29-αββ/
(αββ + ααα)

C19-23TT
(µg/g)

DiaC30H
(µg/g)

C30-35H
(µg/g)

Regular Sterane (µg/g)

C27 C28 C29

Group
I KS101

6664 K1 0.6 1.5 0.4 0.1 0.2 0.4 0.4 268 48 1548 40 84 289
6821 K1 0.7 1.2 0.4 0.1 0.2 0.4 0.4 500 43 2647 69 132 452

Group
II FS8

3882 J1s 0.3 3.0 0.5 0.2 0.0 0.5 0.5 302 180 2620 26 226 614
3899 J1s 0.3 3.0 0.5 0.2 0.0 0.5 0.5 285 177 2500 28 222 599

Group
III

FS4 2394 K2 1.1 2.0 0.7 0.6 0.1 0.6 0.6 252 147 649 13 78 214
FS4 2396 K2 1.2 2.0 0.7 0.6 0.1 0.5 0.5 178 96 411 11 50 140
FS4 2789 K2 1.4 1.4 0.8 0.7 0.1 0.5 0.6 139 75 283 9 33 99

KS103 6336 E2k 4.2 1.1 0.8 1.8 0.1 0.5 0.6 196 91 136 11 58 147
KZ108H 6755 E2k2 3.2 1.2 0.8 1.1 0.1 0.5 0.6 216 77 182 10 50 129

K2 3323 N1 3.8 1.3 0.8 1.6 0.3 0.5 0.5 167 76 142 17 69 172
K2 3776 N1x7

2 3.6 0.7 0.6 0.3 0.2 0.5 0.5 2 0 1 0 1 2
K10 / N1 1.0 0.5 0.7 0.5 0.3 0.5 0.5 13 8 39 1 14 33

KS7009 3877 N1x7
2 0.7 0.8 0.7 0.4 0.4 0.5 0.5 123 72 440 22 57 154

KS7009 3944 N1x7
2 3.4 0.9 0.8 1.7 0.3 0.5 0.5 153 82 132 13 52 131

Group
IV

K1 / N1 12.9 1.4 0.9 3.8 0.4 0.5 0.5 99 32 26 8 23 55
K2 3172 N1x4

1 12.5 0.8 0.8 1.3 0.0 0.4 0.5 15 2 2 0 1 2
K2 3221 N1x4

2 8.8 1.1 0.7 1.9 0.1 0.6 0.5 10 2 1 0 2 5
K2 3273 N1 7.5 1.3 0.8 3.3 0.4 0.5 0.6 119 57 42 6 22 52
K2 3804 N1x8 6.6 1.0 0.6 0.5 0.2 0.4 0.4 58 4 16 10 9 26
K6 3322 N1x4 7.1 0.9 0.7 2.8 0.4 0.5 0.6 55 24 21 11 56 145
K9 3030 N2 6.1 1.5 0.8 1.5 0.2 0.5 0.5 88 22 38 9 21 54
K9 3101 N1 11.1 1.0 0.7 2.9 0.1 0.5 0.6 5 1 0 0 1 2
K9 3871 N1 6.1 0.9 0.7 5.0 0.2 0.5 0.5 71 17 26 10 19 50
K30 3805 N1x5 11.9 0.8 0.9 2.9 0.3 0.5 0.6 16 4 5 1 3 6
K35 / N1x5

2 30.5 1.0 0.6 2.9 0.3 0.3 0.6 7 0 0 0 0 1
K51 3703 N1x2 27.5 0.9 0.7 3.9 0.7 0.5 0.6 13 2 2 0 1 3

K8001 3929 N1x8 10.3 0.7 0.7 1.9 0.3 0.5 0.6 11 2 3 0 2 3
KX3 3793 N1x8 11.0 1.0 0.8 1.2 0.3 0.5 0.5 69 9 21 3 3 9

KS103 3867 N1x8 15.9 1.1 0.9 3.4 0.4 0.5 0.5 104 24 21 8 18 48
KZ104 6348 E 8.1 0.9 0.9 3.5 0.4 0.5 0.6 103 47 40 11 31 80
KZ106 / E2k 8.7 0.9 0.9 3.7 0.3 0.5 0.6 109 48 49 9 28 76
KZ107 6269 E 9.1 1.1 0.8 2.7 0.2 0.5 0.6 92 30 40 8 19 49

Note: C19-C23TT: the total concentrations of C19-C23 tricyclic terpanes; C30H: C3017α(H), 21α(H)-hopane; C24Ter: C24 tetracyclic terpane; C26TT: C26 tricyclic terpanes; Ts:C2718α(H),
21β(H)-22, 29, 30-trisnorneohopane; Tm:C2717α(H), 21β(H)-22,29,30-trisnorhopane; DiaC30H: C3017α(H)-diahopane; Ga: Gammacerane; C30-35H: the total concentrations of
C30-C35 hopanes.
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2.2. Gas Chromatography (GC)

The whole oil GC traces were obtained by using the Agilent 7890B gas chromato-
graph equipped with a flame ionization detector (FID). A fused silica capillary column
(50 m × 0.32 mm i.d.) coated with CP-SIL5CB (film thickness 0.40 mm) was used. The
sample was injected using a split ratio of 50:1 and nitrogen was used as carrier gas, with
a constant flow rate of 1.0 mL/min. The GC oven was initially set at 35 ◦C for 15 min,
subsequently programmed to 310 ◦C at 4 ◦C/min and then maintained at this temper-
ature for 30 min [22]. Although the whole oil GC traces can be used to calculate the
parameters including ∑n-C21−/∑n-C22+, carbon preference index (CPI) and odd-even
predominance (OEP) of n-alkanes, Pr/Ph, Pr/n-C17 and Ph/n-C18 (Table 2), the quantifica-
tion of specific compounds needs to run these samples on the gas chromatography-mass
spectrometry (GC-MS).

Table 2. Molecular parameters and concentrations of n-alkanes and isoprenoids for oil samples from
the Kekeya area.

Oil
Group Well Depth

(m) Formation Main
Peak

∑n-C21−/
∑n-C22+

CPI OEP Pr/Ph Pr/n-C17 Ph/n-C18
n-Alkanes

(µg/g)

Group
I

KS101
6664 K1 n-C14 4.02 1.08 0.89 1.25 0.06 0.05 358,636
6821 K1 n-C14 3.10 1.14 0.90 1.08 0.08 0.09 314,590

Group
II

FS8
3882 J1s n-C21 3.05 1.04 0.95 1.53 0.15 0.10 254,729
3899 J1s n-C21 3.01 1.11 0.94 1.55 0.16 0.10 264,203

Group
III

FS4 2394 K2 n-C13 3.34 1.19 0.91 1.65 0.08 0.06 303,792
FS4 2396 K2 n-C13 4.83 1.19 0.92 1.78 0.08 0.05 417,742
FS4 2789 K2 n-C13 2.96 1.11 0.93 1.54 0.06 0.04 612,909

KS103 6336 E2k n-C12 3.48 1.09 0.92 1.16 0.08 0.07 307,870
KZ108H 6755 E2k2 n-C8 3.05 1.09 0.93 1.18 0.07 0.06 335,809

K2 3323 N1 n-C11 2.85 1.13 0.95 1.55 0.16 0.10 218,293
K2 3776 N1x7

2 n-C10 23.49 1.13 0.93 1.23 0.07 0.06 495,750
K10 / N1 n-C12 20.47 1.08 0.94 1.38 0.07 0.06 475,483

KS7009 3877 N1x7
2 n-C13 2.78 1.09 0.92 1.06 0.06 0.06 325,145

KS7009 3944 N1x7
2 n-C10 3.50 1.10 0.93 1.02 0.06 0.06 436,337

Group
IV

K1 / N1 n-C15 3.80 1.10 0.9 1.27 0.07 0.06 482,465
K2 3172 N1x4

1 n-C10 19.57 1.14 0.64 1.23 0.07 0.07 466,475
K2 3221 N1x4

2 n-C9 10.45 1.10 0.92 1.2 0.07 0.06 425,773
K2 3273 N1 n-C14 2.81 1.09 0.96 1.1 0.07 0.06 295,270
K2 3804 N1x8 n-C10 26.11 1.16 0.92 1.38 0.07 0.06 474,613
K6 3322 N1x4 n-C15 2.67 1.11 0.92 1.12 0.06 0.06 418,273
K9 3030 N2 n-C12 6.46 1.12 0.93 1.18 0.06 0.06 258,799
K9 3101 N1 n-C13 4.21 1.15 0.93 1.67 0.09 0.06 239,626
K9 3871 N1 n-C12 6.57 1.10 0.94 1.19 0.06 0.06 389,962

K30 3805 N1x5 n-C11 7.30 1.11 0.94 1.12 0.06 0.05 483,963
K35 / N1x5

2 n-C11 32.40 1.04 0.95 1.22 0.10 0.07 358,932
K51 3703 N1x2 n-C12 7.60 1.12 0.92 1.21 0.07 0.06 438,024

K8001 3929 N1x8 n-C10 8.61 1.10 0.95 1.16 0.06 0.06 506,190
KX3 3793 N1x8 n-C10 20.18 1.10 0.62 1.84 0.10 0.07 482,712

KS103 3867 N1x8 n-C11 6.68 1.10 0.92 1.10 0.07 0.07 499,034
KZ104 6348 E n-C9 5.39 1.11 0.93 1.17 0.06 0.05 354,246
KZ106 / E2k n-C10 4.89 1.11 0.92 1.13 0.06 0.05 284,251
KZ107 6269 E n-C9 5.70 1.10 0.90 1.21 0.06 0.05 342,163

Note: CPI = {(C25 + C27 + C29 + C31 + C33) [1/(C24 + C26 + C28 + C30 + C32) +1/(C26 + C28 + C30 + C32 + C34)]}
/2; OEP = {(Ci + 6 × Ci + 2+Ci + 4)/[4 × Ci + 1+Ci + 3)]}m, i + 2: Main peak carbon, m: (−1) i + 1.

2.3. Gas Chromatography-Mass Spectrometry (GC-MS)

Asphaltenes were removed by precipitation with n-hexane followed by filtration. The
de-asphaltened oils were then separated into saturated, aromatic and resins fractions using
column chromatography with aluminum oxide as stationary phase, with n-hexane, benzene,
and a mixture of dichloromethane and methanol (9:1, v/v) as eluents, respectively. The
measurements of GC-MS were conducted on the saturated and aromatic fractions. Prior to
GC-MS analysis, two internal standards squalane and adamantane-d16 were added for the
quantification of terpenes, steranes, diamondoids and aromatic compounds, respectively.
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The GC-MS was equipped with a Hewlett–Packard 6890 gas chromatograph coupled to
a Micromass Platform II spectrometer. The HP-5MS column (30 m × 0.25 mm i.d × 0.25 µm)
was used for the separation. The GC oven temperature was initially held at 60 ◦C for 2 min,
ramped from 60 ◦C to 315 ◦C at 3 ◦C/min and held for 15 min. The carrier gas was helium,
and the flow rate was 1.0 mL/min. The temperature was 250 ◦C for transfer line and 200 ◦C
for the ion source. The operation conditions of ion source were the electron ionization
(EI) mode at 70 eV. The identification of targeted compounds was performed by the Full
scan and SIM GC–MS analysis. The mass range was 50–550 Da with the scan time of
1 s for full scan GC–MS analysis [23]. The selected ions of SIM GC–MS analysis were
m/z 85 for n-alkanes, m/z 135, 136, 149, 163 and 177 for adamantanes, m/z 187, 188, 201
and 215 for diamantanes, m/z 191 for terpanoids, m/z 217 for steranes, m/z 178 and 192
for phenantheranes, m/z 184 and 198 dibenzothiophenes (DBTs), m/z 231 for triaromatic
steroids and m/z 85 for squalane and m/z 152 for adamantane-d15 [23]. Although the quan-
titative data can be obtained by using GC–MS analysis, gas chromatography isotope ratio
mass spectrometry (GC-IRMS) is required to get the stable carbon isotopic compositions of
individual n-alkanes.

2.4. Gas Chromatography Isotope Ratio Mass Spectrometry (GC-IRMS)

Stable carbon isotopic compositions of individual compounds were analyzed by a
Hewlett–Packard 6890 gas chromatograph connected to a Micromass Isoprime system.
HP6890 GC was fitted with a 50 m × 0.32 mm i.d. column coated with a 0.40 µm film of
CP-SIL 5CB, leading directly into the combustion interface. The oven temperature was
as follows: 30 ◦C for 15 min, raised from 30 ◦C to 310 ◦C at a rate of 3 ◦C/min and held
at 310 ◦C for 30 min. Helium was used as the carrier gas with a flow rate of 1.5 mL/min.
The sample was injected using a split mode with a split ratio of 15:1. The combustion
furnace was operated at a temperature of 800 ◦C and was equipped with CuO and Pt wire
as oxidant and catalyst. In order to perform calibration, a CO2 reference gas calibrated
against Charcoal Black (a national calibration standard, with a value of −22.43% based
on the VPDB standard) was automatically introduced into the IRMS in a series of pulses
before and after the array of peaks of interest [22]. The precision of the measurement was
typically better than 0.3% relative to the VPDB standard.

3. Results
3.1. Terpenoids, Steranes and Oil Groups

Figure 3 and Table 1 present the chemical compositions of terpenoids and steranes for
oil samples from the Kekeya area. Significant differences can be detected on steranes, in
particular terpenoids. Based on the distribution patterns of terpenoids and steranes, oil
samples from the Kekeya area are classified into four groups:

(1) Group I: oil samples from KS101. These samples are depleted in tricyclic terpanes,
Ts, C30H rearranged hopane and enriched in C29 Norhopane, C30-C35 hopanes and
C29 steranes (Figure 3a), resulting in low ratios of C19-C23TT/C30H, Ts/(Ts + Tm) and
DiaC30H/C30H (Table 1). C20 TT is the peak of C19-C23TT (Figure 3a). Regular steranes
decrease with the order of C29 ααα20R > C27 ααα20R > C28 ααα20R (Figure 3a);

(2) Group II: oil samples from FS8. Compared with Group I oils, these oils contain more
C29 norhopane, C30 rearranged hopane and C29 steranes, resulting in higher ratios
of DiaC30H/C29Ts and C29 ααα20R/C27 ααα20R, C23 TT is the peak of C19-C23TT
(Figure 3b and Table 1).

(3) Group: oil samples from FS4, KZ104, KZ106, KZ107, KZ108H, K6, KS7009, K2 (N1x5)
and KS103 (E2k). Compared with Group I/II oils, Group III oils contain much less
C19-C23TT, C30-C35 hopanes and C27-C29 steranes, but present much higher ratios of
C19-C23TT/C30H, Ts/(Ts + Tm), DiaC30H/C30H (Figure 3c and Table 1).

(4) Group IV: oil samples from K1, K2 (N1x4, N1x7, N1x8), K9, K10, K30, K35, K51, K8001,
KX3 and KS103 (N1x8). These oils are even more depleted in C19-C23TT, C30-C35
hopanes and C27-C29 steranes than Group III oils (Figure 3d). The ratios of C19-
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C23TT/C30H, DiaC30H/C30H and C29 ααα20R/C27 ααα20R are greater than those
for Group III oils (Table 1).

Except for terpenoids and steranes, the molecular compositions of these collected oil
samples are comprehensively depicted quantitatively including n-alkanes, isoprenoids
and diamondoids in the saturated fraction and naphthalenes, phenanthrenes, dibenzothio-
phenes and triaromatic steranes in the aromatic fraction. The results of compound-specific
carbon isotope analysis of n-alkanes were also provided to make a more sophisticated
geochemical map of these oil samples at the molecule levels. The details are stated as
the following.
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Figure 3. Typical m/z 191 and m/z 217 mass chromatograms showing the distribution of the terpanes
and steranes in four oil groups from the Kekeya area.

3.2. n-Alkanes and Isoprenoids

Figure 4 presents the typical GC traces of whole oils. Group I oils have the main peak
of n-C14 and high concentrations of n-alkanes. Group II oils have the bimodal distribution
of n-alkanes with the main peaks of n-C11 and n-C21. Group III/IV oils have the main
peak ranging from n-C8 to n-C15 and also high concentrations of n-alkanes. Moreover, the
Σn-C21−/Σn-C22+ ratio for Group III/IV oils is obviously greater than that for Group I/II
oils. No significant difference can be observed on the other parameters (Table 2).
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Figure 4. Typical GC traces of crude oils within four groups in the Kekeya area.

3.3. Diamondoids

Figure 5 and Table 3 present the molecular compositions of diamondoids in crude oils
collected from the Kekeya area. 1-cage adamantanes and 2-cage diamantanes comprise the
diamondoids for crude oil samples (Figure 5). Group I oils have the highest concentrations
of diamondoids (35,763–45,244 µg/g) and the highest ratios of MAI and MDI (Table 3). In
contrast, Group II oils have the lowest concentrations of diamondoids (147–148 µg/g) and
contain only adamantanes with no diamantanes detectable (Table 3). The concentrations of
diamondoids are 941–2001 µg/g for Group III oils and 755–3884 µg/g for Group IV oils,
which are much lower than group I oils, but much higher than Group II oils (Figure 5 and
Table 3). The ratio of 1-cage adamantanes to 2-cage diamantanes is 0.54–1.25 (Averaged
0.90) for Group I oils, 3.04–27.55 (Averaged 12.8) for Group III oils and 8.80–35.07 (Averaged
18.8) for Group IV oils, indicating the higher contribution of adamantanes to diamondoids
for Group III/IV oils than Group I oils (Figure 5).
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Table 3. Molecular parameters and concentrations of diamondoids for crude oil samples collected from the Kekeya area.

Oil
Group Well Depth

(m) Formation MAI MDI %Ro ADMs/
DAMs

C0-
ADM
(µg/g)

C1-
ADM
(µg/g)

C2-
ADM
(µg/g)

C3-
ADM
(µg/g)

C4-
ADM
(µg/g)

C0-4-
ADMs
(µg/g)

C0-
DAM
(µg/g)

C1-
DAM
(µg/g)

C2-
DAM
(µg/g)

C3-
DAM
(µg/g)

C0-3-
DAMs
(µg/g)

Diamondoids
(µg/g)

Group
I KS101

6664 K1 0.84 0.60 1.89 1.25 214 2813 8598 8567 4922 25113 3164 8361 6765 1842 20,132 45,244
6821 K1 0.77 0.59 1.87 0.54 37 703 3411 4732 3667 12549 3495 9483 8020 2216 23,214 35,763

Group
II FS8

3882 J1s 0.64 0.00 n.a n.a 6 22 75 29 16 147 n.a n.a n.a n.a n.a 147
3899 J1s 0.67 0.00 n.a n.a 6 23 75 28 16 148 n.a n.a n.a n.a n.a 148

Group
III

FS4 2394 K2 0.70 0.33 1.23 15.43 58 328 785 507 202 1879 18 52 43 9 122 2001
FS4 2396 K2 0.68 0.36 1.32 13.02 40 267 711 459 189 1665 18 54 46 9 128 1793
FS4 2789 K2 0.68 0.35 1.30 8.46 31 204 552 376 168 1331 23 64 57 14 157 1488

KS103 6336 E2k 0.60 0.32 1.22 3.04 20 115 414 273 163 984 79 142 86 18 324 1308
KZ108H 6755 E2k2 0.73 0.39 1.39 9.19 37 183 429 257 98 1003 25 45 30 9 109 1113

K2 3323 N1 0.66 0.45 1.53 7.75 13 112 314 323 313 1074 6 61 48 28 144 1218
K2 3776 N1x7

2 0.72 0.40 1.42 27.55 57 298 741 444 177 1718 12 25 20 5 62 1780
KS7009 3877 N1x7

2 0.69 0.50 1.65 7.26 21 129 366 255 103 874 22 51 40 9 120 994
KS7009 3944 N1x7

2 0.70 0.36 1.30 12.36 23 145 367 240 97 871 14 28 24 5 70 941

Group
IV

K1 / N1 0.78 0.42 1.47 14.04 58 407 918 618 263 2264 33 65 52 12 161 2425
K2 3172 N1x4

1 0.71 0.39 1.38 29.93 43 230 637 398 149 1456 8 21 17 4 49 1505
K2 3221 N1x4

2 0.71 0.37 1.33 23.96 35 163 415 248 95 956 8 15 13 4 40 996
K2 3273 N1 0.70 0.32 1.21 12.14 18 108 293 196 83 698 10 22 19 7 58 755
K2 3804 N1x8 0.73 0.35 1.30 27.81 61 327 802 503 198 1892 13 29 21 5 68 1960
K6 3322 N1x4 0.68 0.36 1.32 11.05 20 143 396 261 110 930 16 34 27 7 84 1014
K9 3030 N2 0.71 0.33 1.25 17.33 49 280 777 516 201 1821 22 44 33 7 105 1926
K9 3101 N1 0.71 0.39 1.38 8.80 91 77 1650 1168 527 3514 89 141 114 27 371 3884
K9 3871 N1 0.70 0.34 1.27 15.69 29 160 449 292 99 1028 14 26 20 5 66 1094

K10 / N1 0.71 0.32 1.22 24.19 33 157 408 251 96 945 7 15 13 3 39 984
K30 3805 N1x5 0.71 0.33 1.24 17.12 35 204 534 331 117 1221 14 28 24 5 71 1293
K35 / N1x5

2 0.68 0.36 1.31 35.07 44 264 761 487 198 1754 11 19 15 5 50 1804
K51 3703 N1x2 0.69 0.36 1.31 17.29 33 231 674 456 173 1566 19 37 28 7 91 1657

K8001 3929 N1x8 0.72 0.38 1.37 16.86 53 307 794 505 186 1845 21 43 38 8 109 1954
KX3 3793 N1x8 0.76 0.39 1.38 32.29 82 417 949 525 201 2172 17 24 22 5 67 2240

KS103 3867 N1x8 0.72 0.38 1.36 20.90 61 363 910 548 206 2087 23 39 32 6 100 2187
KZ104 6348 E 0.72 0.40 1.41 12.21 46 258 627 378 152 1460 34 46 34 6 120 1580
KZ106 / E2k 0.68 0.36 1.32 12.23 54 352 839 535 217 1997 37 64 51 12 163 2161
KZ107 6269 E 0.73 0.38 1.36 14.29 46 266 634 357 138 1441 28 39 30 5 101 1542

Note: MAI = 1-methyladamantane/(1-methyladamantane + 2-methyladamantane); MDI = 4-methyldiamantane/(1-methyldiamantane + 3-methyldiamantane + 4-methyldiamantane);
%Ro = 2.4322 × MDI + 0.4389; ADMs/DAMs: the total concentration ratio of adamantanes to diamantanes; ADM: adamantane; DAM: diamantane.



Energies 2024, 17, 760 11 of 23

3.4. Aromatic Compounds

Naphthalenes, phenanthrenes, dibenzothiophenes and triaromatic steranes are the
major components of aromatic compounds in crude oils from the Kekeya area (Figure 6).
Several differences in molecular compositions can be observed among various group
oils (Figures 6 and 7). Group I oils are extremely enriched in aromatic compounds
(62,966–228,944 µg/g), in particular phenanthrenes (22,478–47,204 µg/g) and dibenzothio-
phenes (5500–12,032 µg/g) relative to the others. Compared with Group I oils, Group II oils
contains more triaromatic steranes (133–144 µg/g) with the lowest TA[C20/(C20 + C28)-20R]
value of 0.32–0.33, and much less phenanthrenes (734–810 µg/g) and dibenzothiophenes
(20–28 µg/g). Group III/IV oils are depleted in triaromatic steranes (<12 µg/g) but with
the greater TA[C20/(C20 + C28)-20R] ratio of 0.62–0.82 and present large variations in the
absolute concentrations of the other aromatic compounds. For example, phenanthrenes
are 209–1893 µg/g for Group III oils and 206–1606 Group IV oils, dibenzothiophenes are
5–297 µg/g for Group III oils and 1–369 µg/g for Group IV oils (Table 4).
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Table 4. Molecular parameters and concentrations of aromatics for crude oils from the Kekeya area.

Oil
Group Well Depth

(m) Formation Naphthalenes
(µg/g)

Phenanthrenes
(µg/g)

Dibenzothiophenes
(µg/g)

Triaromatic
Steroids (µg/g)

Aromatics
(µg/g) DNR MPI1 MPI2 MPR MDR DBT/P TA[C20/

(C20 + C28)-20R]

Group I KS101
6664 K1 941 22,478 5500 25 28,944 1.87 0.14 0.16 0.76 4.09 0.23 0.55
6821 K1 3696 47,204 12,032 34 62,966 4.59 0.13 0.14 0.77 4.86 0.25 0.69

Group II FS8
3882 J1s 1253 734 20 133 2140 1.89 0.57 0.54 0.80 5.65 0.01 0.33
3899 J1s 293 810 28 144 1275 1.36 0.59 0.57 0.84 5.05 0.02 0.32

Group
III

FS4 2394 K2 875 1372 68 12 2327 3.32 0.39 0.39 0.73 7.02 0.04 0.62
FS4 2396 K2 745 1327 71 10 2153 1.55 0.43 0.46 0.78 8.15 0.04 0.66
FS4 2789 K2 977 1893 100 9 2979 1.98 0.38 0.41 0.73 7.70 0.05 0.65

KS103 6336 E2k 195 1215 82 0 1492 0.75 0.47 0.49 0.58 3.42 0.09 /
KZ108H 6755 E2k2 8 209 5 0 222 1.75 0.82 1.05 0.80 2.54 0.04 /

K2 3323 N1 2575 824 163 3 3565 9.23 0.39 0.44 0.68 1.22 0.19 0.71
K2 3776 N1x7

2 2265 595 11 0 2871 3.60 0.38 0.41 0.76 4.19 0.03 /
K10 / N1 2279 585 11 0 2875 3.80 0.41 0.44 0.76 4.04 0.03 /

KS7009 3877 N1x7
2 1209 1252 297 8 2766 3.65 0.41 0.44 0.67 1.25 0.26 0.81

KS7009 3944 N1x7
2 18 1205 188 4 1415 1.20 0.44 0.47 0.71 1.27 0.17 0.76

Group
IV

K1 / N1 339 621 28 1 989 6.80 0.55 0.62 0.72 2.03 0.03 0.64
K2 3172 N1x4

1 2441 471 12 0 2924 3.68 0.37 0.41 0.70 0.62 0.03 /
K2 3221 N1x4

2 2059 1045 239 0 3343 10.17 0.40 0.43 0.65 1.17 0.25 /
K2 3273 N1 50 839 111 2 1002 1.37 0.42 0.47 0.68 1.26 0.09 0.73
K2 3804 N1x8 28 206 1 0 235 2.48 0.51 0.59 0.83 / 0.01 /
K6 3322 N1x4 156 1192 210 0 1558 0.76 0.43 0.47 0.67 1.21 0.17 /
K9 3030 N2 55 736 107 2 900 2.14 0.41 0.44 0.74 1.47 0.11 0.74
K9 3101 N1 2575 1606 329 0 4510 3.76 0.46 0.49 0.79 1.63 0.25 /
K9 3871 N1 52 963 126 1 1142 1.30 0.47 0.50 0.79 1.62 0.11 0.79

K30 3805 N1x5 1916 1016 192 0 3124 5.59 0.45 0.46 0.72 1.43 0.22 /
K35 / N1x5

2 2575 643 145 0 3363 4.18 0.43 0.46 0.80 1.34 0.25 /
K51 3703 N1x2 1951 522 103 0 2576 3.53 0.41 0.43 0.74 1.43 0.23 /

K8001 3929 N1x8 769 1180 236 0 2185 16.34 0.46 0.48 0.79 1.81 0.24 /
KX3 3793 N1x8 1544 701 73 0 2318 6.57 0.42 0.44 0.80 1.47 0.13 /

KS103 3867 N1x8 53 927 128 3 1111 / 0.46 0.48 0.79 1.65 0.12 0.82
KZ104 6348 E 127 293 3 0 423 / 0.92 1.10 0.87 2.13 0.02 /
KZ106 / E2k 919 1160 220 0 2299 3.01 0.48 0.50 0.77 1.69 0.23 /
KZ107 6269 E 7 556 19 0 582 / 0.65 0.71 0.82 2.54 0.02 /

Note: DNR = (2,6-dimethylnaphthalene + dimethylnaphthalene)/1,5-dimethylnaphthalene; MPI1 = 1.5 × (2-methylphenanthrene + 3-methylphenanthrene)/(phenanthrene +
1-methylphenanthrene + 9-methylphenanthrene); MPI2 = 3 × (2-methylphenanthrene)/(phenanthrene + 1-methylphenanthrene + 9-methylphenanthrene); MPR = (3-methylphenanthrene
+ 2-methylphenanthrene)/(9-methylphenanthrene + 1-methylphenanthrene); MDR = 4-methyldibenzothiophene /1-methyldibenzothiophene; TA: Triaromatic; /: The content is too low
to be detected.
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3.5. Carbon Isotopic Composition of Individual n-Alkanes for Crude Oils

Table 5 presents the δ13C values of whole oils and individual n-alkanes for crude oils
from the Kekeya area. Group I oils are relatively 13C-enriched in the whole oil by presenting
around 4% heavier than Group II oils, and 2% heavier than Group III/IV oils (Table 5). This
is consistent with the distribution patterns of δ13C values of individual n-alkanes.

The δ13C values of individual n-alkanes for all samples present a decreasing pattern
with carbon number increasing. They extend from −30.2% to −26.1% for Group I oils,
−32.1% to −29.8% for Group II oils and −32.4% to −27.6% for Group III/IV oils (Figure 8
and Table 5). The δ13C values of individual n-alkanes for Group I oils are 2–4% heavier
than that for Group II oils, and around 2% heavier than that for Group III/IV oils.
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Table 5. The δ13C values of whole oil and individual n-alkanes for oil samples collected from the Kekeya area.

Oil
Group Well Depth

(m) Formation δ13Coil
(%) n-C12 n-C13 n-C14 n-C15 n-C16 n-C17 n-C18 n-C19 n-C20 n-C21 n-C22 n-C23 n-C24 n-C25 n-C26 n-C27 n-C28 n-C29 n-C30 n-C31 n-C32

Group
I KS101 6664 K1 −27.7 −27.8 −28 −28.6 −28.9 −29 −29.2 −29.5 −29.5 −29 −29.5 −29.8 −30.2 −29.5 −30.2 −29.8 −29.3 −29.5 −29 −29.1 −29.6 /

6821 K1 −26.9 −26.1 −26.5 −27.3 −27.3 −27.8 −28 −28.3 −27.4 −28.2 −27.9 −28.1 −28.3 −27.9 −28.9 −28.4 −28.9 −27.9 −28.1 −28 −28.2 −28.6

Group
II FS8 3882 J1s −28.9 −30.1 −30.5 −30 −30.6 −30.6 −30.4 −30 −32 −31.5 −31.9 −31.6 −31.5 −31.4 −31.6 −31.5 −31.8 −31.1 −31.1 −31 −30.8 −30.7

3899 J1s −28.6 −30.4 −30.2 −30.1 −30.1 −30.1 −30.5 −29.8 −31.3 −31.6 −32.1 −31.3 −31.9 −31.6 −31.5 −31.7 −31.4 −30.8 −31.3 −31.1 −30.8 −30.2

Group
III

FS4 2394 K2 −30.8 −28.4 −28.6 −28.9 −29.3 −28.9 −29 −28.7 −30.1 −29.8 −30 −30.1 −29.8 −30.1 −30.5 −30.2 −30.7 −30.8 −30.8 −30.8 −30.4 −30.4
FS4 2396 K2 −28.1 −29.2 −29.3 −29.1 −29.7 −29.7 −29.5 −30 −30 −29.6 −29.8 −30.1 −30.6 −30.6 −30.3 −30.9 −31.2 −30.7 −30.5 −30.3 −31.1 −30.1
FS4 2789 K2 −28.9 −29.2 −29.9 −29.4 −29.9 −29.6 −29.2 −29 −30 −30.1 −29.3 −30 −30.5 −30.3 −30.6 −30.6 −30.9 −30.1 −29.3 −30.7 −29.2 /

KS103 6336 E2k −29.8 −29.7 −29.7 −29.8 −30.3 −29.8 −29.9 −29.3 −30 −30.7 −31.3 −30.9 −31.2 −30.8 −30.9 −31.4 −31.4 −31.4 −31.7 −30.7 −30.9 −30.5
KZ108H 6755 E2k2 −29.1 −29.2 −29 −29.5 −29.7 −29.6 −30.2 −29.6 −29.9 −30.2 −30.7 −30.5 −30.9 −30.2 −30.7 −31.2 −31.4 −31 −31 −30.5 / /

K2 3323 N1 −29.8 −29.1 −28.7 −29 −29.5 −29.5 −29.7 −29.7 −30.5 −30.1 −30.3 −30.8 −31.2 −30.7 −31.2 −31.4 / / / / / /
K2 3776 N1x7

2 −29.5 −29.2 −29 −29.5 −30 −29.4 −29.7 −29.2 −30.7 −30.5 −30.9 −30.8 −30.8 −30.4 −31.3 −31.2 −31.4 −31.4 −31 −31.2 −30.9 −30.3
K10 / N1 −27.7 −27.8 −28 −28.5 −29.1 −28.9 −29.1 −29.2 −30.1 −29.8 −30.7 −30.8 −30.9 −30.4 −30.6 −31.5 −31.3 −32.4 / / / /

KS7009 3877 N1x7
2 −29.6 −29.1 −29.2 −29 −29.6 −29.4 −29.3 −29.7 −30.5 −30.3 −30.7 −30.4 −30.7 −30.9 −31.1 −30.8 −31 −31.1 −31.2 −30.3 −30.4 −30.7

KS7009 3944 N1x7
2 −28.9 −29.1 −29.1 −29.4 −29.8 −29.2 −29.4 −29.2 −29.8 −30.3 −30.8 −30.4 −30.7 −30.4 −31.2 −31.2 −31.5 −30.9 −31.1 −30.4 −30.2 −29.9

Group
IV

K1 / N1 −29.2 −28.7 −28.7 −29.1 −29.7 −29.3 −29.5 −29.6 −30.2 −30.1 −30.4 −30.4 −31.2 −30.9 −30.9 −31.8 −32.1 −31.5 −31.4 −31.8 / /
K2 3172 N1x4

1 −29.6 −27.6 −28.3 −28.2 −28.9 −29.3 −29.7 −29.1 −30.3 −29.8 −30.7 −30.6 −30.5 −30.4 −30.6 −31.3 −31.3 −31.5 −31.4 −31.1 / /
K2 3221 N1x4

2 −29.2 −29.1 −29.2 −29.6 −29.8 −29.9 −29.6 −29.4 −30.4 −29.9 −30.5 −30.9 −30.3 −30.3 −31.4 −31 −31 −31.1 −30.3 / / /
K2 3273 N1 −29.1 −28.8 −29.1 −29.5 −29.6 −29.4 −29.3 −29.9 −30.6 −30.4 −30.3 −30.2 −30.9 −30.3 −31.3 −31 −30.8 −30.9 −31.3 −30.7 −30.6 −30.4
K2 3804 N1x8 −29.2 −28.6 −28.7 −29.1 −29.6 −29.4 −29.2 −29 −29.9 −30 −30.6 −30.5 −30.1 −30.6 −30.8 −30.8 −31.5 −31.4 −31.3 −31.3 −30.3 −29.7
K6 3322 N1x4 −29.6 −29.1 −28.9 −29.2 −29.8 −29.4 −29.8 −29.6 −30.3 −30.1 −30.7 −31.2 −31.1 −30.9 −31.4 −31.6 −32.1 −31.4 −31.7 −31.6 −30.9 −30.9
K9 3030 N2 −27.9 −28.4 −28.5 −28.5 −29.3 −29 −29.7 −28.9 −30.6 −30.1 −30.6 −30.4 −31 −30.5 −31.5 −31.6 −31.7 −32 −32 −31 / /
K9 3101 N1 −29.5 −28.8 −28.8 −29.1 −29.7 −29.4 −29.4 −29.1 −30.7 −30 −30.8 −30.5 −30.7 −30.9 −31.2 −30.9 −31.7 −31.2 −31.9 −30.9 −30.6 −30.1
K9 3871 N1 −29.8 −28.6 −28.8 −29.8 −29.7 −29.3 −29.9 −29.5 −30.8 −30.6 −31 −30.9 −31.1 −30.6 −31.7 −31.5 −32.4 −32.1 −32.3 −31.2 −31.1 −31.1

K30 3805 N1x5 −29.6 −27.6 −28.3 −28.3 −29.3 −29.2 −29.2 −28.9 −30.1 −29.5 −30.4 −30.4 −30.7 −30.3 −31.2 −31.4 −31.7 −31.8 −31.6 −31 −31.2 −29.2
K35 / N1x5

2 −29.4 −28.9 −29.2 −29.1 −29.7 −29.6 −30 −29.5 −30.5 −30.7 −30.4 −30.8 −31.4 −30.7 / / / / / / / /
K51 3703 N1x2 −29.4 −28.7 −28.8 −29 −29.9 −29.6 −29.4 −29.3 −30.3 −30.2 −30.9 −30.7 −31.4 −31 −31.3 −31.4 −31.5 −31.7 −31.2 / / /

K8001 3929 N1x8 −29.6 −27.9 −28.2 −28.4 −29.2 −29.1 −29.3 −28.9 −29.3 −29.8 −30.3 −30.3 −30.8 −30.5 −31.1 −31.6 −32 −32.1 −32.3 −31.2 −31.6 /
KX3 3793 N1x8 −29.2 −28.4 −29 −29.5 −29.9 −29.4 −29.8 −30 −30.6 −29.7 −30.1 −30.5 −30.9 −30.7 −31.4 −32.1 −31.3 −31.9 / / / /

KS103 3867 N1x8 −27.6 −28.2 −28.3 −28.4 −29.3 −29.2 −29.1 −29.3 −30.3 −29.6 −29.6 −30.4 −30.9 −30.8 −30.8 −31.5 −31.6 −31.6 −32.3 −31.1 / /
KZ104 6348 E −29.4 −27.8 −28 −28.6 −28.9 −29 −29.2 −29.5 −29.5 −29 −29.5 −29.8 −30.2 −29.5 −30.2 −29.8 −29.3 −29.5 −29 −29.1 −29.6 /
KZ106 / E2k −29.4 −26.1 −26.5 −27.3 −27.3 −27.8 −28 −28.3 −27.4 −28.2 −27.9 −28.1 −28.3 −27.9 −28.9 −28.4 −28.9 −27.9 −28.1 −28 −28.2 −28.6
KZ107 6269 E −29.3 −30.1 −30.5 −30 −30.6 −30.6 −30.4 −30 −32 −31.5 −31.9 −31.6 −31.5 −31.4 −31.6 −31.5 −31.8 −31.1 −31.1 −31 −30.8 −30.7

Note: /: The content is too low to be detected.
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4. Discussion
4.1. Depositional Environments and Organic Matter Inputs of Oil Sources

Molecular biomarkers in the saturated and aromatic fractions of collected oil samples
can be used to constraint the depositional environments and organic matter inputs of source
rocks [24]. The ratios of Pr/n-C17 and Ph/n-C18 are 0.06–0.16 and 0.04–0.10, respectively
(Table 2). On the crossplots of Pr/n-C17 versus Ph/n-C18 most oils are located at the area of
mixed Type II/III organic matter (Figure 9a). This indicates that petroleum source rocks
were deposited under the suboxidized conditions with the mixed inputs of terrigenous
higher plants and aquatic algae [25–27].

The ratios of Pr/Ph and DBT/PHEN for these oil samples are 1.02–1.84 and 0.01–0.26,
respectively (Tables 2 and 4). On the crossplots of Pr/Ph versus DBT/PHEN, these oils are
located at the area of marine shale and other lacustrine shales (Figure 9b). This indicates
that petroleum source rocks were deposited under the lacustrine settings [28], which is
consistent with the previous investigations [3,29]. Specifically, during the middle-to-late
Early Permian period, the southwest depression experienced the crustal uplift from east
to west. The Permian Pusige Formation was deposited under the lacustrine setting in the
Kekeya area. During the Jurassic period, the faulted subsidence occurred with the water
depth increasing gradually from the foreland area to the depression, the faulted lacustrine
sedimentary system was developed in Kekeya area [30,31]. The predominance of C21TT
among tricyclic terpanes further indicates that lacustrine algae act as the major contributor
to organic matters within the source rocks [32,33].

Terrestrial higher plants may have a greater contribution to the source rocks for Group
II oils. C24 Tetracyclic terpenane is considered to be originated from higher plants and C26
Tricyclic terpenanes are assumed to be generated from aquatic organisms [34,35]. The ratio
of C24Ter/C26TT can be used to evaluate the relative inputs of terrestrial higher plants and
aquatic algae [34]. It is relatively higher for Group II oils (Table 1). C27 regular steranes are
generated from aquatic organisms and algae [36,37], C28 regular steranes are derived from
diatoms, coccolithophores, and dinoflagellates, and C29 regular steranes are originated
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from algae and terrestrial higher plants [24,38]. The ratios of C29-/C27-regular steranes and
C29 ααα20R/C27 ααα20R and the concentrations of C29-regular steranes are both higher
for Group II oils than those for the other oils (Figure 9c,d). This indicates that terrestrial
higher plants have a greater contribution to the source rocks for Group II oils [39], which
may be caused by the more oxidized depositional environments as indicated by the greater
Pr/Ph ratio (Table 2).
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Figure 9. The crossplots of biomarker parameters referring to depositional environments and organic
matter inputs for oil sources in the Kekeya area. (a) Pr/n-C17 versus Ph/n-C18; (b) Pr/Ph versus
DBT/PHEN; (c) C29/C27-Regular steranes versus C24Te/C26TT; (d) C29 Regular steranes (µg/g)
versus C24Te/C26TT.

4.2. Thermal Maturity of Crude Oils and Hydrocarbon Mixing

Hopanes and steranes indicate matured oils in the study area. The cross-plot of C29
ββ/(αα + ββ) versus C29 ααα-20S/(20S + 20R) suggests matured oils, while these two ra-
tios for Group I/II oils are relatively lower, indicating lower thermal maturity levels relative
to Group III/IV oils (Figure 10a). The C29 20S/(20S + 20R) ratio mostly ranges from 0.50
to 0.55 for Group III/IV oils (Table 1), approaching the equilibrium value (0.52–0.55) [40].
Therefore, care should be taken to this isomerization ratio. The C29 ββ/(ββ + αα) ratio is in-
dependent of source organic matter inputs and 0.50–0.58 for Group III/IV oils, which does
not approach the equilibrium value (0.67–0.72) [25,41]. The positive correlation between
C29 ββ/(ββ + αα) and Ts/(Ts + Tm) suggests that Ts/(Ts + Tm) is significantly affected by
thermal stress rather than organic facies (Figure 10b). The Ts/(Ts + Tm) ratio also indicates
more matured oils for Group III/IV (Equivalent %Ro = 0.9–1.3) than Group I/II (Equiva-
lent %Ro = 0.6–0.8) [40]. The positive relations between Ts/(Ts + Tm) and diaC30H/C30H
and diaC30H/C29 Ts and TA [C20/ (C20+ C28)-20R] highlight the dominated role of ther-
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mal stress on molecular compositions and associated parameters (Figure 10c–e) [42,43],
resulting in the different distribution patterns of terpanes and steranes (Figure 3).
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(a) C29-ββ/(αα + ββ) versus C29-ααα20S/(20S + 20R); (b) Ts/(Ts + Tm) versus C29 ββ/(αα + ββ);
(c) Ts/(Ts + Tm) versus diaC30H/C29 Ts; (d) Ts/(Ts + Tm) versus TA [C20/(C20 + C28)-20R)]; (e) MAI
versus MDI.

Adamantanes and diamantanes indicate more matured oils. Due to less thermal
stability relative to diamondoids, terpanes, steranes and triaromatic steranes decrease
subsequently from Group I to IV, and diamondoids show the opposite trend (Figure 11a–f).
The increasing concentrations of diamondoids indicate the increased thermal maturity
levels from Group II to IV oils. This is further confirmed by the parameters of MAI and
MDI for diamondoids [44]. The crossplot of MDI versus MAI indicates that the equivalent
%Ro is generally 1.1–1.3 for Group II oils, 1.3–1.6 for Group III/IV oils and 1.6–1.9 for
Group I oils (Figure 10e). The C19-C23TT/C30H ratio presents the positive correlations with
adamantanes and diamantanes (except for Group I oils) (Figure 11g,h), indicating thermal
stress has the critical role in regulating the evolution path of this parameter.
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Kekeya area. (a) C19-C23TT (µg/g) versus C30-C35H (µg/g); (b) C19-C23TT/C30H versus C19-C23TT
(µg/g); (c) C19-C23TT/C30H versus C30-C35H (µg/g); (d) C19-C23TT/C30H versus DiaC30H; (e) C19-
C23TT/C30H versus C29 steranes (µg/g); (f) C19-C23TT/C30H versus Triaromatic steranes (µg/g);
(g) C19-C23TT/C30H versus Admantanes (µg/g); (h) C19-C23TT/C30H versus Diamondoids (µg/g).

Hydrocarbon mixing is indicated by the obvious discrepancy in evaluating thermal
maturity of crude oils by using molecular biomarkers (Figure 10a) and diamondoids
(Figure 10e), respectively. As stated below, for Group I oils, the mixing of crude oils
generated from different sources with distinct thermal maturity levels is supposed to be
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responsible partly for it. Moreover, Group I oils are extremely enriched in diamondoids
and aromatic compounds (Figures 5 and 7). This may be caused by the high thermal
maturity of their sources (Figure 10e), which facilitates the generation of these compounds
resistant to thermal stress. On the other hand, multiple extensive gas charging and cap gas
leakage from the reservoirs are also considered to play a part role as indicated by the loss of
n-C10–n-C14 (Figure 12) [45], which agrees with previous studies [21,46]. For Group III/IV
oils, this is assumed to be induced by the mixing of oils originated from the same source at
different thermal maturity levels.
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4.3. Possible Oil Sources

In the Kekeya area, the Permian Pusige Formation and the Middle-Lower Jurassic
Formations are considered to be the effective source rocks [5,8]. The two sets of source
rocks show obvious differences in biomarkers, and the biomarkers within the Permian
Pusige Formation are enriched in the unknown C30 terpenoids, C29 and C30 rearranged
hopanes and C29 regular steranes [8,9]. While the Middle-Lower Jurassic source rocks
contain less C30 rearranged hopanes and Ts, but more C29 regular steranes [9,11]. More
importantly, the Permian source rocks and associated oils are isotopically lighter, the
relevant Jurassic with the δ13C values of individual n-alkanes range from −34.0% to
−28.0% [9,10]. The δ13C values of Jurassic kerogens extend from −27.2% to −23.3% [13],
resulting in −30% to −26% for the δ13C values of oils, since the thermal maturation effects
usually induce <3% isotopic fractionation between parent kerogen and associated crude
oil [47]. The relative enrichments of unknown C30 terpenoids, C29 and C30 rearranged
hopanes (Figure 4c,d) and isotopically lighter n-alkanes (−32.4% to −27.6%) (Table 5)
support that Group III/IV oils are derived mainly from the Permian Pusige Formation.
Our current research demonstrates that the deep burial depth (8000–10,000 m) allows the
Permian source rocks to approaching the high mature stage in the Kekeya structural belt
(%Ro = 1.3–2.0), shallow burial depth (4000–6000 m) leads to the formation of matured
Permian source rocks in the Fusha structural belt (%Ro = 0.6–1.2). Accordingly, the effective
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Permian source rock for the high-matured Group III/IV oils should be located at the Kekeya
structural belt.

Compared with Group III/IV oils, the relative depletion of C30 rearranged hopanes and
Ts and enrichment of C29 regular steranes artificially indicate that the Jurassic source rocks
may have the major contribution for Group II oils (Figure 3b). However, the isotopically
light n-alkanes (−32.1% to −29.8%) suggests the Permian source rocks should play the
major role (Figure 8). This discrepancy may be attributed to the lower thermal maturity
levels of Group II oils. As stated above, Group II oils present lower thermal maturity
than Group III/IV oils. This is indicated by the lower thermal maturity ratios including
Σn-C21−/Σn-C22+, C29 20S/(20S + 20R), Ts/(Ts + Tm), C19-C23TT/C30H, diaC30H/C30H,
MDI and TA[C20/(C20 + C28)-20R] (Tables 1–4), resulting in lower absolute concentrations
of n-alkanes and diamondoids (Tables 2 and 3) and higher absolute concentrations of
terpanes, steranes and triaromatic steranes within Group II oils (Tables 1 and 4) as well as
1–2% 13C-depleted n-alkanes (Figure 8). Group II oils were collected from the newly drilled
discovery Well FS8 and are assumed to be derived from the local Permian source rocks
that have the nearly same thermal maturity levels, since crude oil and the local Permian
source rocks share have the nearly same thermal maturity levels. More importantly, the
Permian Pusige Formation of Well FS4 has the similar burial depth and hence thermal
maturity levels as Well FS8. While the produced oils from the Cretaceous reservoir present
greater thermal maturity levels as those oils from the Kekeya structural belt (Figure 10).
This indicates oil secondary migration from the Kekeya to Fusha structural belt around
Well FS4 (Figure 3b–d).

In comparison with Group III/IV oils, Group I oils show a relative depletion of
tricyclic terpanes (Ts), C30 rearranged hopane, and an enrichment in C29 Norhopane,
C30-C35 hopanes, and C29 steranes (refer to Table 1). The δ13C values of individual
n-alkanes range from −30.2% to −26.1%, resulting in isotopically 2–3% heavier than
that for Group III/IV oils. This is generally consistent with the molecular and isotopic
compositions of oils generated from the Jurassic source rocks, indicating the contribution
of Jurassic source rocks for Group I oils. It is only constrained around the location of
Well KS101, since no vital geochemical diagnostic can be detected to indicate the relevant
input of Jurassic-associated oils in the other wells. This may be attributed to the vertically
permeable passageways around Well KS101, which is indicated by the strong gas wash-
ing and leakage (Figure 12) [21,46]. Moreover, its greater burial depth after subsidence
from 65–20 Ma results in enough oil can be generated from Jurassic source rocks and then
migrate upward to the Cretaceous reservoirs [4,19,48].

However, the Permian source rocks also play a part role. These two oils contain
extremely high concentrations of diamondoids and aromatic compounds (Figures 5 and 7).
The diamondoids indicate the thermal maturity levels of %Ro = 1.6–1.9 for Group I oils
(Figure 10e), which is much greater than that of terpanes and steranes (%Ro = 0.6–0.8)
(Figure 10a–d). This discrepancy indicates the mixing of Permian-sourced high-matured
oils and Jurassic-sourced matured oils, because the local Jurassic source rocks are located
mainly within the matured source kitchen and have not approached the high maturity
level in study area [3,12,14]. Less input of isotopically heavier Jurassic-sourced oils lead to
lighter δ13C values of individual n-alkanes for oil sample from the upper part of Cretaceous
reservoirs of Well KS101 relative to the lower one.

In general, Group I oils are a mixture of the Jurassic-associated matured oil and
Permian-sourced high-matured oil. Group II oils were generated from the matured Permian
Pusige shale sequences in the Fusa structural belt without the contribution of secondary
migrated oil from the Kekeya structural belt. Group III/IV oils were derived mainly
from the high-matured Permian Pusige source rocks in the Kekeya structural belt. The
distribution patterns of molecular and stable carbon isotopic compositions of collected
oils (except for Group I oils) are regulated mainly by thermal stress in this region. The
Permian Pusige Formation is therefore supposed to be the major effective source rock in
study area. The Middle-Lower Jurassic formations only act as a part role in the area of Well
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KS101. As stated above, this conclusion partly agrees with the second-to-fourth thoughts
and disagrees with the first thought regarding oil sources in study area. Accordingly, this
study provides a better understanding of hydrocarbon sources and associated processes of
relevant petroleum systems, which should be useful in making a reasonable strategy for
petroleum exploration in this region.

5. Conclusions

This study presents the comprehensive quantitative data of molecular and stable
carbon isotopic compositions of crude oils from the Kekeya area of Southwest Depression,
Tarim Basin, to clarify oil groups and effective oil sources. The following conclusions can
be made:

(1) Lacustrine shale sequences within the Upper-Middle Permian Pusige Formation
(P3–2p) are the major effective oil sources. In the Kekeya structural belt, crude oils
were generated from deeply buried P3–2p at the late-to-high maturity stage. In the
Fusha structural belt, oils produced from the Lower-Jurassic reservoirs (J1s) were
generated from the local P3–2p at the middle to late mature stage. The P3–2p-associated
oils in the Kekeya structural belt can migrate laterally to the Fusha structural belt, but
not to the location of Well FS8;

(2) The Middle-Lower Jurassic lacustrine shales (J1–2) as the second effective sources
are only confined to the area of Well KS101 in the Kekeya structural belt. The J1–2
generated oils can migrate upward and into the Cretaceous sandstone reservoirs of
Well KS101, and then mingle with the early charged oils derived from the Permian
source rocks;

(3) The comprehensive quantitative data of crude oils can provide a better understanding
of hydrocarbon groups, sources and accumulation process in the Kekeya area of the
Southwest Depression, Tarim Basin. Our future work will combine the results of 1D
and 2D basin modeling with geochemical data together to make a more sophisticated
constrains. This should be useful for petroleum exploration in this region.
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