Assessing the Wind Power Potential in Naama, Algeria to Complement Solar Energy through Integrated Modeling of the Wind Resource and Turbine Wind Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model
2.2. Site Description
2.3. Solar and Wind Analysis for Energy Production Modeling
2.3.1. Exploratory Wind Data Analysis
2.3.2. Weibull Distribution Fitting
2.3.3. Statistical Study of Wind Speeds at the Naama Site
Distribution Type | Scale Parameter | Shape Parameter | R-Squared | RMSE | Chi-Squared Statistic |
---|---|---|---|---|---|
Weibull | 2.5 | 1.3 | 0.92 | 1.25 | 5.87 |
Rayleigh | 1.8 | - | 0.88 | 1.45 | 7.93 |
2.3.4. Statistical Study of Wind Movement
2.3.5. Simulating Wind and Solar Power Generation in a Hybrid Renewable Energy System
3. Results and Discussion
3.1. Wind Power Simulation Parameters
3.2. Photovoltaic Solar Parameters
3.3. Simulation Results
3.4. Correlational Analysis of Photovoltaic and Wind Energy Systems
3.5. Profile Predictive Modeling
3.6. Cumulative Energy Output from Wind and Solar Sources
4. Conclusions
- Detailed Study Results
- Correlational Analysis of Solar Irradiance and Wind Power
- Predictive Model Analysis
- Enhanced Predictive Model with Temperature and Humidity Adjustments
- Limitations and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okedu, K.E.; Tahour, A.; Aissaoui, A.G. A Review of Hybrid Renewable Energy Systems Based on Wind and Solar Energy: Modeling, Design and Optimization. In Wind Solar Hybrid Renewable Energy System; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Z.; Tan, J. Thermodynamic Analysis of Wind Energy Systems. In Wind Solar Hybrid Renewable Energy System; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Mertens, S. Design of wind and solar energy supply, to match energy demand. Clean. Eng. Technol. 2022, 6, 100402. [Google Scholar] [CrossRef]
- Radisavljevic-Gajic, V.; Karagiannis, D.; Gajic, Z. The Modeling and Control of (Renewable) Energy Systems by Partial Differential Equations—An Overview. Energies 2023, 16, 8042. [Google Scholar] [CrossRef]
- Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’Isidoro, M.; Lacal-Arántegui, R. Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew. Energy 2014, 63, 576–586. [Google Scholar] [CrossRef]
- Nedjari, H.D.; Haddouche, S.K.; Balehouane, A.; Guerri, O. Optimal windy sites in Algeria: Potential and perspectives. Energy 2018, 147, 1240–1255. [Google Scholar] [CrossRef]
- Haddad, B.; Díaz-Cuevas, P.; Ferreira, P.; Djebli, A.; Pérez, J.P. Mapping concentrated solar power site suitability in Algeria. Renew. Energy 2021, 168, 838–853. [Google Scholar] [CrossRef]
- Han, F.; Li, X.; Qi, S.; Wang, W.; Shi, W. Reliability analysis of wind turbine subassemblies based on the 3-P Weibull model via an ergodic artificial bee colony algorithm. Probabilistic Eng. Mech. 2023, 73, 103476. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, P.; Zhao, S.; Chevallier, J.; Xiao, Q. A hybrid intelligent framework for forecasting short-term hourly wind speed based on machine learning. Expert Syst. Appl. 2023, 213, 119223. [Google Scholar] [CrossRef]
- Schinko, T.; Komendantova, N. De-risking investment into concentrated solar power in North Africa: Impacts on the costs of electricity generation. Renew. Energy 2016, 92, 262–272. [Google Scholar] [CrossRef]
- Zegueur, A.; Sebbagh, T.; Metatla, A. A Techno-Economic Study of a Hybrid PV–Wind–Diesel Standalone Power System for a Rural Telecommunication Station in Northeast Algeria. Eng. Proc. 2023, 56, 25. [Google Scholar] [CrossRef]
- Schleifer, A.H.; Harrison-Atlas, D.; Cole, W.J.; Murphy, C.A. Hybrid renewable energy systems: The value of storage as a function of PV-wind variability. Sec. Process Energy Syst. Eng. 2023, 11, 1–20. [Google Scholar] [CrossRef]
- Falama, R.Z.; Dumbrava, V.; Saidi, A.S.; Houdji, E.T.; Salah, C.B.; Doka, S.Y. A Comparative-Analysis-Based Multi-Criteria Assessment of On/Off-Grid-Connected Renewable Energy Systems: A Case Study. Energies 2023, 16, 1540. [Google Scholar] [CrossRef]
- Wang, H. Solar Thermochemical Fuel Generation. In Wind Solar Hybrid Renewable Energy System; IntechOpen: London, UK, 2020; pp. 1–252. [Google Scholar] [CrossRef]
- Ghosal, M.K. Wind-Solar Photovoltaic Hybrid Power System. In Entrepreneurship in Renewable Energy Technologies; Taylor & Francis Group: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Lysenko, O.; Kuznietsov, M.; Hutsol, T.; Mudryk, K.; Herbut, P.; Vieira, F.M.C.; Mykhailova, L.; Sorokin, D.; Shevtsova, A. Modeling a Hybrid Power System with Intermediate Energy Storage. Energies 2023, 16, 1461. [Google Scholar] [CrossRef]
- Joseph, M.; Breen, M.; Upton, J.; Murphy, M.D. Development and validation of photovoltaic and wind turbine models to assess the impacts of renewable generation on dairy farm electricity consumption. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015. [Google Scholar] [CrossRef]
- Derdour, A.; Abdo, H.G.; Almohamad, H.; Alodah, A.; Dughairi, A.A.A.; Ghoneim, S.S.M.; Ali, E. Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments. Sustainability 2023, 15, 9687. [Google Scholar] [CrossRef]
- Ounis, H.; Aries, N. On the wind resource in Algeria: Probability distributions evaluation. Sage J. Home 2020, 235, 1187–1204. [Google Scholar] [CrossRef]
- Google Maps. Available online: https://www.google.com/maps/search/univernt%C3%A9+naama+algeria/@33.2752996,-0.6536054,105325m/data=!3m2!1e3!4b1?entry=ttu (accessed on 10 December 2023).
- Alliche, M.; Rebhi, R.; Kaid, N.; Menni, Y.; Ameur, H.; Inc, M.; Ahmad, H.; Lorenzini, G.; Aly, A.A.; Elagan, S.K.; et al. Estimation of the Wind Energy Potential in Various North Algerian Regions. Energies 2021, 14, 7564. [Google Scholar] [CrossRef]
- Brahimi, D.; Mesli, L.; Rahmouni, A.; Zeggai, F.Z.; Khaldoun, B.; Chebout, R.; Belbachir, M. First data of statistic and ecological behavior of orthoptera insects in arid region (Southern West of Algeria). Data Brief 2020, 31, 105857. [Google Scholar] [CrossRef] [PubMed]
- Đurišić, Ž.; Mikulović, J. A model for vertical wind speed data extrapolation for improving wind resource assessment using WAsP. Renew. Energy 2012, 41, 407–411. [Google Scholar] [CrossRef]
- Wang, T. A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso. PeerJ Comput. Sci. 2021, 7, e732. [Google Scholar] [CrossRef]
- AGHBALOU, N. Horizontal Extrapolation of Wind Speed Distribution Using Neural Network for Wind Resource Assessment. Int. J. Sci. Res. (IJSR) 2017, 6, 1498–1504. [Google Scholar] [CrossRef]
- Suwarno, S.; Zambak, M.F. The Probability Density Function for Wind Speed Using Modified Weibull Distribution. Int. J. Energy Econ. Policy 2021, 11, 544–550. [Google Scholar] [CrossRef]
- Adeyeye, K.; Ijumba, N.; Colton, J. A Preliminary Feasibility Study on Wind Resource and Assessment of a Novel Low Speed Wind Turbine for Application in Africa. Energy Eng. 2022, 119, 997–1015. [Google Scholar] [CrossRef]
- Acakpovi, A.; Issah, M.B.; Fifatin, F.X.; Michael, M.B. Wind velocity extrapolation in Ghana by Weibull probability density function. Wind Eng. 2018, 42, 38–50. [Google Scholar] [CrossRef]
- Xue, J.H.; Titterington, D.M. The p-folded cumulative distribution function and the mean absolute deviation from the p-quantile. Stat. Probab. Lett. 2011, 81, 1179–1182. [Google Scholar] [CrossRef]
- Bilir, L.; İmir, M.; Devrim, Y.; Albostan, A. Seasonal and yearly wind speed distribution and wind power density analysis based on Weibull distribution function. Int. J. Hydrogen Energy 2015, 40, 15301–15310. [Google Scholar] [CrossRef]
- Meyers, L.S.; Gamst, G.; Guarino, A.J. Bivariate Correlation: Pearson Product–Moment and Spearman Rho Correlations; Cambridge University Press: Cambridge, UK, 2012; pp. 155–161. [Google Scholar] [CrossRef]
- von Storch, H.; Zwiers, F.W. K—Quantiles of the Spearman Rank Correlation Coefficient; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Knapp, H. Correlation and Regression: Pearson and Spearman. In Intermediate Statistics Using SPSS; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2019. [Google Scholar] [CrossRef]
- Kumaraswamy, B.G.; Keshavan, B.K.; Ravikiran, Y.T. Analysis of seasonal wind speed and wind power density distribution in Aimangala wind form at Chitradurga Karnataka using two parameter weibull distribution function. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [Google Scholar] [CrossRef]
- Baker, R.W.; Walker, S.N.; Wade, J.E. Annual and seasonal variations in mean wind speed and wind turbine energy production. Sol. Energy 1990, 45, 285–289. [Google Scholar] [CrossRef]
- Merzouk, N.K. Wind energy potential of Algeria. Renew. Energy 2000, 21, 553–562. [Google Scholar] [CrossRef]
- Naderi, R.; Bijani, F.; Karami, A.; Chauhan, B.S.; Egan, T.P. Effects of summer savory (Satureja hortensis L.) and sweet corn (Zea mays L. saccharata) intercropping on crop production and essential oil profiles of summer savory. PeerJ Life Environ. 2023, 11, e14753. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, K.; Mori, J.; Rashid, M.M. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction. Energy 2013, 61, 673–686. [Google Scholar] [CrossRef]
- Zwick, D.; Muskulus, M. The simulation error caused by input loading variability in offshore wind turbine structural analysis. Wind Energy 2015, 18, 1421–1432. [Google Scholar] [CrossRef]
- Ashes Wind Turbine. Theory-Manual. Available online: https://www.simis.io/docs/theory-manual (accessed on 3 April 2023).
- Pvg Tools. Available online: https://re.jrc.ec.europa.eu/pvg_tools/fr/#api_5.1 (accessed on 10 October 2023).
- Caccia, F.; Guardone, A. Numerical simulations of ice accretion on wind turbine blades: Are performance losses due to ice shape or surface roughness? Wind Energy Sci. (WES) 2023, 8, 341–362. [Google Scholar] [CrossRef]
- Pérez, C.; Rivero, M.; Escalante, M.; Ramirez, V.; Guilbert, D. Influence of Atmospheric Stability on Wind Turbine Energy Production: A Case Study of the Coastal Region of Yucatan. Energies 2023, 16, 4134. [Google Scholar] [CrossRef]
- Alam, F.; Jin, Y. The Utilisation of Small Wind Turbines in Built-Up Areas: Prospects and Challenges. Wind 2023, 3, 418–438. [Google Scholar] [CrossRef]
- Li, L.; Chopra, I.; Zhu, W.; Yu, M. Performance Analysis and Optimization of a Vertical-Axis Wind Turbine with a High Tip-Speed Ratio. Energies 2021, 14, 966. [Google Scholar] [CrossRef]
- Yang, H.; Chen, J.; Pang, X. Wind Turbine Optimization for Minimum Cost of Energy in Low Wind Speed Areas Considering Blade Length and Hub Height. Appl. Sci. 2018, 8, 1202. [Google Scholar] [CrossRef]
- Caccia, F.; Gallia, M.; Guardone, A. Numerical Simulations of a Horizontal Axis Wind Turbine in Icing Conditions With and Without Electro-Thermal Ice Protection System. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar] [CrossRef]
- Breen, M.; Upton, J.; Murphy, M.D. Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis. Appl. Energy 2020, 278, 115534. [Google Scholar] [CrossRef]
- System PGI. PVGIS. Available online: https://re.jrc.ec.europa.eu/pvg_tools/fr/#api_5.2 (accessed on 10 October 2023).
- Cai, H.; Jia, X.; Feng, J.; Li, W.; Hsu, Y.M.; Lee, J. Gaussian Process Regression for numerical wind speed prediction enhancement. Renew. Energy 2020, 146, 2112–2123. [Google Scholar] [CrossRef]
- Caccia, F.; Motta, V.; Guardone, A. Multi-physics Simulations of a Wind Turbine in Icing Conditions. In Proceedings of the 9th Edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering, Chia Laguna, Italy, 13–16 June 2021. [Google Scholar] [CrossRef]
Parameters | Value | Ref |
---|---|---|
Rotor diameter | 3 m | [44] |
Rated RPM | 400 rpm | [45] |
Rated wind speed | 10 mph | [46] |
Max Cp (no losses) | 46% | [44] |
Max Cp (with losses) | 39% | [45] |
Parameters | Value |
---|---|
Solar radiation database | PVGIS-SARAH |
PV technology | Crystalline silicon |
PV power | 1 kWp |
System loss | 14% |
PVGIS ver | 5.2 |
Inclination | 32 |
Month | Correlation | p-Value | Significance |
---|---|---|---|
January | −0.713 | 3.01 | Significant |
February | −0.567 | 2.05 | Significant |
March | −0.645 | 2.79 | Significant |
April | −0.524 | 5.02 | Significant |
May | −0.456 | 1.67 | Significant |
June | −0.158 | 0.431 | Not Significant |
July | −0.183 | 0.362 | Not Significant |
August | −0.236 | 0.236 | Not Significant |
September | −0.663 | 1.66 | Significant |
October | −0.388 | 4.53 | Significant |
November | −0.521 | 5.33 | Significant |
December | −0.550 | 2.97 | Significant |
Month | Predictive Data Correlation | p Value (Predictive) | Significance (Predictive) |
---|---|---|---|
January | −0.802 | <1 | Significant |
February | −0.642 | <1 | Significant |
March | −0.787 | <1 | Significant |
April | −0.651 | <1 | Significant |
May | −0.278 | 0.087 | Not Significant |
June | −0.187 | 0.312 | Not Significant |
July | −0.151 | 0.421 | Not Significant |
August | −0.169 | 0.361 | Not Significant |
September | −0.889 | <1 | Significant |
October | −0.578 | <1 | Significant |
November | −0.844 | <1 | Significant |
December | −0.859 | <1 | Significant |
Month | Improved Data Correlation | p-Value (Improved) | Temp (C) | Humidity (%) | Significance (Improved) |
---|---|---|---|---|---|
January | −0.911 | <1 | 10 | 90 | Significant |
February | −0.871 | <1 | 13 | 80 | Significant |
March | −0.811 | <1 | 15 | 75 | Significant |
April | −0.751 | <1 | 18 | 70 | Significant |
May | −0.609 | <1 | 22 | 45 | Significant |
June | −0.41 | 0.011 | 28 | 20 | Not Significant |
July | −0.36 | 0.032 | 31 | 15 | Not Significant |
August | −0.291 | 0.078 | 35 | 3 | Not Significant |
September | −0.89 | <1 | 26 | 17 | Significant |
October | −0.76 | <1 | 18 | 40 | Significant |
November | −0.88 | <1 | 13 | 79 | Significant |
December | −0.91 | <1 | 11 | 84 | Significant |
Time | Solar Energy Generation (kW) | Wind Energy Generation (kW) | Percentage Gain (%) |
---|---|---|---|
00:00 | 0 | 100 | 100% |
06:00 | 210 | 150 | 71.42% |
12:00 | 550 | 100 | 20% |
18:00 | 300 | 200 | 66.67% |
24:00 | 0 | 90 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekkal, M.C.; Ziani, Z.; Mahdad, M.Y.; Meliani, S.M.; Baghli, M.H.; Bessenouci, M.Z. Assessing the Wind Power Potential in Naama, Algeria to Complement Solar Energy through Integrated Modeling of the Wind Resource and Turbine Wind Performance. Energies 2024, 17, 785. https://doi.org/10.3390/en17040785
Sekkal MC, Ziani Z, Mahdad MY, Meliani SM, Baghli MH, Bessenouci MZ. Assessing the Wind Power Potential in Naama, Algeria to Complement Solar Energy through Integrated Modeling of the Wind Resource and Turbine Wind Performance. Energies. 2024; 17(4):785. https://doi.org/10.3390/en17040785
Chicago/Turabian StyleSekkal, Mohammed Chakib, Zakarya Ziani, Moustafa Yassine Mahdad, Sidi Mohammed Meliani, Mohammed Haris Baghli, and Mohammed Zakaria Bessenouci. 2024. "Assessing the Wind Power Potential in Naama, Algeria to Complement Solar Energy through Integrated Modeling of the Wind Resource and Turbine Wind Performance" Energies 17, no. 4: 785. https://doi.org/10.3390/en17040785
APA StyleSekkal, M. C., Ziani, Z., Mahdad, M. Y., Meliani, S. M., Baghli, M. H., & Bessenouci, M. Z. (2024). Assessing the Wind Power Potential in Naama, Algeria to Complement Solar Energy through Integrated Modeling of the Wind Resource and Turbine Wind Performance. Energies, 17(4), 785. https://doi.org/10.3390/en17040785