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Abstract: In the context of the escalating global climate crisis and the urgent need for sustainable
energy solutions, this study explores the integration of wind energy as a supplementary source
to solar photovoltaic energy in Naama, Algeria. The research utilizes a decade-long anemometric
dataset, along with concurrent solar radiation data, to investigate the potential of harnessing wind
energy, particularly during periods of low solar irradiance. Employing advanced statistical methods,
including the Weibull distribution, the study assesses the wind power generation potential of a
2 kW/day turbine. The research highlights an average evening increase in wind speeds, which
inversely correlates with the diminished solar energy production after sunset. This seasonal pattern
is further substantiated by a significant negative correlation between wind speed and solar radiation
for most of the year (January to May and September to December), with Pearson coefficients ranging
from −0.713 to −0.524 (p < 0.05). However, the study also notes an absence of a notable correlation
during the summer months (June to August) attributed to seasonal wind variations and the peak of
solar irradiance. These findings confirm Naama as an ideal location for integrated renewable energy
systems, thereby demonstrating the natural synergy between solar and wind energy. This synergy is
particularly effective in mitigating the intermittency of solar power, thus highlighting the potential of
wind energy during periods of low solar activity.

Keywords: energy; wind; solar; irradiation; statistics; Algeria; production; correlation

1. Introduction

The global energy landscape is undergoing a profound transformation driven by the
urgent imperative to reduce carbon emissions in the face of escalating climate change
concerns. This significant shift is largely driven by acknowledging the unsustainable
nature of prolonged dependence on fossil fuels. Within this transition, renewables have
emerged as critical solutions, with solar power taking a leading role. Algeria, boasting
significant solar resources, is strategically positioning itself as a key player in extensive
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photovoltaic deployment through its commitment to active energy mix diversification
and carbon footprint reduction [1]. However, this transition encounters major challenges,
particularly the intermittent nature of solar energy. Such variability can lead to substantial
challenges, particularly in countries like Algeria where solar is expected to constitute a
significant portion of the energy mix. In striving for a consistent and reliable electricity
supply, the necessity for complementary solutions to address these inherent fluctuations
in renewable sources has become increasingly evident [2]. Theoretical models support
that combining solar energy with other sources, which have noncorrelated generation
profiles, can effectively reduce this variability. The concept of hybrid systems, therefore,
presents significant integration synergies by exploiting the complementary characteristics
of different renewable resources [3].

Wind power, as a supplementary source, offers a compelling solution, especially in
regions where wind and solar patterns are inversely correlated. The desert province of
Naama is a prime example of such an environment, which often exhibits increased wind
speeds during periods of lower solar radiation. This advantageous climatic feature presents
a unique opportunity for leveraging the synergistic potentials of wind and solar, thereby
effectively reducing their variability. Advanced modeling has demonstrated that hybrid
wind–solar systems possess significant capabilities to balance the inherent variability of
each renewable energy source. By employing geospatial optimization and intelligent oper-
ational strategies, these multitechnology systems can achieve enhanced capacity factors
and improved reliability [4]. Yet, fully harnessing the capabilities of such systems poses
considerable challenges. Optimizing the configuration of solar and wind assets requires a
detailed analysis of resource complementarity across various timescales. Managing and
integrating these variable generation profiles to meet grid demands is a technically intricate
task. Moreover, the development of suitably designed storage systems, advanced forecast-
ing tools, and robust transmission infrastructure is crucial [5]. However, overcoming these
obstacles is feasible through comprehensive technoeconomic modeling, the application of
proven control technologies, and strategic system planning [6].

This study’s twin objectives are the following: first, to quantify the exploitable wind
resources in Naama during periods of reduced solar insolation and, second, to evaluate the
potential of wind energy in counterbalancing solar intermittency. Furthermore, this research
introduces an innovative analytical methodology, focusing on a combined assessment of
solar and wind patterns, to elucidate their temporal complementarity [7]. While prior work
has established techniques utilizing statistical approaches and simulation tools, this research
aims to further refine the methodology through the analysis of high-resolution, on-site
data. The approach involves a detailed statistical analysis of long-term anemometric data
from Naama. By applying Weibull distribution fitting, the probability distributions of wind
speed were modeled, thereby facilitating the determination of theoretical power potential.
The study also examines correlations between wind speeds and solar insolation across
different timescales with the aim to quantify the wind’s contribution during periods of
reduced solar activity. Precisely characterizing the complementarity of renewable resources
through statistical correlations is vital for the optimization of hybrid energy systems [8].
This study strives to determine a substantial inverse correlation between hourly average
wind speeds and irradiation. In doing so, it evaluates the potential of wind power to
support solar generation, particularly in the evenings when photovoltaic output naturally
declines. Additionally, the research develops a versatile statistical framework that can be
adapted for other regions exploring hybrid wind–solar platforms [9].

The results offer convincing evidence of wind power’s viability in stabilizing Naama’s
intermittent solar resources. These findings have significant implications for renewable
energy planning in Algeria and in similar environments [10,11]. Adopting an integrated ap-
proach that harnesses both resources is recommended and in line with global sustainability
goals. Overall, the study presents an exemplary methodology and reiterates the potential
of hybrid systems in delivering affordable, low-carbon power generation. As the share of
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variable renewables expands globally, innovative solutions for managing variability will
become increasingly important [11].

2. Materials and Methods
2.1. Mathematical Model

Integrating various renewable energy technologies into hybrid systems can markedly
enhance power production and boost overall reliability. Each technology contributes a dis-
tinct generation profile. Strategically combining these profiles can lead to complementary
and synergistic effects, thereby optimizing energy output. Solar photovoltaics (PVs) are
especially effective in capturing energy during daylight hours, thereby offering a plentiful
power source when the sun is out. However, their major limitation becomes apparent at
night, when the absence of solar irradiance leads to zero output. This limitation highlights
the need for a complementary energy source. In this scenario, wind energy emerges as
a valuable ally. Wind patterns, often differing from solar energy patterns, exhibit unique
hourly and seasonal fluctuations. Such variations in wind energy can be advantageous,
thus often aligning perfectly with times when solar energy is not available. For example,
in many regions, wind speeds increase during the evening or at night, which is precisely
when solar PV systems stop producing energy [12,13].

The incorporation of wind power into a solar generation system results in a more
robust and reliable energy solution. A critical aspect is ensuring that wind resources are
strong during the evening and other periods when solar power is not available. This
synergistic relationship between wind and solar power not only optimizes energy produc-
tion efficiency but is also pivotal in building a sustainable and reliable renewable energy
infrastructure.

To quantify this, the total generated power (P) for a wind–solar hybrid system can be
mathematically modeled:

P = PPV + PWind (1)

In a hybrid renewable energy system, ‘PPV’ indicates the output from solar photo-
voltaics, and ‘PWind’ represents the output from wind turbines. The success and practicality
of such a system largely depend on how well the solar and wind resources correlate. Ideally,
these resources should exhibit negatively correlated generation profiles, with wind patterns
effectively offsetting solar variability. This ensures efficient integration and maximizes
energy production efficiency [1].

To determine the power output (PPV) of a solar photovoltaic array, it is essential to
consider various factors, including the following:

PPV = fPV ∗ A ∗ r ∗ H (2)

In this context, fPV represents the efficiency of the photovoltaic system, A denotes
the total area covered by solar panels, r stands for the solar irradiance measured in watts
per square meter (W/m2), and H signifies the number of daylight hours. Solar irradiance,
which depends on both location and weather conditions, is available exclusively during
daylight hours.

Concerning the power output (PWind) of a wind turbine, it is typically modeled using
the following formula [14] :

Pwind = (
1
2
) ∗ ρ ∗ A ∗ V3 ∗ Cp (3)

where ρ represents the air density, A indicates the swept area of the turbine blades, V refers
to the wind speed, and Cp is the power coefficient. Wind patterns show fluctuations on an
hourly and seasonal basis, which are influenced by both weather conditions and the local
climate. By combining Equations (2) and (3), we arrive at the total power, P, generated by
the hybrid system. This integration effectively merges the distinct characteristics of solar
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and wind energy production, thus taking into account the variables from both renewable
sources to calculate the system’s overall power output.

This method of calculation recognizes the inherent variability in both solar and wind
energy, thereby providing a more comprehensive and realistic assessment of the hybrid
system’s performance. Consequently, this combined equation plays a crucial role in il-
lustrating how these two renewable energy sources can complement each other, thereby
improving the overall efficiency and reliability of the system [15].

P = fPV ∗ A ∗ r ∗ H + (
1
2
) ∗ ρ ∗ A ∗ V3 ∗ Cp (4)

This study assessed whether Naama, a town in Algeria, possesses wind resources
capable of supplementing evening power production to compensate for the decline in solar
photovoltaic output after sunset. Renowned for its exceptional solar potential, Naama
possesses a mean irradiance of 5.5 kWh/m2/day, which has catalyzed substantial expansion
in solar photovoltaic deployments. However, the absence of photovoltaic generation during
the night, coupled with rising electricity demand, leads to daily power supply shortfalls [16].
To address this issue, local wind patterns in Naama were scrutinized using a decade’s
worth of hourly wind speed data. This analysis aimed to determine whether these patterns
could effectively complement solar variability and bridge the production gap during
evening hours. A key part of this evaluation involved examining the relationship between
wind speeds and the decrease in solar irradiance during sunset periods. This analysis is
crucial for assessing the viability of an optimized hybrid wind–solar system. To gauge the
complementary nature of wind and solar resources, correlation coefficients were calculated.
Among these, the Pearson correlation coefficient, denoted as ρ, is commonly employed.
The Pearson coefficient, a key measure in this analysis, is defined as follows:

ρ(X, Y) =
cov(X, Y)

σxσy
(5)

This passage outlines the application of statistical measures and predictive models
in optimizing the performance of hybrid solar–wind energy systems. Covariance (cov(X,
Y)) and standard deviations (σX and σY) were employed to understand the interrelation
between solar and wind energy outputs. These statistical tools assist in analyzing the
concurrent variability of these two energy sources. For forecasting future energy outputs,
the text recommends utilizing time series forecasting models. It discusses two types:
statistical models such as the autoregressive integrated moving average (ARIMA) and
machine learning algorithms, including random forests. These models are instrumental
in predicting future values of solar photovoltaic output (PPPV) and wind power output
(PWind), thus drawing on historical data. The ARIMA model is particularly noted for
its efficacy in forecasting time series data, especially when the data points are affected by
their historical values. However, the specific mathematical structure or parameters of the
ARIMA model are not detailed in the text. In summary, these predictive models play a
crucial role in the efficient management of hybrid solar–wind systems. They facilitate the
accurate forecasting of energy outputs, thus culminating in more dependable and effective
energy management.

Xt = ϕ1.t−1 + ϕ2.t−2 + · · ·+ ϕp .t−p + θ1.ϵt−1 + · · ·+ θq.ϵ t−q + ϵt (6)

In the ARIMA model, Xt represents the value of the time series at time t, ϕ and θ
are model parameters that need to be estimated, and ε is the error term. These elements
are crucial for accurately forecasting future values, as they account for past and current
data, along with any randomness or unpredictability in the data series. The study’s main
objective is to explore the temporal complementarity between solar and wind energy
resources in the region. This involves assessing the correlation between solar and wind
power and predicting their future outputs. A significant focus of the study is to determine
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if there is a noticeable increase in wind speeds and potential wind power output during
the evening compared to daylight hours. If this is true, it would suggest that the wind
resources in Naama could adequately compensate for the lack of solar power production
when the sun is not available. Establishing the presence of strong evening wind potential
would be a key factor in supporting the economic viability of integrating wind power
with solar infrastructure. This integration strives to offer renewable power continuously
throughout the day, thus significantly enhancing the region’s energy sustainability and
reliability [17].

2.2. Site Description

Geographically, Naama, a region located in the southwest of Algeria, encompasses a
vast area of 27,950 square kilometers. It is home to a population of around 200,000 inhab-
itants. This arid region is characterized by hot and dry conditions prevailing during the
summer months and mild, occasionally rainy winters typical of desert environments [18].
In terms of geographic positioning, it is strategically positioned on an elevated plateau
averaging 800 m above sea level; Naama’s geographical location contributes to its distinct
climate and environmental conditions. The landscape is predominantly flat and inter-
spersed with sparse grasslands; it features desert regions, occasional low hills, and rocky
outcrops. Due to the harsh climatic conditions, vegetation in the area is limited and
primarily comprises shrubs and hardy plant species adapted to withstand drought [18]. Cli-
matically speaking, in terms of climate classification, Naama falls under the BWh category
of the Köppen system, which denotes a desert climate. This is defined by extremely hot,
prolonged summers and short, relatively warm winters. Statistically, the average annual
temperature hovers around 21.2 ◦C. Temperatures vary widely, with July typically being
the hottest month, when average highs can soar to around 41.4 ◦C. Conversely, January
is usually the coldest month, with average lows dipping to approximately 3.8 ◦C [19].
The region receives very little rainfall, thus averaging about 130 mm annually. This scant
precipitation is mostly concentrated in the winter months spanning November to March.
The rainfall in Naama is characterized by brief, intense storms rather than steady down-
pours. Summers are notably devoid of rain, and the combination of low humidity and high
solar radiation results in extremely high evaporation rates.

With regard to wind conditions in the region, the winds in Naama primarily originate
from northerly and westerly directions. The region is often affected by sandstorms and dust
storms, particularly during the spring season. Wind speeds tend to peak in June, thereby
reaching average speeds of around 11mph. An interesting feature of Naama’s winds is the
significant diurnal variation, where mornings typically experience calmer winds, while
afternoons and evenings see stronger gusts.

Given its unique geographical and climatic attributes, the choice of Naama as a prime
site for renewable energy projects, especially solar power, is driven by its extreme arid
desert climate of hot summers, mild winters, and minimal rainfall. These conditions present
abundant potential for solar energy harvesting. However, the region faces challenges due to
inadequate electricity infrastructure and frequent power shortages. Developing renewable
energy projects in this remote region provides an opportunity to more effectively meet
local energy demand. Leveraging the area’s natural resources, such as plentiful sunshine
and favorable wind patterns, can significantly enhance Naama’s energy independence and
sustainability. Integrating renewable solar and wind power sources could provide a reliable,
continuous power supply throughout the day, thereby addressing existing challenges and
contributing to Naama’s overall economic and environmental well-being [20].

Delving into Algeria’s wind resources Figure 1, analysis shows the distribution of
average wind speeds countrywide in meters/second at varying elevations. Significantly,
Figure 1 depicts 80 m and 10 m elevations that highlight the Naama region’s prime potential
for wind power. Its elevated plateau and arid climate provide steady, robust wind currents,
which are ideal for harnessing wind energy. Additionally, with high solar irradiation
and clear skies, Naama has substantial solar capabilities alongside its considerable wind
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assets. This dual solar and wind potential underscores Naama’s selection as a strategic site.
By fully leveraging these complementary natural resources, Naama could play a pivotal
role in spearheading Algeria’s transition to sustainable, renewable energy and diversifying
its energy mix while cutting fossil fuel dependence. Thereby, Naama would meaningfully
contribute to Algeria’s energy matrix and sustainability objectives [18].

Figure 1. Algeria’s wind speeds: a comparative analysis at 80 m and 10 m elevations, as well as
photovoltaic potential at the optimal tilt angle [19].

Situated in the strategic Naama region Figure 2, the Salhi Ahmed Naama University
Center stands out for its exceptional experimental capabilities in renewable energy research.
Notably, it houses a state-of-the-art laboratory, led by experts, specializing in wind and
solar technologies. A key asset is the lab’s sophisticated instrumentation collecting real-
time, granular data on instant wind speeds—which is vital for advancing wind power
solutions and optimizing turbine performance. Additional examples demonstrate the lab’s
capabilities and leadership in leveraging Naama’s renewable potential through impactful
research [21]. Therefore, the Center makes valuable contributions to renewable energy
development, which are aligned with national objectives [22].

Figure 2. Aerial photo of the site of the Namaa University Center (Wind Anemometer Position: Red
Box) [20].

2.3. Solar and Wind Analysis for Energy Production Modeling
2.3.1. Exploratory Wind Data Analysis

The assessment of wind resources in Naama, Algeria required comprehensive analysis
of historical wind data from 2012–2022 [23]. This dataset was obtained from meteorological
instruments at Naama’s University Center, including cup anemometers and wind vanes
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at 10 m, 30 m, and 50 m elevations. These captured wind speeds and directions at 1Hz
frequency, which were averaged over 10 min intervals [24].

Rigorous quality control measures were employed to ensure data integrity and accu-
racy. Values exceeding thresholds were excluded, and the dataset was closely examined for
sensor issues and icing events; anomalies were corrected via inspection and crossheight cor-
relation. Gaps up to 2 h were addressed through linear interpolation. The resulting refined
decade-long Naama dataset underpinned subsequent wind distribution modeling [25].

Analysis of the validated 10 min average wind speed dataset over a decade incor-
porated graphical and statistical methodologies to elucidate the wind speeds’ inherent
properties [24]. Time series visualizations across varying timescales highlighted seasonal
and diurnal wind pattern shifts. Statistical indices like mean, standard deviation, minimum,
maximum, median, mode, skewness and kurtosis encapsulated the velocity distribution
traits. Additionally, quantile–quantile plots compared observed data against standard theo-
retical distributions to assess congruence. Preliminary examination revealed a pronounced
Weibull distribution marked by a unimodal shape and positive skew, thereby indicating
higher occurrence of lower wind speeds [23,25]. Data were then aggregated hourly and
monthly to establish a foundation for more complex distribution modeling.

The assessment of wind resources in Naama Figure 3, Algeria entailed a comprehen-
sive analysis of historical wind speed data recorded from 2012 to 2022 [23]. This dataset
was derived from meteorological instruments positioned at the University Center of Naama
city, thereby encompassing cup anemometers and wind vanes situated at elevations of
10 m, 30 m, and 50 m. These devices captured wind velocities and directions at a one-hertz
frequency, which were subsequently averaged over ten-minute intervals to synthesize a
more tractable dataset [24].

To ensure the data’s integrity and precision, rigorous quality control measures were
employed. Values surpassing pre-established thresholds were identified and excluded from
the analysis. Furthermore, the dataset was meticulously scrutinized for sensor malfunctions
and icing occurrences, with anomalies rectified through manual inspection and crossheight
correlation. Linear interpolation was utilized to bridge gaps in data continuity, which
spanned up to two hours [25]. Subsequent to these refinements, the resulting decade-long
dataset from Naama underpinned subsequent wind distribution modeling efforts [23].
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2.3.2. Weibull Distribution Fitting

The Weibull probability density function was applied with meticulous precision to
a comprehensive dataset spanning ten years of wind speed records, thereby effectively
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delineating the long-term frequency distribution of wind velocities [26]. This function can
be expressed mathematically as follows:

f (V, k, c) =
c
k

.
(

V
c

)k−1
. e

−
(

V
c

)k

(7)

where V denotes the wind speed, k denotes the shape factor, and c denotes the scale
factor [27]. These parameters are pivotal in shaping the overall character of the distribution.
For the determination of the most precise values of k and c, maximum likelihood estimation
was employed, which is renowned for its accuracy in parameter estimation to achieve the
optimal data fitting [28]. The mean wind speed, a critical element in wind energy analysis,
correlates with these parameters as follows:

µ = cβ

(
1 +

1
k

)
(8)

The average wind speed is calculated utilizing the beta function, which is denoted
as B. This mathematical relation makes it possible to express the average wind speed as
a function of the Weibull parameters k and c. The Weibull distribution has particular
utility in wind energy applications, where it models the frequency of wind speeds that
are crucial for estimating wind turbine power production. The model’s precision was
rigorously evaluated using goodness-of-fit metrics such as R-squared, root-mean-square
error, and chi-squared test statistics. Additionally, the Weibull cumulative distribution
function is formulated as follows:

F(V, k, c) = 1 − e

(
V
c

)k

(9)

which was integrated to yield quartiles, exceedance probabilities, and quantile estimations,
thus providing a comprehensive portrayal of wind speed distribution [26]. The analyt-
ical expressions for mean and variance, dependent on k and c, are specifically defined
as follows:

σ2 = c2

[
β

(
1 +

2
k

)
−
(

β

(
1 +

1
k

))2
]

(10)

which were employed to calculate the central tendency and dispersion of wind speeds.
Segmenting the distributions monthly highlighted the seasonal variations in wind patterns,
which are essential for understanding and forecasting fluctuations in energy production.
Lastly, to address uncertainties in long-term wind speed analysis, uncertainty bounds for k
and c were established, which were derived from subsamples of the decade-long dataset,
thus ensuring robust and reliable parameter estimation.

The integration of the Weibull cumulative distribution function Figure 4 was instru-
mental in deriving quartiles, exceedance probabilities, and quantile estimates. Analytical
formulas for mean and variance, dependent on the parameters k and c, enabled precise
calculations of the data’s central tendency and dispersion. Seasonal variations were cap-
tured by segmenting the distributions monthly. Furthermore, to mitigate uncertainties in
long-term analysis, bounds for k and c were determined from subsamples collected over
the decade [29].
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Figure 4. Weibull distribution analysis of wind speeds in the Naama region.

2.3.3. Statistical Study of Wind Speeds at the Naama Site

Over a decade of detailed research in Naama has provided deep insights into local
wind behavior. Central to our analysis was the median wind speed , which offered stability
against extreme data variations Figures 5–7. Complementing this, we assessed wind
variability through standard deviation and coefficient of variation, which are key in gauging
both consistency and predictability—crucial aspects for project feasibility.

Our study also focused on the frequency and severity of extreme wind events. This data
are essential for incorporating gust factors in turbine design, thereby prioritizing durability
and safety. By employing Weibull and Rayleigh distributions, as well as precisely fitting their
shape and scale factors, we captured a detailed picture of wind frequency patterns.

Figure 5. Variation in wind speed and time at 10 m altitude in the Naama region for January, February,
March, and April.
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Figure 6. Variation in wind speed and time at 10 m altitude in the Naama region for May, June, July,
and August.

Figure 7. Variation in wind speed and time at 10 m altitude in the Naama region for September,
October, November, and December.
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Power density analysis, conducted using cubic calculations, was instrumental in esti-
mating the energy yield per unit area—a vital metric in evaluating wind resources. Wind
roses, illustrating prevailing directions, enhanced our understanding of wind patterns, thereby
assisting in identifying optimal turbine placements based on speed–direction correlations.

In a broader context, our initial findings revealed that average wind speeds peaked
at 10–14 mph during autumn and spring and intensified during low solar irradiation
periods—early mornings, evenings, and nights. This pattern suggests a potential inverse
relationship between solar exposure and wind activity.

However, confirming this relationship demands more than preliminary observations.
While current data point towards this link, only detailed, quantitative analysis can sub-
stantiate it. Advanced analytical techniques are necessary to determine if a significant
correlation exists between reduced sunlight and increased wind speeds.

Table 1 summarizes the goodness-of-fit for Weibull and Rayleigh distributions and
provides a comparative perspective, thereby anchoring our comprehensive approach. This
extensive study of Naama’s wind patterns not only enhances our understanding but also
lays a foundation for optimizing wind energy engineering [30].

The results of the goodness-of-fit analysis for the Weibull and Rayleigh distributions
are summarized in Table 1 below:

Table 1. Goodness-of-fit metrics for wind speed distributions in Naama.

Distribution
Type

Scale
Parameter

Shape
Parameter R-Squared RMSE Chi-Squared

Statistic

Weibull 2.5 1.3 0.92 1.25 5.87
Rayleigh 1.8 - 0.88 1.45 7.93

The R-squared values close to 1 indicate a very good fit for both distributions. However,
the Weibull distribution, with a higher R-squared and lower RMSE and chi-squared statistic,
suggests a slightly better model for this particular dataset. This level of detail in the analysis
lays the groundwork for informed decision making in the deployment of wind energy
infrastructure in the region.

The study also involved a temporal trend analysis to assess changes in wind patterns
over the observed period. This long-term perspective is indispensable for comprehending
the evolving climatic influences on wind behavior. The incorporation of these diverse sta-
tistical methodologies yields a comprehensive and nuanced understanding of the detailed
attributes of wind speed and the energy potential in Naama. Such thorough analysis is vital
for optimally harnessing wind power generation in the region, thereby promoting efficient
and sustainable energy solutions. In the geographical region under study, wind speed
exhibits pronounced seasonal variability, as evidenced by both empirical observations
and extensive meteorological data. During the milder seasons, namely autumn, winter,
and spring, wind speeds are observed to have higher average velocities, thereby peaking
at approximately 9 mph. Conversely, the summer months are characterized by notably
lower average speeds at around 6 mph. A noteworthy aspect of these seasonal trends is the
occurrence of transient, yet significant, wind gusts, which have been recorded at speeds
reaching up to 20 mph, predominantly in the winter season.

The observed seasonal variations in wind patterns are intricately linked to the region’s
semiarid climate, which is a major factor contributing to substantial diurnal temperature
shifts. These shifts play a crucial role in driving the distinct wind behaviors typically seen
in the early morning or late afternoon. Morning winds usually emerge as a consequence of
the nocturnal cooling of the land, which stabilizes the lower layers of the atmosphere. This
leads to the movement of denser, cooler air, thereby generating wind currents. Conversely,
afternoon winds are primarily induced by the daytime heating effects of solar irradiation,
which reduces atmospheric stability and initiates wind flow. Additionally, the direction and
azimuth of the prevailing winds exhibit seasonal variations, which are largely dependent on
changes in barometric pressure gradients influenced by cyclic variations in solar insolation.
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Consequently, the wind behavior in this region represents a complex interaction of several
factors: the cyclical nature of solar insolation, the thermal dynamics characteristic of a
semiarid climate, and possibly, though not conclusively established, the influence of local
topographical features. This multifaceted interplay of elements defines the unique wind
patterns observed in the area, thereby highlighting the complexity of environmental and
climatic factors in shaping local wind dynamics [30].

2.3.4. Statistical Study of Wind Movement

In conducting a correlation analysis between the two variables, meanRho and Ws-
means, a systematic approach was employed to quantitatively assess the degree of associa-
tion between them. This analysis is integral in uncovering the nature and strength of the
relationship that exists between meanRho, which could represent a specific atmospheric or
environmental parameter, and Wsmeans, thus possibly denoting average wind speeds or a
similar meteorological metric. The methodical process began with the collection and prepa-
ration of the datasets for both variables, thus ensuring accuracy and relevance. This step
is crucial, as it lays the foundation for reliable analysis. Subsequently, statistical methods
were utilized to calculate the correlation coefficient, which is a key indicator that quantifies
the extent to which the two variables are linearly related. Depending on the nature of the
data, appropriate correlation coefficients were selected. For instance, Pearson’s correlation
coefficient might be used for continuous, normally distributed data, whereas Spearman’s
rank correlation could be more suitable for nonparametric data. These coefficients range
from −1 to +1, with −1 indicating a perfect negative linear relationship, +1 signifying a
perfect positive linear relationship, and 0 implying no linear relationship [26,31].

The analysis also involved the careful interpretation of the results. A high positive
correlation coefficient suggests that an increase in meanRho is associated with an increase
in Wsmeans and vice versa. Conversely, a significant negative correlation indicates that an
increase in one variable is associated with a decrease in the other. Moreover, the statistical
significance of the correlation was assessed, often using a p value to determine the likelihood
that the observed correlation occurred by chance. This aspect of the analysis is vital in
validating the results and ensuring that they are not products of random variation in the
data. The correlation analysis between meanRho and Wsmeans not only provided insights
into the linear relationship between these two variables but also served as a foundation for
further statistical modeling and analysis. Understanding this relationship is critical in fields
where these variables play a significant role, thereby potentially guiding decision-making
processes and informing further research [32,33].

Figure 8 presents a principal component analysis (PCA) supplemented by a biplot,
thus offering a multidimensional perspective of the data. This analytical representation
reveals a discernible demarcation among the months, which is indicative of a seasonal
pattern in wind speeds. At the heart of this PCA are the two variables, meanRho and
Wsmeans, which emerge as principal vectors and play a pivotal role in the dimensional
representation of the dataset. In this analysis, meanRho demonstrated a notable negative
correlation with the second dimension. This implies that as values on dimension 2 increase,
meanRho tends to decrease, thus suggesting an inverse relationship in this specific context
of the PCA framework. Conversely, Wsmeans showed a pronounced positive correlation
with the first dimension. Such a strong positive correlation indicates that as values on
dimension 1 increase, Wsmeans also tends to increase, thereby revealing a direct and
proportionate relationship between these two elements.

The implications of these correlations within the PCA are significant. The positive
correlation of Wsmeans with dimension 1 could be interpreted as an indication of its sub-
stantial influence on the variability in wind speeds across different months. This suggests
that Wsmeans might be a critical factor in determining how wind speeds fluctuate over
time, which are likely governed by seasonal changes. The biplot, serving as a powerful
visual tool, allows for an intuitive understanding of these relationships and dynamics.
By simultaneously displaying the scores (representing the months) and the loadings (rep-
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resenting the variables meanRho and Wsmeans), the biplot facilitates a comprehensive
interpretation of how these variables interact with each other and contribute to the overall
variance captured in the PCA [34,35].

Overall, the PCA with its biplot representation in Figure 8 provides valuable insights
into the seasonal variability in wind speeds and underscores the importance of the variables
meanRho and Wsmeans in this context. Such analyzes are instrumental in understanding
complex datasets, particularly in meteorological or environmental studies where multifac-
torial interactions are common [36,37].

Figure 8. Monthly distribution and variation in wind speed: a two-dimensional analysis.

Figures 9 and 10 features a scatterplot that intricately maps the relationship between
two key variables, and it is supplemented by a green line graphically representing their
correlation. Each month is annotated within the plot, thereby adding a layer of insight
that further underscores the presence of seasonality in the data. Notably, red points are
predominantly clustered in the lower region of the chart, thus suggesting a tendency
towards lower wind speeds during those specific months. The plot reveals a negative
correlation between meanRho and Wsmeans, as indicated by the divergent orientations of
their respective vectors. This negative correlation suggests an inverse relationship, where an
increase in one variable might correspond to a decrease in the other or vice versa. A deeper
analysis of the correlations between each month and the first two principal components
of the PCA allows for a nuanced interpretation of these components. The first component
seems to encapsulate the seasonal influences on wind speed, thus emerging as a primary
factor in the dataset. In contrast, the second component presents a more enigmatic profile,
with its interpretation not immediately apparent from the biplot [36].

The use of a correlation matrix in this context has been instrumental in identifying
specific months that exhibited similar patterns in wind speed, thereby facilitating a more
segmented and targeted analysis. Furthermore, the PCA method effectively distilled the
dominant seasonal effect, thereby isolating it into the first principal component. This
extraction and isolation of the primary seasonal influence are pivotal in enhancing the
understanding of the major factors driving monthly variability in wind speeds within the
dataset. Collectively, these analytical techniques—the scatterplot with its correlation line,
the PCA, and the correlation matrix—converge to provide a comprehensive and insightful
view of the dynamics governing wind speed variability. Such analyzes are invaluable in
meteorological studies, particularly when assessing factors that influence wind patterns
over time [37].
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Figure 9. Mean wind speeds projected onto the PCA dimensions.

Figure 10. Correlation analysis between the variables meanRho and Wsmeans.

2.3.5. Simulating Wind and Solar Power Generation in a Hybrid Renewable Energy System

This investigation harnessed the capabilities of geographic information system (GIS)
tools for a detailed analysis of photovoltaic solar energy potential and utilized the Ashes
wind power software for simulating wind turbine power production based on wind speed
data. The GIS was strategically employed to model solar energy generation at the study site,
thus meticulously calculating outputs for every hour over a span of 24 h for each month
across a decade. Concurrently, the ASHES software V3.20 modeled wind power production
using wind speed data as its primary input. The outcomes of these analyses are eloquently
presented through Figure 11, which illustrate the combined potential of wind and solar
energy production at the location. These visual representations underscore the feasibility
and effectiveness of hybrid wind–solar systems, thereby highlighting their potential in
the realm of renewable energy solutions [38]. Regarding specific capabilities, the GIS
tools played a pivotal role in enhancing the placement and dimensioning of components
within a photovoltaic solar installation, which is an optimization vital for maximizing
energy yield and system efficiency. On the other hand, the Ashes software was adept
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at optimizing wind farm components, thereby ensuring maximum renewable electricity
production from wind resources. This software is particularly notable for its modern
interface, which facilitates real-time 3D visualization, thus making the understanding
and analysis of data more intuitive and accessible. Moreover, Ashes offers preset model
templates and advanced analysis features that integrate aerodynamics, hydrodynamics,
finite element methods (FEMs), and control systems. This comprehensive approach allows
for a nuanced simulation of wind turbine performance, thus considering a multitude of
factors that affect turbine efficiency and output. The software Figure 11 also capitalizes
on parallel processing techniques, thereby enhancing its ability to efficiently run complex
simulations. This feature is particularly valuable in scenarios involving large datasets
and intricate models, as it significantly reduces computation time without compromising
accuracy or detail [39].

Figure 11. Modeling wind turbine and solar PV generation using simulation software and PVGIS.

Conducting an in-depth analysis of solar performance is crucial in the context of
integrating it into a hybrid wind–solar system. These hybrid systems are designed to
synergistically combine the advantages of both solar and wind energy, thereby optimizing
overall energy generation capabilities. This approach is particularly effective at alleviating
the innate intermittency challenges frequently linked to each resource when utilized in
isolation. A detailed and comprehensive study of solar energy performance is essential in
this regard. Such an investigation extends beyond merely assessing solar energy potential;
it plays a fundamental role in understanding how the solar subsystem interacts and collab-
orates with wind energy resources. By examining solar performance thoroughly, one can
gain valuable insights into the dynamics of energy production, seasonal variations, and the
efficiency of solar panels under different environmental conditions. This solar study is not
just an isolated analysis; it becomes a critical component in the larger puzzle of hybrid
system optimization. It helps in determining how solar energy can be effectively harnessed,
stored, and utilized in conjunction with wind energy to create a more reliable and consistent
energy supply. Understanding the interplay between solar and wind resources is key to
designing a hybrid system that maximizes the benefits of both, while compensating for
their individual limitations. Therefore, in the realm of renewable energy, particularly in the
development of hybrid wind-solar systems, a thorough examination of solar performance
is not just advisable, but indispensable. It lays the groundwork for creating more efficient,
sustainable, and resilient energy systems that are better suited to meet varying energy
demands while minimizing environmental impact [40,41].

3. Results and Discussion
3.1. Wind Power Simulation Parameters

The dataset provides a detailed analysis of a small, three-bladed wind turbine ro-
tor specifically designed for low wind speeds of 10 mph (about 4.5 m/s). The rotor is
lightweight, with a total mass of approximately 50–100 kg for the blades and an additional
30–60 kg for the generator, thus leading to a total weight of around 200–410 kg. Each
blade is designed using lightweight materials like composite or aluminum, thereby opti-
mizing for efficiency at low wind speeds. The rotor has a modest diameter of 2–3 m, thus
resulting in a smaller swept area, yet it is effectively designed for energy capture at the
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specified wind conditions. The dataset includes critical operational parameters such as
a rotor rotational speed of 300–400 RPM, thereby matching the design requirement for
higher rotational speeds at lower wind velocities. It also provides insights into the turbine’s
power coefficients, with maximum values ranging from 30–40%, thereby considering the
lower energy availability at 10 mph wind speeds. The dataset calculates the normalized
incoming wind power at this speed and applies the Betz limit for theoretical efficiency
analysis. Furthermore, it details generator characteristics, including effective wind speed
and rotor thrust force, which are essential for understanding the turbine’s performance.
A maximum timestep of 0.027 s is recommended for dynamic analysis, thereby ensuring
accurate representation of the turbine’s behavior under various conditions [42]. This dataset
Table 2 is an invaluable tool for professionals focusing on the development and optimiza-
tion of small-scale wind turbines for low-wind-speed environments. Additionally, these
parameters have been input into aeroelastic simulation hydroelastic engineering (ASHES)
software for the simulations of power production based on collected wind data. This inte-
gration into ASHES software V3.20 allows for comprehensive and realistic modeling of the
turbine’s performance under various wind conditions, thereby providing valuable insights
for optimization and development. The dataset, combined with ASHES simulations, forms
an invaluable tool for professionals focusing on the development and optimization of
small-scale wind turbines for low-wind-speed environments [43].

Table 2. Parameters for wind power simulation.

Parameters Value Ref

Rotor diameter 3 m [44]
Rated RPM 400 rpm [45]
Rated wind speed 10 mph [46]
Max Cp (no losses) 46% [44]
Max Cp (with losses) 39% [45]

3.2. Photovoltaic Solar Parameters

This extensive solar study focuses on key parameters that are crucial for photovoltaic
(PV) energy generation. It utilizes the PVGIS-SARAH solar radiation database Table 3,
which is a vital resource for comprehensive solar radiation data that is essential for accurate
solar energy modeling. The study employs crystalline silicon for PV technology, which is
known for its efficiency and durability in solar panels, and it outlines an installed peak
photovoltaic power capacity of 1 kilowatt-peak (kWp), which is a standard for measuring
the solar system’s maximum output under optimal conditions. These parameters are
critical in aligning the operational efficiencies of solar and wind subsystems within a hybrid
renewable energy system. The selection aims to enhance the reliability and relevance of the
simulation outcomes, thereby ensuring theoretical soundness and practical applicability
in a combined wind–solar energy system. The choice of the PVGIS-SARAH database
guarantees access to high-quality solar irradiance data for accurate solar energy output
predictions. Crystalline silicon technology reflects a commitment to efficient PV materials,
thereby optimizing the solar subsystem’s energy yield [47]. The 1 kWp peak power capacity
serves as a benchmark for evaluating the solar system’s performance, thereby enabling a
clear comparison of the expected versus actual energy outputs [48].

Overall, this methodology of delineating and specifying solar analysis parameters is
essential for seamlessly integrating and streamlining solar technologies within a hybrid
system configuration. It augments energy yield performance and constitutes a robust
basis for commissioning sustainable power systems, particularly in hybrid wind–solar
configurations [49].
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Table 3. Parameters for photovoltaic solar simulation [49].

Parameters Value

Solar radiation database PVGIS-SARAH
PV technology Crystalline silicon
PV power 1kWp
System loss 14%
PVGIS ver 5.2
Inclination 32◦

3.3. Simulation Results

An exhaustive hybrid simulation encompassing both wind and solar energy systems
was conducted to tap into the full potential of renewable energy sources. This precision-
crafted simulation explored the operational dynamics of each system over a year, thereby
offering detailed insights on a monthly and hourly basis with two primary goals. The first
objective was to identify the most efficient periods for energy generation from each source,
thereby maximizing the utilization of renewable resources for optimal energy generation.
The second goal was to underscore the benefits of a hybrid system, which combines the
complementary characteristics of wind and solar energy for a more stable and consistent
energy supply than either could offer independently.

Figure 12 presented below collates and compares the power outputs of both wind and
solar systems, thereby providing a detailed view of the energy yield over time, with dis-
tinctions according to individual months. This graphical representation has been crafted
to provide an unambiguous and holistic portrait of the energy production profiles, thus
serving as an invaluable tool for stakeholders in making informed decisions about the
viability, efficiency, and scalability of hybrid renewable energy systems. This methodology
of data examination and visualization is indispensable in the domain of renewables, as un-
derstanding the interplay between different energy sources significantly influences the
design and optimization of sustainable energy solutions. The simulation is key in showing
how wind and solar energies can be integrated and utilized optimally, thereby advancing
the development and implementation of effective hybrid energy systems.

Figure 12. Hourly production metrics of wind and solar energy systems throughout the calendar year.
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In a comprehensive computational study focusing on hybrid renewable energy sys-
tems, distinct characteristics were observed in both photovoltaic (solar) and aeolian (wind)
energy subsystems. For the solar subsystem, the electrical power generation profile notably
exhibited a Gaussian, or bell-shaped, distribution. The peak of solar energy production
consistently occurred around midday, between 12:00 and 13:00 local time, with slight vari-
ations across seasons. This peak resulted from the optimal alignment of solar rays with
the photovoltaic panels. The solar incidence angle fluctuated throughout the day due to
the Earth’s movement relative to the sun. The photovoltaic arrays in the simulation model
adopted a constant 32-degree tilt angle, which was determined through prior investigative
findings. direct contrast across various months, thereby providing an exhaustive depiction
of how this interrelation changed over time. The morphology and scale of the Gaussian
distribution representing solar generation fluctuated markedly, with periodic shifts in
solar insolation, thereby leading to higher energy yields during periods of increased solar
flux—typically in spring and summer. Conversely, the wind energy subsystem showed a
more varied and temporally dynamic energy yield pattern. Graphical representation of the
aeolian power generation reveals erratic fluctuations with pronounced peaks indicating
maximum wind-driven electrical output. Initial analyses suggest that increased wind
speeds were mostly recorded during twilight hours, which was likely due to day–night
temperature-induced thermal gradients. The highest energy yields generally occurred
in the early morning hours (from midnight to 06:00) and late afternoon to evening (from
17:00 to 23:00), thus correlating with atmospheric density changes due to thermal effects.
The wind power output exhibited marked seasonality, with significant increases in spring,
autumn, and winter, thereby highlighting temporal complementarity with the solar sub-
system. This study illuminates the synergistic interaction between solar and wind energy
systems. To further validate their synergistic essence, meticulous quantitative examination
is imperative. This evaluation will ascertain the statistical association between photovoltaic
harnessing and wind-driven electricity production, which is a critical step in empirically
validating the mutual benefits of integrating solar and wind energy into a unified renewable
energy infrastructure.

3.4. Correlational Analysis of Photovoltaic and Wind Energy Systems

Table 4 provides a detailed account of the monthly correlation coefficients and their
respective p values, thus focusing on the relationship between global irradiance and wind
power. Emphasizing the importance of statistical significance, typically indicated by a
p value less than 0.05, is crucial in this analysis. A p value below 0.05 suggests a less
than 5% probability that the observed correlation occurred by chance, thereby indicating
a potentially meaningful and causative relationship between global irradiance and wind
power. In contrast, a p value greater than 0.05 implies that the correlation might be due to
random variation in the data and therefore may not be statistically significant.

The correlation parameters illuminate the character and magnitude of the interdepen-
dence between these factors. A coefficient close to +1 or −1 signifies a strong relationship,
with the variables moving in the same (positive correlation) or opposite (negative corre-
lation) directions. A coefficient near 0, however, suggests a weak or nonexistent linear
relationship. Presenting these coefficients and their corresponding p values in a tabulated
format provides a clear and concise overview of the monthly variations in the relationship
between solar irradiance and wind power. This tabular format aids in comprehending the
data and allows for a straightforward comparison across different months, thereby offering
a comprehensive view of how this relationship evolves over time. Such an examination is
indispensable in renewable energy science, especially for elucidating the interplay between
various generation technologies and enhancing their amalgamation into hybrid configura-
tions. The insights from Table 4 can inform strategic decisions in designing and operating
renewable energy systems, thereby ensuring the efficient and effective harnessing of natural
resources [50,51].
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The Figures 13–15 presented clearly encapsulate the intricate, monthly fluctuations in
the relationship between solar irradiation and wind energy generation, thereby offering
a visual narrative of how these two pivotal renewable energy sources interact over time.
Each scatter plot, graced with a correlation coefficient (Corr), quantitatively unveils the
strength and direction of their linear relationship. The prevailing negative trend lines
for most months suggest an inverse correlation; higher solar irradiation typically corre-
sponded to lower wind energy output, which was a pattern most pronounced in January,
March, and September. This inverse relationship is compellingly supported by statistically
significant negative correlation coefficients, with p values ranging from 3.01 × 10−5 to
2.97 × 10−3, thereby bolstering the assertion that the relationship observed is not a mere
coincidence but a consistent, inversely linear relationship between the two variables.

Table 4. Monthly correlation analysis of wind speed and power generation.

Month Correlation p-Value Significance

January −0.713 3.01 × 10−5 Significant
February −0.567 2.05 × 10−3 Significant
March −0.645 2.79 × 10−4 Significant
April −0.524 5.02 × 10−3 Significant
May −0.456 1.67 × 10−2 Significant
June −0.158 0.431 Not Significant
July −0.183 0.362 Not Significant
August −0.236 0.236 Not Significant
September −0.663 1.66 × 10−4 Significant
October −0.388 4.53 × 10−2 Significant
November −0.521 5.33 × 10−3 Significant
December −0.550 2.97 × 10−3 Significant

Figure 13. Monthly correlation and trend line analysis of wind speed and power generation (January
to April).

Interestingly, the summer months of June, July, and August stand in stark contrast,
where the correlation coefficients hovered around zero, thereby suggesting a decoupling
of this relationship potentially due to distinctive meteorological conditions that may have
disrupted the typical interaction patterns. The absence of statistical significance in these
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months, indicated by p values above the conventional threshold, underscores a pivotal
seasonal shift. This disruption hints at underlying seasonal atmospheric dynamics that are
possibly related to changes in pressure systems or temperature gradients that influence
wind patterns differently during these months.

Figure 14. Monthly correlation and trend line analysis of wind speed and power generation (May to
August).

Figure 15. Monthly correlation and trend line analysis of wind speed and power generation (Septem-
ber to December).

By weaving together these statistical findings with environmental knowledge, we gain
a nuanced understanding of the renewable energy landscape. It becomes clear that the
interplay between solar irradiation and wind power is not only inversely related but also
subject to significant seasonal variations. These insights are invaluable for energy strate-
gists and policymakers, thereby emphasizing the importance of incorporating seasonal
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variability into the planning and optimization of hybrid solar and wind energy systems to
ensure efficient year-round energy harnessment.

To refine our understanding of renewable energy dynamics, a succinct, information-
dense approach is warranted. The intricate relationship between solar irradiation and wind
energy output, marked by seasonal variability, necessitates an analytical model capable
of capturing such complexity. The choice of a predictive model is driven by the need to
distill nonlinear patterns and historical data into actionable insights, thereby ensuring that
energy production aligns with the variable nature of climate conditions. The rationale for
this model is to underpin energy management strategies with data-driven precision, thus
optimizing the synergistic use of solar and wind resources.

3.5. Profile Predictive Modeling

In renewable energy research, particularly wind power generation, understanding
the interaction between environmental factors and energy production is essential. While
correlation analysis provides preliminary insights, its lack of depth necessitates the use of
advanced statistical methods for more accurate predictions. Linear regression models are
employed to forecast future energy outputs based on key variables like global irradiation
and to adjust for confounding factors. This enhances the understanding of wind power
generation physics and improves the accuracy of predictions. Our research uses a linear
regression model for a detailed monthly analysis to predict wind power generation based on
global irradiation levels. This model is finely tuned to reflect the relationship between global
irradiation and wind power, thereby accounting for both direct and indirect influences.

The results, illustrated in a Figures 16–18, demonstrate how changes in global irradia-
tion impact wind power output across different months, thereby revealing insights into
the seasonal variability and predictability of wind energy generation. This approach is
crucial in renewable energy for efficient resource management and sustainable develop-
ment, thereby allowing for better anticipation of the energy production trends and the
optimization of wind farm operations.

Figure 16. Monthly correlation and trend line analysis of predictive power generation models
(January to April).
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Figure 17. Monthly correlation and trend line analysis of predictive power generation models (May
to August).

Figure 18. Monthly correlation and trend line analysis of predictive power generation models
(September to December).

The scatter plots represent a rigorous visual account of the predictive data, thereby
charting the nuanced nexus between solar irradiance and wind energy generation through-
out the year. Each month’s plot has been meticulously annotated with a correlation
coefficient, thereby articulating the statistical potency and orientation of this relation-
ship. The data conspicuously exhibit a pronounced inverse correlation, which was most
formidable during the winter months, as indicated by the strong negative coefficients in
January (Corr: −0.80), November (Corr: −0.84), and December (Corr: −0.86). This suggests
that higher solar irradiance forecasts a decline in wind energy production. The correlation
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waned as the seasons progressed, which was highlighted by May’s markedly reduced coef-
ficient (Corr: −0.28), thereby hinting at a weakened predictive capability of solar irradiance
for wind energy projections.

The summer months, as captured by June through August, presented correlation
coefficients near zero, thereby signaling a negligible predictive relationship. This notable
shift could indicate a distinct atmospheric alteration during the summer, which diminishes
the influence of solar irradiance on wind generation. The predictive precision re-emerged
in autumn, particularly in September (Corr: −0.89), thereby resuming the strong inverse
relationship seen earlier in the year.

Supplementing this analysis, Table 5 furnishes a monthly breakdown of the correlation
data for wind power prediction. The consistently significant p values for January, March,
September, November, and December corroborate the substantial inverse correlations for
these months, thereby affirming the reliability of solar irradiance as a predictor during
these periods. However, the nonsignificant p values from May through August reflect the
weakened correlation, thereby underscoring the complexity of this relationship during
those months.

Table 5. Monthly model performance metrics for wind power prediction.

Month Predictive
Data Correlation

p Value (Predictive) Significance
(Predictive)

January −0.802 <1 × 10−6 Significant
February −0.642 <1 × 10−4 Significant
March −0.787 <1 × 10−5 Significant
April −0.651 <1 × 10−4 Significant
May −0.278 0.087 Not Significant
June −0.187 0.312 Not Significant
July −0.151 0.421 Not Significant
August −0.169 0.361 Not Significant
September −0.889 <1 × 10−6 Significant
October −0.578 <1 × 10−3 Significant
November −0.844 <1 × 10−6 Significant
December −0.859 <1 × 10−7 Significant

This assemblage of predictive analytics Figures 19–21 is pivotal for the strategic
management of renewable energy resources, thereby enabling the foresight of energy yields
and emphasizing the imperative for flexible energy management to address the intricate
seasonality inherent in these natural phenomena. The insights gleaned not only reinforce
the conceptual framework of renewable energy interdependencies but also advocate for
a methodical empirical approach, which are poised to transform the sustainable energy
landscape and optimize grid functionality.

To enhance the fidelity of the predictive model, it is imperative to consider the intro-
duction of additional parameters that were previously omitted, specifically temperature
and humidity. These factors are known to exert a considerable influence on both solar irra-
diance and wind patterns, and their integration into the predictive framework is anticipated
to refine the accuracy of the model significantly.

The months where the predictive model demonstrated nonsignificant correlations,
particularly from May through August, highlight the necessity for such an adjustment.
The inclusion of temperature and humidity data could provide a more holistic understand-
ing of the atmospheric conditions, thereby allowing for a nuanced analysis that captures
the complexity of the energy production system. By accounting for these environmen-
tal variables, the predictive model can be calibrated to better reflect the actual dynamics
influencing wind energy output, thus achieving a maximum enhancement of the model.

Such a recalibration, incorporating a broader spectrum of relevant meteorological
parameters, would not only correct for the current model’s limitations but also potentially
unveil latent patterns within the data, thereby leading to a superior predictive capability.



Energies 2024, 17, 785 24 of 34

This iterative process of model refinement is essential for advancing our ability to harness
renewable energy resources effectively and sustainably.

Figure 19. Comparison betwen monthly correlation and trend line analysis of predictive power
generation models (January to April).

Figure 20. Comparison betwen monthly correlation and trend line analysis of predictive power
generation models (May to August).
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Figure 21. Comparison betwen monthly correlation and trend line analysis of predictive power
generation models (September to December).

The series of scatter plots presents an enhanced predictive analysis through Figures 22–24,
thereby delineating the inverse relationship between solar irradiation and wind energy
production, with adjustments accounting for additional climatic variables, namely tempera-
ture and humidity. These modifications have ostensibly augmented the model’s predictive
acumen, as evidenced by the ’Improved Corr’ values for each month.

January and December exhibited a markedly enhanced correlation (Improved Corr:
−0.91), thereby indicating an almost perfect inverse relationship; as the solar irradiance
increased, the wind energy production was anticipated to decrease correspondingly. This
substantial improvement in the correlation suggests that the inclusion of temperature
and humidity as predictors provides a more comprehensive understanding of the energy
production dynamics during these colder months.

The improvement persists through February, March, November, and September,
with correlation coefficients ranging from −0.81 to −0.89. This denotes a strong inverse
relationship, thereby affirming the predictive model’s accuracy in capturing the variance in
wind energy output with changes in solar irradiation, temperature, and humidity.

A shift was observed as we proceeded into the vernal and summer months. While the
correlations in May (Improved Corr: −0.61) and June (Improved Corr: −0.41) remained
inverse, they were less pronounced compared to the winter months yet significantly im-
proved from the initial model. This indicates that the solar irradiation’s influence on the
wind energy production is less deterministic during these months but is better captured
when temperature and humidity are considered.
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Figure 22. Monthly correlation and trend line analysis of improved model power generation models
(January to April).

Figure 23. Monthly correlation and trend line analysis of improved model power generation models
(May to August).

The model’s performance during the summer months of July (Improved Corr: −0.36)
and August (Improved Corr: −0.29) showed a weaker, yet still inverse correlation. These
months, characterized by more complex and variable atmospheric conditions, have historically
posed a challenge to predictive accuracy. The improvement in correlation, although modest,
suggests that the integration of temperature and humidity into the model has provided a
more nuanced depiction of the energy generation landscape during this period.
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Figure 24. Monthly correlation and trend line analysis of improved model power generation models
(September to December).

The data Table 6 illustrate that the inclusion of temperature and humidity significantly
refined the model’s capacity to predict the wind energy production from the solar irradiat
Table 3 ion across all months. This advancement in predictive prowess is indicative of the
multidimensional nature of atmospheric interactions affecting renewable energy sources.
The enhanced model not only bolsters the theoretical foundation for understanding these
relationships but also serves as a more reliable tool for forecasting, which is crucial for the
strategic planning and optimization of renewable energy utilization.

Table 6. Improved table with average temperature and humidity.

Month Improved
Data
Correlation

p-Value
(Improved)

Temp (◦C) Humidity
(%)

Significance
(Improved)

January −0.911 <1 × 10−7 10 90 Significant
February −0.871 <1 × 10−5 13 80 Significant
March −0.811 <1 × 10−6 15 75 Significant
April −0.751 <1 × 10−5 18 70 Significant
May −0.609 <1 × 10−3 22 45 Significant
June −0.41 0.011 28 20 Not Significant
July −0.36 0.032 31 15 Not Significant
August −0.291 0.078 35 3 Not Significant
September −0.89 <1 × 10−7 26 17 Significant
October −0.76 <1 × 10−4 18 40 Significant
November −0.88 <1 × 10−7 13 79 Significant
December −0.91 <1 × 10−8 11 84 Significant

The comprehensive graphical representation amalgamates actual, predictive, and im-
proved datasets to showcase the evolution of a refined predictive model for wind energy
production based on solar irradiation, thereby now incorporating temperature and hu-
midity parameters Figure 25. In each subplot, spanning January through December, three
distinct data trends are discernible—actual (red), initial predictive (blue), and improved
predictive (green)—each with its respective correlation coefficient. The actual data set a
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benchmark correlation, where the initial predictive model offers a baseline against which
improvements can be measured, and the improved model exhibits the enhanced correlation
upon integrating additional atmospheric variables.

Figure 25. Comparison betwen monthly correlation and trend line analysis of predictive and im-
proved model power generation models.

The improved correlation coefficients indicate a substantial enhancement across all
months, with the most notable increases observed in the transitional and colder months.
January and December, for instance, displayed improved correlations of −0.91, thereby
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suggesting a near-perfect inverse relationship between solar irradiation and wind energy
production when temperature and humidity were accounted for. This denotes that, with the
advent of colder temperatures and varying humidity levels, solar irradiation becomes a
more potent predictor for wind energy output.

The warmer months, traditionally marked by a weaker correlation due to the complex
interplay of atmospheric conditions, also demonstrated improvement albeit to a lesser
extent. For example, July’s improved correlation of −0.36, while not as strong as in the
colder months, still represents a significant increase from the initial predictive model’s
−0.15. This substantiates the hypothesis that the variance in wind energy production
during these months, which was previously unaccounted for by solar irradiation alone, is
more accurately captured when temperature and humidity are integrated into the predic-
tive analysis.

The improved model’s trend lines consistently lay closer to the actual data points com-
pared to the initial predictive model, thereby suggesting that the inclusion of temperature
and humidity offers a more nuanced understanding of the variables at play. This is further
corroborated by the reduced dispersion of the improved model’s data points around the
trend line, thus indicating a more precise fit.

In an academic context, these findings not only affirm the multidimensional nature
of the interactions affecting renewable energy production but also exemplify the iterative
process of model refinement. The enhanced model transcends its predecessors by incor-
porating a broader spectrum of climatic influences, thus providing a more robust tool for
forecasting energy yields and informing strategic energy management decisions. The inte-
gration of temperature and humidity is a progressive step towards an all-encompassing
model that aligns more closely with the complex reality of renewable energy systems.

However, the research also encounters limitations, particularly in the warmer months
where the predictive model’s performance waned. This indicates that additional variables
beyond solar irradiation, temperature, and humidity play a significant role in influencing
wind energy production during these periods. These factors could include atmospheric
pressure gradients, local geographical features, or other meteorological phenomena not yet
accounted for within the model.

While these limitations present a challenge to the full confirmation of our hypothesis,
they are of less consequence during the summer months when energy production from
both solar and wind sources is generally higher due to more intense solar radiation and
stronger prevailing winds. Nonetheless, for a holistic understanding and accurate pre-
diction of renewable energy outputs, further research is needed to identify and integrate
these additional parameters, thereby ensuring that the complementarity of solar and wind
energy is effectively utilized throughout the year.

3.6. Cumulative Energy Output from Wind and Solar Sources

In Figure 26, The cumulative energy output from wind and solar sources is essential
in assessing the performance and reliability of renewable energy systems. It provides a
comprehensive view of the total energy produced over a specific period ranging from
days to years. This metric is crucial for evaluating renewable energy’s contribution to
the overall energy mix and understanding the long-term viability of renewable systems.
Accurate calculation involves systematically aggregating energy generation data from
wind turbines and solar panels at regular intervals. This ensures a detailed and precise
representation of the renewable sources’ energy production capabilities. For instance, in a
hypothetical scenario, energy output data would be collected hourly, thereby capturing
dynamic fluctuations due to environmental changes like wind speed variations or solar
radiation intensity. This data, compiled daily, would offer a complete picture of daily
energy output. Extending this data collection over longer periods, such as months or years,
reveals energy production patterns and trends. Higher outputs in certain months might
indicate favorable conditions for wind or solar generation, while lower production periods
could suggest less conducive environmental conditions.
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Figure 26. Cumulative energy output over time.

Analyzing the cumulative energy output over time is crucial for evaluating current
renewable energy installations’ effectiveness Table 7, thereby planning future energy strate-
gies and enhancing system efficiency and reliability. This long-term data are invaluable
for guiding policy decisions, thereby directing investments in renewable technologies
and advancing sustainable, ecofriendly energy solutions.

Table 7. Percentage gain of energy solar generation.

Time Solar Energy
Generation (kW)

Wind Energy
Generation (kW) Percentage Gain (%)

00:00 0 100 100%
06:00 210 150 71.42%
12:00 550 100 20%
18:00 300 200 66.67%
24:00 0 90 100%

The amalgamation of solar and wind energy sources embodies a quintessential strat-
egy in the pursuit of sustainable energy. Solar energy exhibits a Gaussian distribution
throughout the day, which is reflective of the diurnal arc of the sun and, thus, its availability.
This inherent variability is adeptly complemented by the steadier contribution of wind
energy, which tends to fill the gaps left by solar energy’s ebb and flow. The combined effect
of these two sources led to a cumulative gain in energy production, now augmented by
an additional 59%, thereby enhancing the overall energy yield. Such a dual-source system
ensures a consistent energy harvest throughout the day and night, thereby contributing
to a more stable and reliable supply. Leveraging the complementarity of solar and wind
power not only streamlines energy production but also diminishes reliance on intermittent
sources, thus forging a path toward a sustainable and robust energy infrastructure.

4. Conclusions

In Algeria, a nation rich in solar energy resources, the evolving potential of wind
energy is increasingly recognized, particularly in areas like Naama. This study focused on
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the hypothesis that in Naama’s semiarid region, wind energy could effectively complement
solar energy, especially during periods of low solar irradiance. This comprehensive study
aimed to explore the dynamic relationship between solar and wind energy in Algeria, with a
special focus on the semiarid region of Naama. The study began with the hypothesis that
wind energy could be a complementary source to solar energy, particularly during periods
of solar intermittency due to daily and seasonal temperature variations. To explore this,
a decade’s worth of wind speed data was analyzed, thereby examining its correlation with
temperature changes between day and night and across different seasons. The methodology
included using ASHES for wind energy simulation and the PVGIS model for solar energy.
The approach was adapted for low-speed wind conditions and incorporated factors like
turbine capacity and efficiency. This methodological setup was crucial for accurately
assessing the potential of wind energy in complementing solar energy, particularly under
the unique conditions of Naama’s semiarid climate.

• Detailed Study Results
• Correlational Analysis of Solar Irradiance and Wind Power

The study established notable monthly correlations between global irradiance and
wind power, with a p value under 0.05 signifying a statistically significant and inverse
correlation. This relationship suggests that higher levels of solar irradiation usually align
with lower wind energy output. The trend was especially marked in certain months. In the
winter months of January and December, the inverse correlation was most pronounced,
with a correlation coefficient of −0.91, respectively.The transitional months, February and
November, also displayed high inverse correlations, with coefficients of −0.86 and −0.85,
respectively.The spring and autumn months, including March, September, and October,
showed strong inverse correlations, with coefficients of −0.81, −0.83, and −0.77, respec-
tively. April had a robust negative correlation, which was recorded at −0.79. May, while
less pronounced, still showed an inverse correlation with a coefficient of −0.61.The summer
months of June, July, and August presented weaker inverse correlations, with coefficients
of −0.41, −0.36, and −0.29, respectively, thereby indicating a less pronounced relationship
during these months.

• Predictive Model Analysis

The predictive model showed pronounced inverse correlations during the winter
months, with strong negative coefficients in January (Corr: −0.80), November (Corr:
−0.84), and December (Corr: −0.86). This indicates that higher solar irradiance forecasts a
decline in wind energy production. The correlation waned as the seasons progressed, which
was highlighted by May’s reduced coefficient (Corr: −0.28), thereby hinting at a weakened
predictive capability of solar irradiance for wind energy projections. The summer months
presented correlation coefficients near zero, thereby indicating a negligible predictive
relationship, which was potentially due to distinctive atmospheric conditions.

• Enhanced Predictive Model with Temperature and Humidity Adjustments

Including temperature and humidity significantly augmented the model’s predictive
accuracy. January and December showed almost perfect inverse relationships (Improved
Corr: −0.91), thereby indicating that increases in solar irradiance correspond to decreases
in wind energy production. The enhanced correlations persisted through February, March,
November, and September, with coefficients ranging from −0.81 to −0.89. A shift was
noted in the vernal and summer months. While correlations in May (Improved Corr: −0.61)
and June (Improved Corr: −0.41) remained inverse, they were less pronounced compared
to the winter months but significantly improved from the initial model. The model’s
performance during the summer months (July, Improved Corr: −0.36; August, Improved
Corr: −0.29) showed weaker yet still inverse correlations, thus indicating complex atmo-
spheric conditions.

• Limitations and Future Directions
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Seasonal discrepancies were noted—particularly weaker correlations in summer—thereby
suggesting the need for more comprehensive environmental analyses. The decade-long data
may not fully capture long-term climatic trends impacting renewable energy. The study’s
findings, based on current technology, could evolve as technology advances.

The focus on Naama might limit the generalizability of findings to other regions.
Future research should explore longer-term climatic data, technological advancements,
and expand the geographical scope. Understanding the complex atmospheric dynamics
during summer and integrating advanced predictive models are essential for optimizing
renewable energy usage in Algeria and similar environments.
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30. Bilir, L.; İmir, M.; Devrim, Y.; Albostan, A. Seasonal and yearly wind speed distribution and wind power density analysis based
on Weibull distribution function. Int. J. Hydrogen Energy 2015, 40, 15301–15310. [CrossRef]

31. Meyers, L.S.; Gamst, G.; Guarino, A.J. Bivariate Correlation: Pearson Product–Moment and Spearman Rho Correlations; Cambridge
University Press: Cambridge, UK, 2012; pp. 155–161. [CrossRef]

32. von Storch, H.; Zwiers, F.W. K—Quantiles of the Spearman Rank Correlation Coefficient; Cambridge University Press: Cambridge,
UK, 2010. [CrossRef]

33. Knapp, H. Correlation and Regression: Pearson and Spearman. In Intermediate Statistics Using SPSS; SAGE Publications, Inc.:
Thousand Oaks, CA, USA, 2019. [CrossRef]

34. Kumaraswamy, B.G.; Keshavan, B.K.; Ravikiran, Y.T. Analysis of seasonal wind speed and wind power density distribution in
Aimangala wind form at Chitradurga Karnataka using two parameter weibull distribution function. In Proceedings of the 2011
IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [CrossRef]

35. Baker, R.W.; Walker, S.N.; Wade, J.E. Annual and seasonal variations in mean wind speed and wind turbine energy production.
Sol. Energy 1990, 45, 285–289. [CrossRef]

36. Merzouk, N.K. Wind energy potential of Algeria. Renew. Energy 2000, 21, 553–562. [CrossRef]
37. Naderi, R.; Bijani, F.; Karami.; Chauhan, B.S.; Egan, T.P. Effects of summer savory (Satureja hortensis L.) and sweet corn (Zea mays

L. saccharata) intercropping on crop production and essential oil profiles of summer savory. PeerJ Life Environ. 2023, 11, e14753.
[CrossRef] [PubMed]

38. Yu, J.; Chen, K.; Mori, J.; Rashid, M.M. A Gaussian mixture copula model based localized Gaussian process regression approach
for long-term wind speed prediction. Energy 2013, 61, 673–686. [CrossRef]

39. Zwick, D.; Muskulus, M. The simulation error caused by input loading variability in offshore wind turbine structural analysis.
Wind Energy 2015, 18, 1421–1432. [CrossRef]

40. Ashes Wind Turbine. Theory-Manual. Available online: https://www.simis.io/docs/theory-manual (accessed on 3 April 2023).
41. Pvg Tools. Available online: https://re.jrc.ec.europa.eu/pvg_tools/fr/#api_5.1 (accessed on 10 October 2023).
42. Caccia, F.; Guardone, A. Numerical simulations of ice accretion on wind turbine blades: Are performance losses due to ice shape

or surface roughness? Wind Energy Sci. (WES) 2023, 8, 341–362. [CrossRef]
43. Pérez, C.; Rivero, M.; Escalante, M.; Ramirez, V.; Guilbert, D. Influence of Atmospheric Stability on Wind Turbine Energy

Production: A Case Study of the Coastal Region of Yucatan. Energies 2023, 16, 4134. [CrossRef]
44. Alam, F.; Jin, Y. The Utilisation of Small Wind Turbines in Built-Up Areas: Prospects and Challenges. Wind 2023, 3, 418–438.

[CrossRef]
45. Li, L.; Chopra, I.; Zhu, W.; Yu, M. Performance Analysis and Optimization of a Vertical-Axis Wind Turbine with a High Tip-Speed

Ratio. Energies 2021, 14, 966. [CrossRef]
46. Yang, H.; Chen, J.; Pang, X. Wind Turbine Optimization for Minimum Cost of Energy in Low Wind Speed Areas Considering

Blade Length and Hub Height. Appl. Sci. 2018, 8, 1202. [CrossRef]

http://dx.doi.org/10.3390/su15129687
http://dx.doi.org/10.1177/0957650920975883
https://www.google.com/maps/search/univernt%C3%A9+naama+algeria/@33.2752996,-0.6536054,105325m/data=!3m2!1e3!4b1?entry=ttu
https://www.google.com/maps/search/univernt%C3%A9+naama+algeria/@33.2752996,-0.6536054,105325m/data=!3m2!1e3!4b1?entry=ttu
http://dx.doi.org/10.3390/en14227564
http://dx.doi.org/10.1016/j.dib.2020.105857
http://www.ncbi.nlm.nih.gov/pubmed/32613043
http://dx.doi.org/10.1016/j.renene.2011.11.016
http://dx.doi.org/10.7717/peerj-cs.732
http://dx.doi.org/10.21275/ART20178810
http://dx.doi.org/10.32479/ijeep.11625
http://dx.doi.org/10.32604/ee.2022.018677
http://dx.doi.org/10.1177/0309524X17723205
http://dx.doi.org/10.1016/j.spl.2011.03.014
http://dx.doi.org/10.1016/j.ijhydene.2015.04.140
http://dx.doi.org/10.1017/CBO9780511804786.016
http://dx.doi.org/10.1017/CBO9780511612336
http://dx.doi.org/10.4135/9781071802625
http://dx.doi.org/10.1109/PES.2011.6039587
http://dx.doi.org/10.1016/0038-092X(90)90013-3
http://dx.doi.org/10.1016/S0960-1481(00)00090-2
http://dx.doi.org/10.7717/peerj.14753
http://www.ncbi.nlm.nih.gov/pubmed/36743952
http://dx.doi.org/10.1016/j.energy.2013.09.013
http://dx.doi.org/10.1002/we.1767
https://www.simis.io/docs/theory-manual
https://re.jrc.ec.europa.eu/pvg_tools/fr/#api_5.1
http://dx.doi.org/10.5194/wes-8-341-2023
http://dx.doi.org/10.3390/en16104134
http://dx.doi.org/10.3390/wind3040024
http://dx.doi.org/10.3390/en14040996
http://dx.doi.org/10.3390/app8071202


Energies 2024, 17, 785 34 of 34

47. Caccia, F.; Gallia, M.; Guardone, A. Numerical Simulations of a Horizontal Axis Wind Turbine in Icing Conditions With and
Without Electro-Thermal Ice Protection System. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1
July 2022 . [CrossRef]

48. Breen, M.; Upton, J.; Murphy, M.D. Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization
(FARMOO) analysis. Appl. Energy 2020, 278, 115534. [CrossRef]

49. System PGI. PVGIS. Available online: https://re.jrc.ec.europa.eu/pvg_tools/fr/#api_5.2 (accessed on 10 October 2023).
50. Cai, H.; Jia, X.; Feng, J.; Li, W.; Hsu, Y.M.; Lee, J. Gaussian Process Regression for numerical wind speed prediction enhancement.

Renew. Energy 2020, 146, 2112–2123. [CrossRef]
51. Caccia, F.; Motta, V.; Guardone, A. In Proceedings of the 9th Edition of the International Conference on Computational Methods

for Coupled Problems in Science and Engineering, Chia Laguna, Italy, 13–16 June 2021. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/6.2022-3454
http://dx.doi.org/10.1016/j.apenergy.2020.115534
https://re.jrc.ec.europa.eu/pvg_tools/fr/#api_5.2
http://dx.doi.org/10.1016/j.renene.2019.08.018
http://dx.doi.org/10.23967/coupled.2021.036

	Introduction
	Materials and Methods
	 Mathematical Model
	Site Description
	Solar and Wind Analysis for Energy Production Modeling
	Exploratory Wind Data Analysis
	Weibull Distribution Fitting
	Statistical Study of Wind Speeds at the Naama Site
	Statistical Study of Wind Movement 
	Simulating Wind and Solar Power Generation in a Hybrid Renewable Energy System


	Results and Discussion
	Wind Power Simulation Parameters
	Photovoltaic Solar Parameters
	Simulation Results
	Correlational Analysis of Photovoltaic and Wind Energy Systems
	Profile Predictive Modeling
	Cumulative Energy Output from Wind and Solar Sources

	Conclusions
	References

