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Abstract: Accurately predicting permeability is important to elucidate the fluid mobility and develop-
ment potential of tight reservoirs. However, for tight sandstones with the same porosity, permeability
can change by nearly three orders of magnitude, which greatly increases the difficulty of permeability
prediction. In this paper, we performed casting thin section, scanning electron microscopy and high-
pressure mercury injection experiments to analyze the influence of pore structure parameters and
fractal dimensions on the permeability of Chang 7 tight sandstones. Furthermore, the key parameters
affecting the permeability were optimized, and a new permeability prediction model was established.
The results show that the pore throat structure of Chang 7 tight sandstone exhibits three-stage fractal
characteristics. Thus, the pore throat structure was divided into large pore throat, medium pore
throat and small pore throat. The large pore throat reflects the microfracture system, whose fractal
dimension was distributed above 2.99, indicating that the heterogeneity of the large pore throat was
the strongest. The medium pore throat is dominated by the conventional pore throat system, and
its fractal dimension ranged from 2.378 to 2.997. Small pore throats are mainly composed of the
tree-shaped pore throat system, and its fractal dimension varied from 2.652 to 2.870. The medium
pore throat volume and its fractal dimension were key factors affecting the permeability of Chang 7
tight sandstones. A new permeability prediction model was established based on the medium pore
throat volume and its fractal dimension. Compared to other models, the prediction results of the new
model are the best according to the analysis of root mean square value, average absolute percentage
error and correlation coefficient. These results indicate that the permeability of tight sandstones can
be accurately predicted using mesopore throat volume and fractal dimension.

Keywords: Ordos Basin; Chang 7 tight sandstone; high-pressure mercury injection; fractal dimension;
permeability prediction

1. Introduction

With the continuous reduction in conventional oil and gas reserves, unconventional
resources have gradually become an important field of exploration and development [1–3].
Tight oil development has been successful in the United States. As of 2018, the production
of tight oil reservoirs has reached nearly 60% of the total oil production in the United
States [4]. In China, the total amount of tight oil resources is also quite rich and mainly
distributed in the Ordos, Junggar and Songliao basins. However, due to the late start, the
tight oil reservoirs in China face great challenges in terms of commercial development [5–7].

Tight reservoirs usually experience extreme compaction and cementation, resulting
in lower porosity (mainly <10%) and matrix permeability (mainly <1 mD) [8]. For tight
reservoirs, the throats are fine (mainly <1 µm) and mostly in the shape of flakes, bent flakes
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and tube bundles, resulting in poor pore connectivity [9–11]. As a result, fluid flow in
tight reservoirs is irregular and nonlinear. Additionally, for tight sandstones with the same
porosity and different pore structures, the permeability can span nearly two to three orders
of magnitude [12,13], which greatly increases the difficulty of quantitatively evaluating
permeability. However, quantitative evaluation of permeability is crucial to understanding
fluid mobility and evaluating reservoir quality [14].

Permeability is a macroscopic description of rock pore structure and directly affects
oil and gas productivity. Permeability can be measured directly in a laboratory based on
steady-state methods and unsteady-state methods [15]. For tight reservoirs, these methods
are time consuming or expensive. Therefore, statistical methods are often used to eval-
uate permeability based on the relationship between permeability and porosity [16–18].
Hui et al. (2023) established the relationship between permeability and porosity of shale [17].
However, the relationship between permeability and porosity is usually poor for tight
reservoirs with complex pore structures. Pore structure is the key parameter controlling
the permeability of tight reservoirs [19]. Thus, the permeability prediction model can be
established based on pore structure parameters. At present, a variety of testing methods
have been widely used to study reservoir pore structure, including low-temperature ni-
trogen adsorption, high-pressure mercury injection (HPMI), nuclear magnetic resonance
(NMR), scanning electron microscope (SEM) and CT [20–23].

Early permeability prediction models can be divided into three categories: (1) based on
HPMI data, (2) based on NMR data and (3) based on fractal theory (Table 1). Purcell (1949)
first established a permeability prediction equation using HPMI data [24]. Subsequently,
Swanson (1981) utilized the Swanson parameter (the maximum value of SHg/Pc) to develop
a permeability prediction model [25]. Based on Swanson’s work, Pittman (1992) established
the relationship between permeability, porosity and rapex (the pore throat radius corre-
sponding to the maximum value of SHg/Pc) [26]. Based on the derivation of the Thomeer
model (1983), Guo et al. [27] constructed a parameter (i.e., SHg/Pc

2) to describe the pore
structure of rock and established a permeability prediction model. Winland introduced
a relationship between permeability, porosity and pore throat radius at a mercury injec-
tion saturation of 35% [28]. Similarly, Rezaee et al. [8] derived the R10 model for tight
gas sandstone.

Table 1. Common permeability prediction models. K is the permeability and φ is the porosity.

Model Name Expression

Purcell model K =
F(σ cos θ)2

φ
2×104

100∫
0

dSHG
P2

c

Winland model lgR35 = 0.732 + 0.588lgK − 0.864lgφ

Swanson model K = 399
(

SHg
Pc

)1.691

apex

Thomeer model K = 3.806F−1.3334
(

SHg∞
Pd

)2

Pittman model lgrapex = −0.117 + 0.475lgK − 0.099lgφ

Razaee Model lgK = −1.92 + 0.949lgφ + 0.18lgR10

Guo model K = C × (
SHg

P2
c
)

D

max

Coates model K =
[( φ

C
)2
(

FFI
BVI

)]2

SDR model K = aT2
2gm φ4

Compared with HPMI technology, NMR technology can quantitatively characterize free
fluid and bound fluid in tight reservoirs. Coates et al. [9] found that the permeability of
sandstone is controlled by the volume ratio of movable fluid to bound fluid (FFI/BVI) and
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proposed the Coates model. The SDR model is a permeability calculation model based on the
geometric mean of T2 (T2gm) [29]. Different scholars have established various improvement
models for different regions based on the Coates model or SDR model. These NMR permeability
models tend to be less effective in tight sandstones than in conventional sandstones.

These models essentially predict permeability based on a certain characteristic pore
throat radius combined with porosity but ignore the heterogeneity of the pore structure.
Therefore, the application of these methods in tight reservoirs is limited. The fractal theory
proposed by Mandelbrot [30] has been widely used to characterize the heterogeneity of
porous media [31,32]. Within a certain range of pore sizes, the pore space of tight sandstone
is self-similar; that is, there is ‘scale invariance’. Pape et al. [33] first used porosity and
fractal dimensions to predict permeability. However, permeability prediction models
established by fractal characteristics remain rare.

In this paper, we selected Chang 7 tight sandstones from the Longdong area in the
Ordos Basin to analyze the influence of pore structure parameters and fractal dimensions
on permeability by integrating casting thin section (CTS), SEM and HPMI experiments. On
this basis, a new permeability prediction model was established based on the medium pore
throat volume and its fractal dimension. Furthermore, we compared the prediction results
of the new model with those of earlier models based on mean absolute percentage error
(MAPE), root mean square error (RMSE) and correlation coefficient (R2) analyses. Finally,
we further discuss the advantages of the new model in predicting permeability.

2. Geological Background

The Ordos Basin is located in the western North China block, which is a multicycle
superimposed petroliferous basin with stable subsidence and depression migration (Figure 1).
The Chang 7 oil layers were formed in the period of the most intense expansion of the lake
basin. The lithology is mainly composed of dark mudstone and black shale, with thin layers
of fine sandstone and siltstone [34,35]. The Chang 7 oil layers can be subdivided into three
subsections: Chang 71 subsection, Chang 72 subsection and Chang 73 subsection. The selected
tight sandstone samples are from the Chang 71-2 subsections and are gravity flow deposits of
semi-deep lake to deep lake facies. The Chang 73 subsection mainly deposits organic-rich black
shale and dark mudstone, which is a high-quality source rock section.
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The lithology of Chang 7 tight sandstone is dominated by lithic arkose and feldspathic
litharenite. The debris is mainly quartz, followed by feldspar and rock fragments. The rock
debris is mainly composed of dolomite and phyllite. The matrix is mainly composed of
hydromica (average 11.7 vol%). A large amount of carbonate cement (up to 30 vol%) can
be observed in some samples.

3. Results
3.1. Physical Properties

A total of 34 core samples from Chang 7 member were analyzed for porosity and
permeability. The porosity of the selected samples in the study area was between 2.4% and
11.1%, with a mean of 7.7%. The permeability ranged between 0.0021 mD and 0.104 mD,
with a mean of 0.0418 mD. Thus, Chang 7 tight sandstone belongs to a low-porosity and
ultra-low-permeability reservoir. The relationship between permeability and porosity is
poor. The permeability with a similar porosity spans two orders of magnitude (Figure 2),
indicating that Chang 7 tight sandstone has strong heterogeneity.
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3.2. Pore Types

The observations of CTS and SEM of Chang 7 tight sandstones show that the pore
types are diverse but not well developed, mainly including dissolution pores (DPs), residual
intergranular pores (RIPs), intercrystalline pores (IPs) and a small amount of microfractures.
RIPs are usually triangular or polygonal with smooth and straight edges (Figure 3a,c,d).
Due to strong compaction and cementation, RIPs only develop in samples with better
particle sorting and higher rigid particle content [37]. DPs are the most important pore space
in Chang 7 tight sandstones. Dissolution pores in the study area are mainly formed by the
partial or complete dissolution of feldspar and rock fragment. DPs have better connectivity
and larger pore sizes, mainly distributed between 1 µm and 100 µm (Figure 3a,c,e). IPs
are mainly formed between authigenic clay mineral, and their pore diameters are mainly
below 300 nm (Figure 3b). There are also a small number of micro-fractures developed in
the study area, and the widths are mostly greater than 0.5 µm. (Figure 3c,f).
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Figure 3. The main diagenesis and pore types of Chang 7 tight sandstone; (a) dissolution pores and
residual intergranular pores, L1, 2082.42 m, casting thin section; (b) intercrystalline pores in clay
minerals, L8, 2279.57 m, SEM; (c) microfractures, intergranular pores, L13, 1987.87 m, casting thin
section; (d) residual intergranular pores, L6, 2246.7 m, SEM; (e) dissolution pores, L31, 1808.67 m,
casting thin section; (f) microfractures, L6, 2246.7 m, SEM.

3.3. High-Pressure Mercury Injection Experiment

HPMI experiments were performed on 22 samples using an Auto-pore IV 9500 mer-
cury porosimeter. The interfacial tension was 480 × 10−3 N/m and the contact angle of
mercury was 140◦. The maximum mercury injection pressure was about 200 MPa, and the
corresponding pore throat radius was about 3.7 nm. The mercury intrusion curve can be
generally divided into three parts: initial rising section, middle plateau section and end
upwarping section. According to the shape of the mercury intrusion curve, the distribution
and connectivity characteristics of the sample pore throats can be judged. The maximum
mercury saturation of Chang 7 tight sandstones was in the range of 33.22%~84.35%, with
a mean of 64.71%. The displacement pressure varied from 0.67 MPa to 27.54 MPa, with a
mean of 5.54 MPa. As the physical properties of the sample gradually deteriorated, the
maximum mercury saturation decreased but the displacement pressure increased (Figure 4).
In addition, the mercury withdrawal efficiency was mostly less than 40%, and the average
pore throat radius ranged from 0.008 µm to 0.163 µm, showing that Chang 7 tight sandstone
has fine pore throats and poor connectivity.
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Figure 4. High-pressure mercury intrusion and withdrawal curve of typical samples.

As shown in Figure 5, the permeability shows a good positive correlation with the
maximum pore throat radius, average pore throat radius and median pore throat radius,
with R2 of 0.4251, 0.6110 and 0.6021, respectively. In addition, permeability and the sorting
coefficient show a weak positive correlation, with an R2 of 0.1663. These results indicate
that the pore throat size plays an important role in controlling permeability.
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3.4. Fractal Characteristics and Pore Throat System Classification

Fractal theory can be used to analyze the heterogeneity and self-similarity of a complex
pore throat system. Generally, the D values of the pore throat system are between two and three.
The closer the D value is to two, the weaker the heterogeneity of the porous rock is. But the
closer the D value is to three, the stronger the heterogeneity of the porous rock is [38–40].

D value can be calculated based on HPMI data [41], and the equation is as follows:

lg(100 − Sr+
Hg) = (3 − D)lg(r)− (3 − D)lgrmax (1)

where r is the pore throat radius, µm; SHg
r+ is the mercury saturation of a pore throat with

radius > r, %; D is the fractal dimension, dimensionless; and rmax is the maximum pore
throat radius, µm.

The relationship between log(100 − SHg
r+) and log(r) is displayed in Figure 6. The

Chang 7 samples show three-stage fractal characteristics, and there are some differences in the
fractal inflection points of different samples. The first inflection point (T1) is in the range of
0.0891~0.1340 µm, while the second inflection point (T2) is in the range of 0.3606~0.5482 µm.
According to the two inflection points, the pore throat system of Chang 7 tight sandstone
was divided into small pore throats, medium pore throats and large pore throats. The fractal
dimensions of small pore throats, medium pore throats and large pore throats were named
D1, D2 and D3, respectively. Among them, D1 was distributed between 2.652 and 2.870, with
a mean of 2.755; D2 ranged from 2.378 to 2.997, with a mean of 2.797; and D3 ranged from
2.993 to 2.999, with a mean of 2.996. All the samples showed the largest D3 value, indicating
that the heterogeneity of the large pore throat was the strongest.
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The large pore throats correspond to the initial rising section. Due to the lower mercury
injection pressure and mercury injection volume, we believe that the large pore throats
mainly reflect the fracture system (Figure 6a,b,e). The medium pore throats correspond
to the middle plateau section and have characteristics showing that a small change in the
mercury injection pressure corresponds to a large amount of mercury injection. Therefore,
the medium pore throats are dominated by DPs and RIPs (named the conventional pore
throat system), which have large pore throat ratios (Figure 6a,b,d). The small pore throat
corresponds to the end upwarping section and has characteristics showing that a large
change in mercury injection pressure corresponds to a small amount of mercury injection.
The small pore throats are mainly composed of clay IPs and nanoscale intragranular
dissolution pores (named the tree-shaped pore throat system) (Figure 6a–c).

We further analyzed the relationships between different pore throat volumes and
permeability. The pore throat volumes are given as follows:

V1 =
∫ T1

rmin

f (r)dr (2)

V2 =
∫ T2

T1
f (r)dr (3)

V3 =
∫ rmax

T2
f (r)dr (4)

where V1 is the volume of the small pore throat, mL; V2 is the volume of the medium pore
throat, mL; V3 is the volume of the large pore throat, mL; f (r) is the volume of a pore throat
with radius r; and rmin is the minimum pore throat radius, µm.

Permeability displays a weak positive correlation with V3, with an R2 of 0.2932
(Figure 7b). Permeability has an excellent positive correlation with V2, with an R2 of
0.7537 (Figure 7a). However, there is no obvious correlation between permeability and
V1 (Figure 7a). These results indicate that the permeability of Chang 7 tight sandstone is
mainly contributed by the medium pore throat.
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Permeability has an obvious negative correlation with D2 but has no obvious cor-
relation with D1 and D3 (Figure 8), indicating that the stronger the heterogeneity of the
medium pore throat, the lower the permeability of the sample.
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4. Discussion
4.1. Evaluation Criteria for the Prediction Effect of the Permeability Model

Due to the large differences in the pore structure of tight reservoirs in different regions,
the applicability of different permeability prediction models varies greatly. Therefore,
it is necessary to evaluate the prediction effects of various models to select the most
suitable permeability prediction model for the study area. At present, RMSE and MAPE
are commonly used as the basis to analyze the applicability of different permeability
prediction models.

RMSE mostly represents the square root of the ratio of the square of the deviation
between the predicted value and the measured value and the number of observations (n).
MAPE refers to the average value of the absolute error between the predicted value and
the measured value. Therefore, the smaller the values of RMSE and MAPE, the closer the
predicted value is to the measured value.

The calculation equations for RMSE and MAPE are as follows:

RMSE =

√
∑n

i−1 (Kmeas − Kpred)

n
(5)

MAPE =
1
n∑2

i=1

∣∣∣∣Kmeas − Kpred

Kmeas
× 100

∣∣∣∣ (6)

where Kmeas is the measured permeability of the core samples, mD; Kpred is the predicted
permeability of the model, mD; and n is the total number of core samples.

4.2. Permeability Prediction Based on Early Models

Figure 9 displays a plot of measured permeability versus predicted permeability using
the Pittman model, Winland model and Rezaee model. In the Pittman model, the predicted
permeability is significantly lower than the measured permeability. Moreover, the RMSE
and MAPE are 0.139 and 117.9%, respectively. For the Winland model, the relationship
between the predicted permeability and the measured permeability is discrete, and the
error is large (RMSE = 0.545, MAPE = 89%). Obviously, the Winland and Pittman models
are not suitable for predicting permeability in the study area. For the Rezaee model, the
relationship between the predicted permeability and the measured permeability is better.
However, when the permeability is lower than 0.02 mD, the results predicted by the Rezaee
model seriously deviate from the measured permeability. Therefore, the Rezaee model is
not suitable for predicting samples with low permeability.
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Based on the above analysis, among the selected early permeability models, the
Rezaee model has the best prediction effect. However, for tight sandstones with extremely
low permeability (<0.02 mD), the permeability predicted by the three models all have
large errors.

4.3. Permeability Prediction Based on Rn Model Derived from HPMI Parameter

Referring to the Winland model and the Rezaee model, mercury saturations of
5% to 50% (in 5% intervals) were chosen to establish a better correlation between measured
permeability, porosity and Rn:

Log(K) = ALog(Rn) + BLog(φ) + C (7)

where K is the measured permeability, mD; Rn denotes the pore throat radius at mercury
injection saturation of n%, µm; φ is the porosity, %; A, B and C are the parameters obtained by
multiple linear regression.

Table 2 presents a series of multiple regression equations and the corresponding R2 and
RMSE and MAPE between the measured and predicted permeability. From the R5 model to
the R50 model, R2 decreased from 0.7485 to 0.6474, RMSE increased from 0.01096 to 0.01230
and MAPE increased from 59.83% to 82.28%, showing that as the pore throat radius decreases,
the permeability prediction effect of the Rn model becomes worse. These results further prove
that the permeability of tight reservoirs is mainly contributed by some larger pore throats [42].
Therefore, the R5 model is the model with the highest accuracy among all Rn models in
predicting the permeability of the Chang 7 tight reservoir. However, the R5 model significantly
overestimates the permeability of extremely low permeability samples (K < 0.02 mD) (Figure 10).

Table 2. Multiple regression equations and the corresponding R2 and RMSE and MAPE between
measured and predicted permeability.

Model Equation R2 RMSE MAPE (%)

R5 LogK = 0.859 × LogR5 + 0.868 × Logφ − 1.670 0.7483 0.01096 59.83

R10 LogK = 0.842 × LogR10 + 0.851 × Logφ − 1.629 0.7462 0.01102 60.31

R15 LogK = 0.822 × LogR15 + 0.832 × Logφ − 1.587 0.7431 0.01106 60.64

R20 LogK = 0.795 × LogR20 + 0.808 × Logφ − 1.542 0.7383 0.01116 61.52
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Table 2. Cont.

Model Equation R2 RMSE MAPE (%)

R25 LogK = 0.760 × LogR25 + 0.779 × Logφ − 1.497 0.7312 0.01127 62.49

R30 LogK = 0.712 × LogR30 + 0.742 × Logφ − 1.453 0.7204 0.01145 64.04

R35 LogK = 0.642 × LogR35 + 0.692 × Logφ − 1.416 0.7034 0.01172 66.64

R40 LogK = 0.545 × LogR40 + 0.656 × Logφ − 1.418 0.679 0.01212 70.88

R45 LogK = 0.383 × LogR45 + 0.753 × Logφ − 1.629 0.6601 0.01225 76.44

R50 LogK = 0.265 × LogR50 + 0.895 × Logφ − 1.856 0.6474 0.01230 82.28Energies 2024, 17, x FOR PEER REVIEW 12 of 17 
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Figure 10. The relationship between measured permeability and predicted permeability derived from
the R5~R50 models. (a) is from the R5 model, (b) is from the R10 model, (c) is from the R15 model,
(d) is from the R20 model, (e) is from the R25 model, (f) is from the R30 model, (g) is from the R35
model, (h) is from the R40 model, (i) is from the R45 model and (j) is from the R50 model.

4.4. Permeability Prediction Model Based on Fractal Dimension

The previous analysis revealed that the measured permeability has the best correlation
with D2 and V2; that is, the volume and heterogeneity of the medium pore throat control
the permeability of the sample. Therefore, this paper attempts to construct a permeability
prediction model using the fractal dimensions and volumes of different pore throats as
independent variables (Table 3 and Figure 11).
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Table 3. Equations and parameters of the permeability prediction model based on volume and fractal
dimensions of different pore throats.

Model Equation R2 RMSE MAPE (%)

Large pore throat K = −53.515/D3 + 1.886 × V3 + 17.864 0.2183 0.01645 113.46

Medium pore throat K = −0.264/D2 + 0.144 × V2 + 0.106 0.7773 0.00939 46.81

Small pore throat K = −0.142/D1 + 0.014 × V1 + 0.079 0.0008 0.01978 137.10
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The equations, R2, RMSE and MAPE of the three models are displayed in Table 3. The
R2 between the measured permeability and predicted permeability derived from the fractal
dimension and volume of medium pore throats is the highest. In addition, the RMSE and
MAPE derived from the fractal dimension and volume of medium pore throats are the
lowest. In addition, the small pore throat model has the worst permeability prediction effect.
Therefore, the permeability of Chang 7 tight sandstone is mainly contributed by medium
pore throats, while an increase in small pore throat content will damage the permeability of
the reservoir.

4.5. Comparison of Various Permeability Prediction Models

For the Winland model and Pittman model, permeability is strongly affected by
pore throat radius (e.g., R35 and Rapex) and a small coefficient of porosity reduces the
contribution of porosity to permeability. The Rezaee and Rn models not only consider the
effect of pore throat radius on permeability but also the effect of porosity on permeability.
Therefore, the Rezaee and Rn models are better than the Winland model and Pittman model,
in predicting permeability. The R5 model has the best prediction effect on permeability
among all Rn models. However, for samples with a different porosity, the pore throat
volumes corresponding to a mercury saturation of 5% are different. Simultaneously, the
pore structure of Chang 7 tight sandstone is relatively complex, and its pore space is
composed of microfractures, RIPs, DPs and IPs. Moreover, different pore spaces contribute
differently to permeability. Therefore, it may not be reasonable to directly use porosity
as a key parameter to predict permeability. Daigle and Johnson (2016) believed that only
when the connected pore throat reaches a certain volume, fluids can flow through the
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reservoir [43]. In summary, the R5 model is not the best among all Rn models for predicting
permeability. The new permeability prediction model was constructed using medium pore
throat volume and fractal dimension. Medium pore throat volume reflected both the size
and volume of the pore throat, and fractal dimension reflected the tortuosity of the medium
pore throat. Therefore, the new model predicted permeability with the highest accuracy.
Therefore, there are several reasons why models based on medium pore throat volume
and fractal dimension are the best at predicting permeability: (1) Fractal dimension can
characterize pore structure heterogeneity across scales [44]. Based on multi-stage fractal
characteristics, pore throats are classified and the contribution of different pore throats
to permeability is clarified. (2) For tight sandstones, the complex pore throat system will
make the tortuosity higher. Higher tortuosity reduces fluid mobility. The fractal dimension
can reflect the tortuosity of different pore throats to a certain extent [45]. In summary, we
believe that a good permeability prediction model should be able to reflect information
such as pore throat size, pore throat volume and pore throat shape.

The pore throat system of Chang 7 tight sandstone is composed of several different types
of pore throats (large pore throats, medium pore throats and small pore throats). Among them,
the medium pore throats contribute the most to permeability, while an increase in the small
pore throat content will damage the percolation capacity of the reservoir. Taking sample L36 as
an example, its pore throat system is dominated by medium pore throats, accounting for 83.84%,
indicating that its percolation network is mainly composed of medium pore throats. Thus, the
permeability of sample L36 is high, which is 0.0712 mD. The pore throat system of sample L3 is
dominated by small pore throats, accounting for 66.06%, indicating that its percolation network
is mainly composed of small pore throats. Therefore, the corresponding permeability is very
low, only 0.0161 mD. The proportions of medium pore throats and small pore throats of sample
L50 are 48.14% and 46.81%, respectively, indicating that the percolation network is composed of
medium pore throats and small pore throats. The permeability of sample L50 is low, which is
0.0298 mD (Figure 12). Therefore, the model constructed using the medium pore throat volume
and its fractal dimension as key parameters can accurately predict the permeability of Chang 7
tight sandstone.
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5. Conclusions

1. The pores of Chang 7 tight sandstone are not developed. The pore types are dominated
by DPs, followed by IPs, RIPs and microfractures. The pore throat of Chang 7 tight
sandstone is characterized by good sorting but small size and poor connectivity.

2. According to the fractal characteristics, the pore throat system is divided into three
parts: small pore throats, medium pore throats and large pore throats. Large pore
throats are mainly composed of microfractures. Medium pore throats are dominated
by DPs and RIPs. Small pore throats are mainly composed of IPs.

3. A good permeability prediction model should be able to reflect information such as
pore throat size, pore throat volume and pore throat heterogeneity. The new model
based on medium pore throat volume and fractal dimension can accurately predict
the permeability of tight sandstones.
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