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Abstract: In pursuit of China’s goals for carbon peak and carbon neutrality, wind turbines are
continually evolving to achieve a lower levelized cost of energy. The primary technological focus in
the wind power industry is on large-scale, lightweight designs for entire turbines to enhance cost
competitiveness. However, this advancement has led to an increased risk of blade fractures under
extreme operating conditions. This paper addresses this challenging issue by using geometrically
exact beam theory to develop a nonlinear simulation model for long, flexible blades. The model
accounts for sudden changes in blade properties at the moment of failure, covering both the extensive
motions and deformations of the fractured blade. The validation of the proposed model is carried
out by comparing the results from power production cases with bladed simulations and further
validating the simulations of blade fracture load cases against measurement data. The methodologies
and findings presented in this study offer valuable insights for diagnosing faults in wind turbines.

Keywords: wind turbine; nonlinear geometric large deformation; blade fracture; geometrically exact
beam; aeroelasticity

1. Introduction

As China intensifies its commitment to the dual-carbon strategy, wind energy, a crucial
renewable resource, faces market pressure to consistently reduce the cost per kilowatt-hour
(kWh). The dominant trend in cost-effective wind turbine design combines high megawatt
capacity with lightweight structures [1]. However, the shift towards larger megawatt de-
signs using lightweight components significantly increases design risks, especially for long
and flexible blades. Wind turbines operate under varied and complex natural conditions,
including wind shear, yaw, and wind gusts, leading to frequent changes in wind direction
and speed. As the primary load-bearing elements, blades endure nearly all of these forces
and are highly prone to fractures. In recent years, incidents of turbine blade breakage
have become more frequent, occasionally even causing tower failures. Simulating the load
changes due to blade fractures can provide characteristic signals for blade faults, enabling
early warnings. This capability is essential for ensuring wind turbine safety and developing
effective preventative measures.

Several scholars have conducted research on wind turbine blade fractures. Carroll
et al. [2] collected failure data from 350 offshore fixed-base wind turbines installed in Conti-
nental Europe, giving basic failure statistics for offshore wind turbines, including failure
rate (8.3 failures/turbine/year) and mean time to failure (1055 h). Chen [3] analyzed blade
fracture processes by considering factors such as field wind turbine speed, wind speed,
power production, and fracture image analysis. Additionally, Eder et al. [4] introduced
a virtual crack closure technique to identify critical areas associated with trailing edge
cracking. Chen et al. [5] proposed a Bayesian deep learning model designed for predicting
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the remaining service life of rolling element bearings in wind turbines, taking into account
the first prediction time (FPT) and prediction uncertainty. This approach was validated
using two published bearing datasets and demonstrated the effectiveness and validity of
the model through experimental exploration. McGugan and Mishnaevsky [6] proposed a
method for structural health monitoring of wind turbine blades that focuses on localized
damage mechanisms. That approach includes the monitoring of various factors, such as
leading-edge corrosion, adhesive failure, laminate buttresses, static and dynamic laminate
testing, as well as bolt and laminate fatigue of wind turbine blades, enabling the monitoring
and localization of specific damage mechanisms. Ji and Han [7] studied the failure behavior
of adhesive joints in wind turbine blades, employing the fracture mechanics of the finite
element analysis method, and presented an experimental verification of the method’s
correctness. Subsequently, they established a finite element model of the skin–web joint,
utilizing the cohesive zone model to predict the initiation and propagation of damage.
The results show stress concentration in the bonded joint, with shear stress identified as
the primary factor leading to debonding. Focusing on the issue of delamination failure
in wind turbine blade wing girder rim strips, Boyano et al. [8] used a mixed-mode test
setup involving an end-notched flexure test with roller (ENFR) test method to measure
and analyze the fracture behavior of carbon fiber-reinforced epoxy laminate specimens.
The experimental data aligned with the theoretical values, thus illustrating the validity
of the method in composite fracture testing. Furthermore, Rosemeier et al. [9] conducted
numerical simulations, revealing the limitations of linear dynamic analysis for large blades,
suggesting the use of nonlinear methods to improve failure simulation accuracy.

Studies have shown that wind turbine blades, being critical components for wind
energy harvesting, experience prolonged exposure to cyclic wind loads, which makes them
prone to fatigue damage, with the risk of fatigue failure being the main cause of wind
turbine blade fracture. Wu et al. [10] used a rotating device for cyclic aerodynamic loading
tests to investigate the strain response of bonded elongated composite wind turbine blades
under nonconstant aerodynamic loading, and the results revealed a quadratic relationship
between the strain value and the rotational speed. In addition, the study predicted fatigue
damage in bonded elongated blades using nonconstant aerodynamic loading spectra, a
rainflow cycle counting algorithm, Goodman plots, and Miner’s principle of linear super-
position. The results indicated that all materials used in the elongated blades, including UD
fibers, 750 triaxial fibers, and structural adhesives, are safe enough for a 20-year design life.
It was also observed that the bonded area is not the most vulnerable location regarding haz-
ards. Chen et al. [11,12] conducted a comprehensive study in the structural collapse of large
composite blades subjected to combined bending and torsion using a three-dimensional
stress/strain domain progressive failure analysis method based on continuous damage me-
chanics. It simulates the failure behavior of large composite wind turbine blades, enabling
accurate prediction of the progressive damage of composite materials. By measuring and
analyzing the strain of the wind turbine blade, the study provided quantitative evidence of
blade collapse, establishing that the root cause and damage mechanism of the structural
collapse of large composite blades are attributed to the combined effects of bending and
torsion. Epaarachchi and Clausen [13] used a finite element simulation method to establish
a fatigue spectrum for small wind turbine blades by correlating periodic wind cyclic loads
with blade stress cyclic loads, laying the foundation for subsequent fatigue analysis of
blades. Boujleben and Ibrahimbegovic [14] proposed a simple and efficient computational
model for addressing the strong fluid–solid coupling problem in wind turbine blades
during steady-state flow. Coupled with an enhanced strain field, this model enables the
calculation of the detailed blade stress distribution, which is of great significance for the
prediction of blade fatigue failure risks. Zhang et al. [15] introduced a method for esti-
mating the fatigue life of composite blades in horizontal-axis force turbines based on the
modified blade element momentum theory and the finite element method. To validate
the method, a 5 MW reference wind turbine blade from the National Renewable Energy
Laboratory (NREL) was used as an example, showing that the proposed method serves as
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an effective tool for evaluating the fatigue damage and structural performance of a wind
turbine composite blade throughout its service life. Liu et al. [16] investigated the reliability
of an offshore wind turbine blade with a floating foundation support through numerical
calculations. They computed the probability of failure for blade root overload, blade root
fatigue, and tip over displacement. They calculated and compared the failure probabilities
of the blade with a fixed foundation support and the blade with a floating foundation
support. The results indicated a significantly higher failure probability for the blade with a
floating foundation support than for the blade with a fixed foundation support.

Existing studies mainly focus on analyzing blade fractures through field data, local
strength simulations, fatigue damage mechanisms, and fatigue life analyses. However, there
is a notable gap in examining the dynamic characteristics of wind turbines both before and
after blade failures. These studies also lack the capability to reproduce wind turbine vibra-
tions and the blade deformation process through simulation, limiting the support for blade
break warnings and effective verification of emergency shutdown protection schemes.

Blade fractures leading to extreme conditions entail sudden changes in blade structural
characteristics, large motion in translation and rotation, and large deformation beyond the
normal design range, causing a typical strong nonlinear dynamics problem. The prevalent
blade modeling method, commonly used in industry-specific simulation software, relies on
the modal assumption method, which is based on a linear small deformation hypothesis
without consideration of the impact of large deformation [17]. Despite the introduction
of multipart modeling with modal assumptions to solve large deformation problems, the
challenge of accurately updating the modal basis when structural characteristics change
due to blade fracture remains [18]. The geometric stiffening effect, the axial foreshortening
effect, and the complex bending–torsion–stretching effect could be captured with good
accuracy by dividing the whole blade into more than 10 parts [19], but the computational
efficiency is expected to decrease dramatically due to the large number of degrees of
freedom. Therefore, the deformation process following blade fracture cannot be fully
reflected using the existing modeling methods.

From a structural perspective, the blade fracture process entails sudden changes in
structural characteristics at the fracture surface joint, extensive movement from the fracture
surface to the blade tip, and significant deformation exceeding the design boundary. These
sudden changes in the structural characteristics are generated due to abrupt status changes
and external load impact. In the context of multibody dynamics analysis, three-dimensional
large-scale motion, finite rotation, and large deformation in blade dynamics exhibit sig-
nificant geometrical nonlinearity. These challenges can be tackled effectively using the
absolute node coordinate formulation (ANCF) [20,21] and the geometrically exact beam
(GEB) method [22]. Three different beam models are widely used, namely, Euler–Bernoulli
beams, Timoshenko beams, and geometrically exact beams. The Euler–Bernoulli beam
model [23], also known as the classical beam model, deals with slender beams subjected
to tensile, torsional, and bending loads. The influence of the shear deformation is ignored
in the model. The Timoshenko beam model [24] was firstly proposed by Timoshenko in
the early 20th century. This model takes into account the shear deformation effect in the
cross sections, making it more suitable for describing the behavior of thick beams than the
Euler–Bernoulli beam model. For wind turbine blades that are typically slender, there is
not much difference between the Timoshenko beam model and the Euler–Bernoulli beam
model. Given the ease of implementation of the Euler–Bernoulli model, it has been adopted
by many tools in the aeroelastic modeling of wind turbine blades. The geometrically exact
beam model [25] is a newly developed beam model in recent years. Compared with the
previous two beam models, it can capture the bending–torsion coupling of blades with a
higher accuracy in case of large deformations [26]. The geometrically exact beam model
employs the assumption of a flat section but does not make an approximation for the
section rotation. As consequence, it can accurately handle the problems of large rotation
and large deformation of beams [27]. In recent years, many scholars have applied it in the
structural modeling of wind turbine blades [28,29] and the nonlinear dynamics analysis of
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blades [30]. The introduction of geometrically exact beam models improves computational
accuracy but also sacrifices computational efficiency. While the absolute node coordinate
formulation sidesteps parameterization issues of finite rotation, it comes with the draw-
backs of higher degrees of freedom and lower computational efficiency [31,32]. Conversely,
the geometrically exact beam method offers high computational efficiency and accuracy,
making it suitable for large-scale simulations in the wind turbine design stage [33,34].

Blade aerodynamic forces also experience significant changes during blade fractures.
While the vortex wake-based method for calculating wind turbine blade aerodynamics has
garnered attention [28,35], it still suffers from the disadvantage of high computational cost.
Computational fluid dynamics simulation is the most accurate method but also the most
expensive, and thus more often used in theoretical research on complex fluid dynamics
or fluid–structure interactions (FSIs). Horcas et al. [36] studied the influence of a trailing
edge flap on the vortex-induced vibration of a wind turbine blade using the FSI method.
Grinderslev et al. [37] further investigated the sensitivities of the prescribed structural
motion on the vortex-induced vibration. In the design phase of wind turbines and root
cause analysis under various operational conditions, the computational efficiency of these
advanced methods does not meet the timeliness requirements for design iterations. As a
result, the theory of wind turbine aerodynamics remains predominantly based on the blade
element momentum theory [38].

This paper introduces a structural nonlinear analysis model that incorporates blade
fracture characteristics by integrating geometrically exact beam theory with blade element
momentum theory. This model is designed to calculate changes in wind turbine vibration
and blade deformation resulting from blade fractures. The results are compared with
measurement data to validate the effectiveness of the proposed method.

2. Mathematical Model of Blade Fracture
2.1. Geometrically Exact Beam Theory

The blade sections experience large translations and rotations during the operation of
wind turbines, as illustrated in Figure 1.
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Figure 1. The deformation and movement of a blade section.

(E1, E2, E3) is the inertial frame of the system. (t1, t2, t3) is the local reference frame
rigidly attached at the section. U is the position vector of the origin of the reference frame
(t1, t2, t3) in the inertial frame (E1, E2, E3). T is the rotation tensor of the reference frame
(t1, t2, t3) with respect to the inertial frame (E1, E2, E3). (U1, T1) and (U2, T2) describe two
different configurations during the movement of the blade section.

The geometrically exact beam theory, which originated from the Reissner beam the-
ory and evolved from the Timoshenko beam theory, relies on the assumption of a flat
cross section [33]. In this study, quaternion parameterization is employed to precisely
characterize the three-dimensional rotation of the flat cross section since the quaternion
parameterization is free of singularity over the entire range of rotations [39].
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q̂ = (q0, q) = (q0, q1, q2, q3) (1)

where q0 is the scalar part of the quaternion, q̂, and [q1, q2, q3] is the vector part of q̂.
The rotation tensor, Λ, along the reference line of the beam element is parameterized

as follows:

Λ =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) q2

0 − q2
1 + q2

2 − q2
3 2(−q1q0 + q2q3)

2(q1q3 − q2q0) 2(q1q0 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 (2)

The equations of motion, derived from the virtual work principle, as detailed in the
literature [40], serve as the foundation for this investigation.

The virtual work of the internal forces can be integrated as below:

δW
∫ (

δu′TΛN + δθT
∼
u′

T
ΛN + δθ′TΛM

)
dZ

int

(3)

where u is the transverse displacement and δθ is the virtual rotation vector represent-
ing the rotational deformation, which can be evaluated from the rotation tensor, Λ, as
δθ = axial

(
ΛTδΛ

)
, “axial” being the operator to extract the vector from a skew sym-

metric matrix; N, M are the sectional internal forces and moments, respectively; and (·)′
refers to the derivative of the variable along the Z-axis of the reference frame (t1, t2, t3),
(·)′ = d(·)/dZ.

The virtual work performed by the external aerodynamic forces and gravitational
forces can be evaluated as below:

δWext =
∫ (

δuT fa + δθT
∼

ΛRa fa + δθTma

)
dZ +

∫ (
δuT Aρg + δθT Aρ

∼
ΛRgg

)
dZ. (4)

where fa, ma are the aerodynamic forces and torques distributed along the beam element,
respectively; Ra, Rg are the position vectors of the aerodynamic center and the mass center
with respect to the local reference frame, Λ, of the section, respectively; g is the gravity
acceleration vector; and Aρ is the mass per unit length of the cross section.

The virtual work performed by the inertial forces is expressed as below:

δWinert =
∫

δuT Aρ
..
ugdZ +

∫
δθT

(
Aρ

∼
ΛRg

..
u + Iρ

..
θ +

∼.
θ Iρ

.
θ

)
dZ. (5)

where
..
ug is the translational acceleration vector of the mass center;

.
θ,

..
θ are the angular

speed and acceleration vectors of the mass center, respectively; Iρ is the tensor of the mass

moment of inertia of the cross section; and
∼
(·) is the operator to obtain the skew symmetric

matrix of a vector.
The summation of the virtual work of internal forces, external forces, and inertial

forces is zero, leading to the balance equation of motion:

δWint − δWext + δWinert = 0 (6)

The detailed process to substitute Equations (3) to (6) into the element discretized
balance equations is outlined in the literature [33].

In this paper, the Newton–Raphson method is employed for iteratively solving the
nonlinear balance equations. This method utilizes a tangent matrix to expedite the solution
process during iterations. Given the complexity of the motion equations for geometrically
exact beams, numerical differentiation methods are typically employed. However, in
the context of blade fracture dynamics, when the structural contribution in the system
tangent matrices changes significantly, numerical differentiation methods may encounter
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the numerical instability issue due to abrupt changes in gradients. Consequently, this paper
adopts an analytical linear increment equation to solve the problem.

2.2. Blade Element Momentum Theory

Blade element momentum theory is a classical method for aerodynamic calculations in
wind turbine simulation [38,41]. By combining the blade element theory and momentum
theory considering axial and azimuthal induction losses, it can provide a reasonably accu-
rate distribution of aerodynamic forces in quasi-static states. However, as this method is
based on static assumptions, practical applications often require corrections using engineer-
ing methods to account for dynamic characteristics. In general, the engineering methods
include the correction models of dynamic stall, dynamic inflow, tip loss, turbulent wake
state, skewed wake, etc.

As in the structural dynamics model, in the context of aerodynamics, the blade is
discretized into a series of elements along the spanwise direction. The aerodynamic forces
of each aerodynamic element are evaluated according to the thin airfoil theory. The inflow
velocity surrounding a rotating blade station is schematized in Figure 2.
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The chord length of the blade station is c. r is the radius position with respect to the
rotating center. Ω is the rotor rotational speed. u0 is the velocity of the upcoming free inflow.
a, a′ are the axial and tangential induction factors, respectively. Correspondingly, au0, a′Ωr
are the axial and tangential induced velocities, respectively, representing the change in
the inflow velocity due to the rotation of the airfoil. The combined induced velocity is

ui =
√
(au0)

2 + (a′Ωr)2, and ϕ is the inflow angle. θ is the angle between the chord line
and the rotating plane, which is the summation of the pitch angle, the pre-twist angle of
the blade station, and the torsional deformation angle. The angle of attack is α = ϕ − θ. l, d
are the aerodynamic lifting and drag forces, respectively.

As depicted in Figure 2, the calculation of the relative inflow velocity for each blade
element is expressed as follows:

urel = u0 + ui − Ω × r (7)

The angle of incident flow is given by:

ϕre f = tan−1

(
uy_re f

−ux_re f

)
(8)

where ux_re f , uy_re f are the components of the relative inflow velocity in the rotating plane
and out of the plane, respectively.
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The calculation of thrust, dT, and torque, dM, for each blade element is:

dT = B
1
2

ρu2
relc(Cl cos φ − Cd sin φ)dr. (9)

dM = rB
1
2

ρu2
relc(Cl sin φ − Cd cos φ)dr. (10)

where Cl , Cd are the lifting and drag coefficients obtained through a linear interpolation in
the polars with the solved angle of attack, α; ρ is the air density; and B is the number of
blades in the rotor (typically, B = 3).

Concurrently, leveraging the momentum theorem yields:

dT = 4πrρu2
0a(1 − a)dr. (11)

dM = 4πr3ρΩu0a′(1 − a)dr. (12)

The aerodynamic forces for each section can be derived by solving Equations (7)–(12)
simultaneously. The model presented in this paper incorporates corrections for tip loss,
dynamic inflow, and skewed wake. The calculation for the tip loss correction coefficient is
expressed as follows:

Fr =
2
π

arccos
[

exp
(
−B

2
R − r
r sin φ

)]
. (13)

where R is the rotor radius.
The corrected thrust and torque are determined by:

dT = 4πrρu2
0a(1 − a)Fdr. (14)

dM = 4πr3ρu0Ωa′(1 − a)Fdr. (15)

The dynamic inflow correction is given by two first-order filters, as below: τ1
d

_
un
dt +

_
un =

_
vqsn + kwτ1

d
_
vqsn
dt ,

τ2
d

_
vn
dt +

_
vn =

_
un.

(16)

where vqsn is the average induced velocity in the normal direction, un is an intermediate
variable in the filters, and vn is the final filtered value of the relative inflow velocity. The time
constant coefficients are specified as τ1 = 1.1

1−1.3a
R
V0

, τ2 =
[
0.39 − 0.26

( r
R
)∧2
]
τ1, kw ≈ 0.6.

V0 refers to a reference inflow speed in the rotor plane.
The correction for dynamic skewed wake is expressed as follows:

ui,x(Ψ) = ui,x

(
1 + kx

( r
R

)
sin(Ψ) + ky

( r
R

)
cos(Ψ)

)
, (17)

where kx = tan
( χ

2
)
, ky = 0, Ψ is the relative azimuth angle, and χ is the skewed angle of

the relative inflow velocity.

2.3. Coupled Simulation of the Blade Fracture Process

A modern wind turbine consists of three blades and a tower, connected by the hub and
nacelle assemblies, in which the power transmission subsystem is placed. The three blades
and the tower are modelled with the proposed geometrically exact beam formulation. The
mechanical part in the power transmission subsystem is discretized as a series of rigid
bodies. Holonomic constraints are applied to set up the connections between the rigid
bodies and the beams. The foundation at the tower bottom is connected to the ground via
a bushing element to reflect the flexibility of the soil–structure interaction. The external
controller, provided as a dynamic link library file, specifies the demand values of the pitch
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angles and the generator torque to stabilize the rotor rotational speed and maximize the
power output.

The time-domain simulation process for the aerodynamic–structural coupling during
the blade fracture process is elucidated in Figure 3. The simulation employs a fluid–
structure weak coupling method with a fixed-step iteration approach. In each iteration,
considering the current overall system state, the aerodynamic loads on the blades are
computed using the blade element momentum theory. The Hilber–Hughes–Taylor alpha
(HHT-alpha) method is employed to update the subsequent overall system state, refresh
the global motion equations, and compute the equation residual. Once the convergence
condition is satisfied, the calculation for the current step is completed, and the simulation
proceeds to the next step. Otherwise, the process iterates using the Newton–Raphson
method again.
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During the iterative process, when the current time reaches the moment of blade
fracture, the blade fracture algorithm is activated. This algorithm involves updating the
blade cross-sectional stiffness settings, refreshing the overall system state equations, and
updating the tangent matrix for that time step. If the equation residuals continuously
increase for three consecutive steps, it is determined that the solution does not converge. In
such instances, the step size is automatically reduced, and the variable step size method is
employed to solve the state at that moment. After achieving convergence, the solver reverts
to the fixed-step method.

To mitigate the impact at the beginning of the time integration, a quasi-static equi-
librium analysis is carried out as the initialization. In the initialization phase, a normal
wind profile with a constant wind speed is specified together with proper pitch angles. The
inertial forces including the centrifugal forces and gyroscopic torques are tackled as exter-
nal forces. Taking into account the internal elastic forces, the external inertial forces, the
external constant aerodynamic forces, and the gravitational forces, the Newton–Raphson
iterations are used to search for the quasi-static equilibrium configuration of the system.
Once the equilibrium status is determined, the system-wise position, velocity, acceleration
vectors, and constraints are stored as the initial conditions in the following time-domain
dynamics simulation.

The typical location of blade fracture is generally at one-third of the distance from the
root to the tip. Two fracture modes are considered: complete fracture and partial fracture.
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Complete fracture occurs when the fracture completely separates from the blade tip after
the blade fractures. In contrast, partial fracture involves a reduction in stiffness at the
fracture location, leading to only partial mass loss. For simulations involving complete
fracture, this paper adopts a method of releasing element constraints to update the global
motion equations. Simulations involving partial fracture utilize the previously mentioned
method of updating beam cross-sectional stiffness at the moment of blade fracture. A
schematic diagram of blade fracture location and deformation is presented in Figure 4.
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The schematic diagram, Figure 4, reveals significant deformation after the blade
fractures. Blades with partial fractures are prone to impact the tower due to the sudden
decrease in local stiffness. However, as the collision process involves material nonlinear
changes, the current paper does not consider reproducing the blade–tower collision and
subsequent wrapping process.

3. Calculations, Results, and Analysis

To verify the accuracy of the algorithm, this study employed a realistic wind turbine
model with a rotor diameter of approximately 155 m and a power capacity of 4.5 MW for
a simulation analysis to compare the algorithm with Bladed [42], which is a commercial
tool widely used in wind energy industry for over 20 years. Due to the requirement for
confidentiality, the model data and the following measurement data obtained from a top
commercial wind turbine manufacturer are not disclosed in this study.

3.1. Simulation Algorithm Verification

Before employing the proposed aeroelastic model to analyze the dynamics in the blade
fracture process, a code-to-code verification was performed to examine the correctness of
the mathematical model.

The operational status under normal operating conditions was compared against
Bladed. The simulated wind speeds ranged from 5.5 m/s to 23.5 m/s with six turbulent
seeds for each wind speed. In Bladed, a multipart blade model with five segments was
used to account for the geometric nonlinearity in the large deformation of blades.

Initially, the static comparison results for the operational status at various wind speeds
are presented in Table 1. The mean values of the pitch angles, rotor speed, and electrical
power were analyzed for the various wind speeds. At the lowest wind speed, 5.5 m/s, the
relative differences in the rotor speed and electrical power reach the highest value, 1.21%,
attributed to differences in the Glauert empirical correction algorithm. The difference of
1.21% in the electrical power output may affect the business compactivity, but thanks to the
low equivalent hours at a wind speed of 5.5 m/s, the overall influence is acceptable. The
absolute differences in the pitch angles are less than 0.2 degrees at all wind speeds, which
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is an excellent agreement. The relative differences in the pitch angles at wind speeds of
9.5 m/s and 11.5 m/s are higher than those at other wind speeds, mainly because of the
small absolute values of the pitch angles around the rated wind speeds.

Table 1. Comparison of mean values of wind turbine status at various wind speeds.

Wind
Speed/(m/s)

Pitch Angle/◦ Rotor Speed/RPM Electrical Power/kW

Diff. Rel. Diff. Diff. Rel. Diff. Diff. Rel. Diff.

5.5 0.00 0.00% 0.08 1.21% 31.70 1.21%
7.5 −0.01 2.37% 0.07 0.78% 36.40 0.78%
9.5 −0.07 −10.87% 0.01 0.13% −3.47 0.13%

11.5 −0.18 −4.46% 0.00 −0.01% −8.26 −0.01%
13.5 −0.17 −2.23% 0.00 0.00% −0.69 0.00%
15.5 −0.12 −1.15% 0.00 0.00% −0.19 0.00%
17.5 −0.08 −0.64% 0.00 −0.01% −0.21 −0.01%
19.5 −0.04 −0.25% 0.00 −0.01% 0.24 −0.01%
21.5 −0.04 −0.17% 0.02 0.19% 9.39 0.19%
23.5 0.06 0.18% 0.00 0.00% 0.58 0.00%

In the second step, the blade root loads were compared between the proposed method
and Bladed. The comparative results for the three most important components, the flap-
wise moment, the edgewise moment, and the torque at the blade root, are presented
in Figures 5–7, respectively. The relative deviations of this study from Bladed are also
provided. The results in these figures have been normalized with respect to the overall
operational mean values.
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The blade root edgewise moment is mainly constitutive of the gravitational forces and
the aerodynamic lifting forces projected in the rotor rotating plane. The contribution of the
gravitational forces is eliminated in the mean values since the sign flips exactly at the rotor
azimuth positions of 90 degrees and 270 degrees. The effective in-plane aerodynamic forces
are the main source of the mean values of the blade root edgewise moment, as shown in
Figure 5. The relative errors are within 1.5%, which is consistent with the difference level of
the rotor speed and electrical power in Table 1.

The blade root flapwise moment primarily comprises the aerodynamic lifting forces
out of the rotor rotating plane, which are the main source of wind turbine fatigue loads.
The mean values of the blade root flapwise moment climb up to the highest point from
5.5 m/s to 9.5 m/s because of the increase in the wind speed and rotor speed. As can be
seen, they turn to descend continuously in an approximately linear function after the wind
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speed of 10 m/s is reached due to the pitch action. The relative errors are within 2.0% in all
wind speed bins.
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The blade root torque comes from the aerodynamic torque along the blade plus the
contribution of the moments generated by the aerodynamic lifting forces in case of large
blade deformation. The computation of the second part involves the accurate modelling
for the complex bending–twist coupling in the large blade deformation. The amplitude of
the blade root torque is generally much smaller than that of the blade root flapwise and
edgewise moments, making it more difficult to obtain a good agreement. However, in this
study, relative errors within 4.0% were observed for the blade root torque in all wind speed
bins, implying that the complex bending–twist coupling of the blade is accurately captured.

As the last step of the code-to-code verification, the time series of the blade root Mxy
at the rated wind speed of the design load case of normal power production was examined,
as shown in Figure 8. The average amplitude of the blade root Mxy reaches a maximum at
the rated wind speed, and thus the time series in Figure 8 is a representative one. It can be
observed that the fluctuation period and amplitude of Mxy calculated in this study closely
match those of Bladed, with minimal frequency component discrepancies.

Through the code-to-code comparisons, it is evident that the simulation results of the
proposed method and Bladed are consistent. Both the statistical results for operational
status and the transient time series of loads are in good agreement. Thanks to the mul-
tipart modal superposition algorithm, Bladed can also effectively simulate the nonlinear
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deformation characteristics of blades. This verification underscores the accuracy of the pro-
posed simulation model in calculating the nonlinear deformation of blades under normal
operating conditions.
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3.2. Validation with Field Measurements

A code-to-measurement comparison was conducted to validate the proposed simu-
lation model. A prototype wind turbine with a 155 m rotor diameter was provided by
the aforementioned commercial wind turbine manufacturer. A met mast, equipped with
calibrated anemometers and wind vanes, was installed at the site to measure the wind
resource for the prototype turbine. The strain gauges at the blade root and the tower bottom
were equipped to measure the mechanical loads. The strain gauges were calibrated to
comply with the international standard IEC 61400-13 [43]. The time series of the measured
mechanical loads, together with the wind speed, wind direction, rotor speed, pitch angles,
electrical power, etc., were recorded in the measurement system with a sampling frequency
of 50 Hz. The measurement data were categorized according to the wind speed bins. The
number of effective sample data for each wind speed bin satisfied the requirements of the
international standard IEC 61400-13. The measurement campaign, lasting for more than
three months, was carried out by test engineers of the wind turbine manufacturer.

The average values of air density, wind misalignment, wind shear, wind inflow angle,
and turbulence intensity of each wind speed bin were extracted from the measurement
data and then specified in the simulations accordingly. The dynamics simulations swept
the wind speed range from 3 m/s to 20 m/s with an interval of 1 m/s. The mean values,
the maximum and minimum values of the blade root flapwise moment, the edgewise
moment, and the tower bottom fore–aft moment were analyzed in the post-processing of
the simulations. The comparisons against the test data are shown in Figures 9–11. The
sample number at the wind speed of 19 m/s was below the lowest requirement because
the average wind speed of that wind farm was lower in summer, such that the high wind
speed occurred rarely. As a consequence, a comparison at the wind speed of 19 m/s is
absent from this study.

As discussed in Section 3.1, the blade root edgewise moment is mainly composed of
the gravitational forces and the in-plane aerodynamic forces. The uncertainty of the blade
mass is generally small, leading to a precise computation of the gravitational forces. The
in-plane aerodynamic forces are tuned by the controller to match the electrical power at the
specified wind speed and hence tend to be consistent between the simulation and test. The
overall agreement of the blade root edgewise moment between the simulation and the test
was excellent, as depicted in Figure 9.
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The blade root flapwise moments of each wind speed bin are compared in Figure 10.
The mean values and the maximum and minimum values of the simulation results are,
overall, lower than the test results. The largest difference is around −10%, which is still
in the reasonable range of engineering practice. The possible reasons for this difference
include the inaccuracy of the specified wind shear and turbulence intensity in the rotor
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plane, since there were only three measurement points at the met mast in the vertical
direction, making the measurement of the wind shear and turbulence intensity incomplete.
One may need to look to multipoint laser radar as an advanced method to measure the
wind resource.

The tower bottom fore–aft moments of each wind speed bin are examined in Figure 11.
The simulation results are again lower than the test results as a consequence of the deviation
in the blade root flapwise moments in Figure 10, since the mechanical loads are transmitted
from the blades to the tower. However, the difference between the tower bottom fore–aft
moments is less than 5%.

Through the code-to-measurement comparisons with the prototype wind turbine, it is
evident that the simulation results of the proposed method match the test data reasonably
well, and thus the mathematical model is validated.

3.3. Blade Fracture Dynamics Simulation and Validation

As the highlight of this study, a dynamics simulation was performed to reproduce the
blade fracture process. The simulation results were compared against the measurement as
the final validation.

The aforementioned wind turbine, featuring a rotor diameter of 155 m, was produced
and deployed on a large scale. An actual fracture incident occurred on one of the mass
wind turbines. Subsequent field investigations identified that one blade was fractured at
the spanwise position of approximately 15 m from the blade root.

The online SCADA system of the fractured wind turbine recorded the wind speed
and wind direction on the nacelle. In this simulation, the wind speed was set as 9 m/s
according to the SCADA data. The wind shear was 0.2. At the moment of the blade fracture,
the azimuth angle of the affected blade was 300◦ (clockwise from the upward direction as
0◦). The fractured region spanned from 14 to 16 m from the blade root. The tensile stiffness
of the fractured blade section was retained, while bending and torsional stiffness were both
set to 0. This corresponds to a fracture mode where the fibers remain intact but the blade is
fully split, resulting in an instantaneous fracture. The simulation time for the fracture was
set to 60 s. Due to challenges in obtaining precise field data about the fracture location and
stiffness variations, there may be some discrepancies in the simulation settings.

In this actual wind turbine blade fracture incident, the time series of the nacelle acceler-
ation were recorded in the SCADA system, but there were no channels for mechanical loads.
Consequently, only nacelle accelerations were compared in this study. Figures 12 and 13
present the time-domain signal comparisons of nacelle accelerations in the fore–aft and
side–side directions, respectively. The simulation acceleration results exhibit a consistent
trend with the field measurement data with comparable magnitudes. The first period of the
acceleration fluctuation represents the most dangerous period in the fracture process. The
simulation results exhibit a higher amplitude than the measurement data, implying that
the simulation is conservative. As time progresses, deviations become more noticeable. It
can be noticed that the field measurement data contain more high-frequency components,
which are to be attributed to the higher-order modes of the turbine. Nevertheless, the
consistency in the trends and magnitudes of the acceleration changes before and after
the fracture instant shows that the proposed simulation method is able to replicate blade
fracture faults with a moderately conservative result.

Figure 14 illustrates the simulated relative deformation of the blade tip before and
after the fracture instant. The out-of-plane and radial relative displacements reach 60 m and
40 m, respectively, which are significantly larger than the results in the normal operation
cases. The large displacements of the blade tip are not introduced by the elastic deformation
but caused by the large rotation at the blade’s fractured section because of the zero bending
stiffness settings. It is proved that the proposed geometrically exact beam model is able to
tackle the large rotation and large deformation effectively.
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4. Conclusions

This paper introduces a simulation method for fracture faults in long and flexible
wind turbine blades. Utilizing geometrically exact beam theory, it formulates a nonlinear
structural dynamics model for these blades. Additionally, an integrated aeroelastic simula-
tion model is developed by incorporating blade element momentum theory. The accuracy
of this aeroelastic simulation model is verified and validated through comparisons with
Bladed simulation data and field measurement data on blade fractures. The key research
findings are summarized as follows:

1. The geometrically exact beam model for blade structure developed in this study
achieves precise nonlinear aeroelastic simulations for entire wind turbines. Under
normal operating conditions, the results from this method align with those obtained
by Bladed, which employs the multipart modal superposition method.

2. The proposed model is able to effectively simulate the blade fracture process and
exhibits trends and magnitudes similar to field measurement data.

3. The simulation results of the blade fracture process provide the load and deformation
data, which are difficult to acquire from field measurements. This information is
of crucial importance for the root cause analysis of blade fracture faults and for
developing and validating monitoring strategies.

The process of blade fracture in wind turbine systems is intricate. While the model
presented in this paper successfully reconstructs the most critical aspects of this process,
it currently does not account for the blade–tower collision process and the associated
changes in structural characteristics. As a result, there is a reduction in the accuracy of
this simulation method. Future studies should focus on integrating analyses of the blade
failure process, changes in structural characteristics during blade–tower collision, and
the establishment of blade sectional stiffness variations. These enhancements will further
improve the accuracy of simulating the blade fracture process.
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