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Abstract: Accurate line parameters are the basis for the optimal control and safety analysis of distri-
bution networks. The lack of real-time monitoring equipment in grids has meant that data-driven
identification methods have become the main tool to estimate line parameters. However, frequent net-
work reconfigurations increase the uncertainty of distribution network topologies, creating challenges
in the data-driven identification of line parameters. In this paper, a line parameter identification
method compatible with an uncertain topology is proposed, which simplifies the model complexity
of the joint identification of topology and line parameters by removing the unconnected branches
through noise reduction. In order to improve the solving accuracy and efficiency of the identification
model, a two-stage identification method is proposed. First, the initial values of the topology and
line parameters are quickly obtained using a linear power flow model. Then, the identification
results are modified iteratively based on the classical power flow model to achieve a more accurate
estimation of the grid topology and line parameters. Finally, a simulation analysis based on IEEE
33- and 118-bus distribution systems demonstrated that the proposed method can effectively realize
the estimation of topology and line parameters, and is robust with regard to both measurement errors
and grid structures.

Keywords: distribution network; topology identification; line parameter identification; linear power
flow model

1. Introduction

Accurate line parameters are the basis of state estimation, security control and other ad-
vanced applications in energy management systems (EMS). With the continuous expansion
of power grids, the operation of distribution networks is complex and changeable; mean-
while, dynamic network reconfiguration is frequent [1,2]. Unlike transmission networks,
distribution networks have not realized the real-time monitoring of topology changes and
periodic checks of line parameters; therefore, EMS can only rely on the topology and line
impedance data recorded in grid-planning files. However, adjustments to the operation
structure of a distribution network and changes in the environments around grid lines can
lead to deviations between recorded data and actual parameters, which seriously affects
the accuracy of EMS safety analysis and control decision results. Therefore, for a distribu-
tion network with missing or outdated topology information, it is of great significance to
propose an effective line parameter identification method to improve its operation stability
and management level [3,4].

Fortunately, the rapid deployment of advanced metering infrastructure (AMI) in
distribution networks has enabled high-density historical data to be obtained for line
parameter identification [5,6]. In [7–9], line parameters were estimated based on nonlin-
ear least squares (NLS), reweighted NLS and augmented state estimation, respectively.
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In [10], a graphical learning algorithm based on physical parameters was proposed, and
the stochastic gradient descent method was used to estimate line parameters; however,
the identification efficiency was low in networks with a large number of lines; In [11], a
fast graphical learning method was proposed for a large-scale distribution network, which
improved the efficiency of parameter estimation. In [12,13], line parameters were identi-
fied using particle swarm optimization and a machine learning algorithm, respectively;
however, these had little physical interpretability and could not guarantee the generaliza-
tion of an identification model in different distribution networks. In [14], a hierarchical
estimation strategy for line parameters was proposed based on the generalized equations
of line voltage drops, and reinforcement learning was used to improve the robustness
of the line impedance estimation method to measurement errors. Although the above
methods can identify line parameters, they all require prior information for an accurate
network topology.

The uncertainty of dynamic distribution network topologies limits the use of the
above identification methods in engineering applications. In this regard, some scholars
have proposed a joint identification method for distribution network topologies and line
parameters. In [15,16], topology identification was transformed into a generalized low-rank
approximation problem, and the error-in-variables (EIV) model was used to realize the
joint identification of topology and line impedance in a maximum-likelihood estimation
framework. In [17], the distribution network topology and line impedance were estimated
through the iteration of the Kalman filtering method and Newton–Raphson method. In [18],
a deep–shallow neural network was proposed, and the network topology and parameters
were identified based on reinforcement learning. In [19], a complex recursive grouping
algorithm for the unsupervised identification of topology and line parameters was adopted,
which is applicable in distribution networks with latent nodes. The methods proposed
in [15–19] are based on the data collected by phasor measurement units (PMU), which
synchronously sample the power and voltage measurement data of buses based on global
positioning system (GPS) time references.

However, due to the limitations of economic cost, PMU devices have not been fully
deployed in many distribution networks [20], and smart meters are generally used as
alternative measurement equipment. Compared with PMU, smart meters cannot obtain
voltage angle measurement information. There are several identification methods based
on smart meter data. In [21], a linear regression model was established to construct the
network topology and calculate the line parameters sequentially from the leaf nodes to
the root nodes; however, the calculation capacity required by the algorithm increased
rapidly with large-scale distribution networks. In [22], the measurement data of voltage
magnitudes and power injections were used to estimate the impedance distance between
observed buses, and the operation topology and line parameters were iteratively identified.
In [23], a topology label matrix was constructed based on the LinDistFlow model, and
the topology and line parameters were estimated by feature clustering. Nevertheless, the
methods proposed in [22,23] require a large number of samples, thus the effectiveness of
algorithm cannot be guaranteed in a distribution network with frequent topology changes,
and they solely take the radial grid structure into consideration.

As above, existing parameter identification methods generally require prior informa-
tion on grid topology, PMU devices, or months of measurement data. To overcome these
limitations, we propose a method to identify topology and line parameters simultaneously
that does not rely on prior information of the grid topology or parameters. Consequently,
it addresses uncertainty in the topology, which may change flexibly and frequently in
distribution networks. First, a linear power flow model is established according to the
operating characteristics of the distribution network and the voltage angle information is
ignored temporarily. The initial identification results of distribution network topology and
line admittance are quickly obtained through the simplified model. Then, the identification
results are modified through decoupling iterative optimization among variables, aiming to
reduce the influence of modeling errors on the accuracy of the parameter estimation. Finally,
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we demonstrate the effectiveness of our method on IEEE test cases, and the robustness of
proposed algorithm is verified through a sensitivity analysis.

The main contributions of this paper are given as follows:
(1) All the measurement data are provided by smart meters and do not rely on expen-

sive equipment such as PMU. Additionally, the samples required by the algorithm ars quite
reasonable, only one day of historical data is needed in a five-minute sampling period,
which can avoid topology changes during data collection to a large extent;

(2) The method accurately identifies the topology and effectively estimates the line
parameters; moreover, it is suitable for large-scale distribution networks and superior to
the method that can only estimate the topology or line parameters;

(3) The proposed identification algorithm is robust to measurement noises, and is
applicable for distribution grids with different structures, including weakly meshed grids.

The rest of this paper is organized as follows. Section 2 provides the mechanism
analysis of line parameter identification and demonstrates the overall flow of the proposed
method. Sections 3 and 4 concretely introduce the initial identification strategy and en-
hanced identification strategy, respectively. Section 5 validates the performance of our
method on IEEE 33- and 118-bus distribution systems. Section 6 concludes the paper.

2. Mechanism Analysis of Line Parameter Identification in Dynamic
Distribution Network

The admittance matrix contains both the topology and line parameter information of
the distribution network, so this paper solves the estimated admittance matrix Gˆ and Bˆ

based on the power and voltage data collected by smart meters. Similar to state estimation,
the objective function is established according to the minimum variance between actual
power injection and the power calculated by Gˆ, Bˆ, which can be expressed as follows.

min
N

∑
i=1

( p̂i − pi)
2
+ (q̂i − qi)

2
(1)

where N is the total number of buses in the distribution network, pi and qi are the active
and reactive power injection of bus i, respectively, p̂i and q̂i are the estimated active and
reactive power injection of bus i, respectively.

According to the classical power flow equations, there are constraints between the
estimated power injection and the estimated admittance matrix as follows.

p̂i =
N

∑
k=1

|vi||vk|(Gˆ
ik cos θik + B̂ik sin θik) (2)

q̂i =
N

∑
k=1

|vi||vk|(Gˆ
ik sin θik − B̂ik cos θik) (3)

where |vi| and |vk| are the voltage magnitude of bus i and bus k, respectively, θik is the
voltage angle difference between bus i and bus k, Gˆ

ik and B̂ik are the estimated conduc-
tance and susceptance between bus i and bus k, respectively. In order to simplify the
symbolic representation without losing its generality, the following will uniformly use v to
represent |v|.

In addition, according to the characteristics of admittance matrix, the optimization
model needs to meet the following constraints.

(1) Where there is no connecting branch between bus i and bus k, it has Gˆ
ik = B̂ik = 0.

(2) For the non-diagonal element of the admittance matrix, it always has:

∀i ̸= k, Gˆ
ik ≤ 0 (4)

∀i ̸= k, B̂ik ≥ 0 (5)
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(3) Since the shunt resistance in distribution network could be neglected [15], the
diagonal element of the admittance matrix always has:

Gˆ
ii +

N

∑
k=1,k ̸=i

Gˆ
ik = 0 (6)

B̂ii +
N

∑
k=1,k ̸=i

B̂ik = 0 (7)

(4) The admittance matrix is symmetrical as follows.

Ĝ = [Ĝ]
T

(8)

B̂ = [B̂]
T

(9)

where []T represents matrix transpose.
With the premise that the topology information of the dynamic distribution grid is

unavailable, we can construct a mixed-integer programming problem by introducing a
binary variable representing the line connection status to jointly identify the grid topology
and line parameters, whereas there is barely an effective method for solving this problem.
Furthermore, for the two buses without connecting branches, it is difficult to optimize the
corresponding element in Gˆ and Bˆ to 0. In this paper, the corresponding value of the
unconnected line in the estimated admittance matrix is set to 0 by noise reduction, which
can effectively imply the topological information and reduce the number of optimization
variables. On this basis, a two-stage identification method for jointly estimating the distri-
bution network topology and line parameters is proposed to ensure the accuracy of the
identification model.

The principle of noise reduction is that due to the constraints of power flow and the
characteristics of the admittance matrix, if there is no connecting branch between bus i and
k, then Gˆ

ik and B̂ik will be gradually optimized to a number close to 0; consequently, the
value of |Gˆ

ik|/|Gˆ
ii| would be sufficiently small. Therefore, we can calculate |Gˆ

ik|/|Gˆ
ii|

for each non-diagonal element Gˆ
ik in Gˆ; if the value is less than ωg, the noise reduction

threshold and corresponding branch should be eliminated, as well as Gˆ
ik and B̂ik should be

set to 0. Owing to the fact that the distribution network usually adopts a radial or weakly
meshed grid structure, the number of branches connecting bus i is much lower than N − 1;
therefore, ωg can be properly set to 1/(N − 1).

In order to further verify the rationality of the proposed criterion, we use four IEEE
test grids to calculate the |Gik|/|Gii| of each branch. As shown in Table 1, for all branches
in the four grids, the values of |Gik|/|Gii| are greater than ωg. Accordingly, we can
effectively remove the unconnected branches by noise reduction.

Table 1. |Gik|/|Gii| of distribution network branches.

Distribution Network The Mean of |Gik|/|Gii| The Minimum of |Gik|/|Gii| ωg

IEEE 15-bus system 0.5 0.2 0.07
IEEE 33-bus system 0.5 0.09 0.03
IEEE 74-bus system 0.5 0.09 0.01

IEEE 118-bus system 0.5 0.05 0.008

The overall flow of the proposed two-stage identification method is shown in
Figure 1. In stage 1, the approximate topology and line parameters are quickly obtained
based on linear regression, and the number of optimization variables is reduced signifi-
cantly. On this basis, the identification results are modified by decoupling the iterative
optimization between variables in stage 2. At the same time, the unconnected branches are
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further eliminated by noise reduction. The final identification result is outputted until the
iteration converges.
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3. Initial Identification Strategy Based on Linear Regression

The nonlinearity of power flow equations may lead the identification model to become
a non-convex optimization problem, which is difficult to solve; its linearization can improve
the convergence and robustness of the identification algorithm [24,25]. Therefore, a linear
power flow model is established in this stage, and we propose an initial identification
strategy based on linear regression. Although the simplification of power flow equations
and the neglect of the voltage angle affect the identification accuracy of line parameters to a
certain extent, the main purpose of this stage is to quickly remove most of the unconnected
branches and reduce the number of optimization variables, as well as to provide the basic
topology and initial values of line parameters for stage 2. In that stage, the estimated
admittance matrix will be further modified based on a classical power flow model to
improve the accuracy of the identification results.

According to the characteristics of a normally operating distribution gird, we can
obtain the following approximations [24–26]:

(1) The voltage magnitude of bus i is close to 1 p.u., which implies ∆vi = vi − 1 is a
small number.

(2) The voltage angle difference θik is usually less than 5◦, so we have:

sin θik ≈ θik (10)

cos θik ≈ 1 (11)
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With the approximations discussed above, the active power flow equation can be
expressed as follows.

pi
vi

=
N

∑
k=1

(Gikvk cos θik + Bikvk sin θik) (12)

Replacing vk with 1 + ∆vk, and combining Equations (10) and (11), we obtain:

pi
vi

≈
N
∑

k=1
Gik(1 + ∆vk) +

N
∑

k=1
Bik(1 + ∆vk)θik

=
N
∑

k=1
Gik

(a)

+
N
∑

k=1
Gik∆vk

(b)

+
N
∑

k=1
Bikθi

(c)

−
N
∑

k=1
Bikθk

(d)

+
N
∑

k=1
Bik∆vkθik

(e)

(13)

Equations (6) and (7) imply that term (a) and (c) in Equation (13) are 0; furthermore,
∆vk multiplied by θik yields the value of term (e) to be much smaller than term (b) and term
(d); therefore, we can omit term (e) and obtain:

pi
vi

≈
N

∑
k=1

Gik∆vk −
N

∑
k=1

Bikθk (14)

Analogically, we can obtain the linear equation of reactive power flow as follows.

qi
vi

≈ −
N

∑
k=1

Bik∆vk −
N

∑
k=1

Gikθk (15)

Equations (14) and (15) can be rewritten in matrix form, and we can obtain the linear
power flow model, as follows.

[ p
vq
v

]
=

[
G −B
−B −G

][
∆v
θ

]
(16)

where [p/v] = [p1/v1 . . . pN/vN]T, [q/v] = [q1/v1 . . . qN/vN]T, ∆v = [∆v1 . . . ∆vN]T,
θ = [θ1 . . . θN]T are vectors containing the measurement data of all buses.

Assuming that we obtain M1 independent samples without voltage angle information,
it is necessary to further simplify Equation (16). Considering that the voltage angle differ-
ence between the slack bus and the other bus is typically small, Equation (16) is simplified
in stage 1, as follows. [

P
V

]
= G[∆V] (17)

[
Q
V

]
= −B[∆V] (18)

where [P/V] = [[p/v]1 . . . [p/v]M1], [Q/V] = [[q/v]1 . . . [q/v]M1], ∆V = [[∆v]1 . . . [∆v]M1].
The solutions of Gˆ and Bˆ are:

Ĝ =

[
P
V

]
[∆V]T([∆V][∆V]T)

−1
(19)

B̂ = −
[

Q
V

]
[∆V]T([∆V][∆V]T)

−1
(20)

In order to eliminate the unconnected branches, Gˆ and Bˆ should be modified by noise
reduction. That is, traversing Gˆ, and setting Gˆ

ik and B̂ik to 0 if the value of |Gˆ
ik|/|Gˆ

ii| is
less than ωg.
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Additionally, Gˆ and Bˆ should hold the symmetry of the admittance matrix, thus we
symmetrize Gˆ and Bˆ to obtain ĜSym and B̂Sym as follows:

ĜSym =
Ĝ + ĜT

2
(21)

B̂Sym =
B̂ + B̂T

2
(22)

for convenience, we denote ĜSym and B̂Sym as Gˆ, Bˆ, respectively.
Moreover, for the purpose of eliminating the influence of removed branches on regres-

sion results, we should renew the remaining non-zero elements in Gˆ and Bˆ as follows:

Ĝi =

[
P
V

]

i
[∆V]Ti ([∆V]i[∆V]Ti )

−1
(23)

B̂i = −
[

Q
V

]

i
[∆V]Ti ([∆V]i[∆V]Ti )

−1
(24)

where Ĝi and B̂i are the non-zero elements in the i-th row of Gˆ and Bˆ, respectively, [P/V]i
and [Q/V]i are vectors corresponding to the measurement data of bus i, ∆V i is a voltage
matrix corresponding to the column indexes of non-zero elements in the i-th row.

Repeat the steps of noise reduction, symmetrization, and element renewing until
Gˆ and Bˆ remain unchanged before and after iteration; we can then obtain the initial
identification results of the topology and line parameters.

4. Enhanced Identification Strategy Based on Decoupling Iterative Optimization

In stage 1, the influence of the voltage angle on line parameter identification accuracy
is temporarily ignored, and there are certain modeling errors in the linear regression model.
Hence, in this stage, we will take the change of voltage angle into consideration, and
iteratively modify Gˆ and Bˆ, i.e., outputs in stage 1, based on the classical power flow
model, so as to obtain more accurate identification results.

In stage 2, the variables of the optimization problem include branch admittance and
the voltage angle. Simultaneously optimizing all variables together may slow down the
execution speed of the algorithm, or even make the iterative process difficult to converge. In
order to improve the robustness of optimization algorithm, we take the branch admittance
as the main optimization variable and propose a decoupling iterative optimization method
between the voltage angle and branch admittance. In each iteration, we first obtain the
estimated voltage angle corresponding to each data sample through a pseudo power flow
calculation; on this basis, the adaptive ridge regression model is established to modify Gˆ

and Bˆ, and the topology is further corrected by noise reduction. The iterative process ends
until the convergence condition is satisfied.

In the pseudo power flow calculation, if we use the existing power system simulation
tools, such as MATPOWER (version 7.1) [27], to build the distribution network model,
and take the measurement data of power injection and Gˆ, Bˆ as inputs, the voltage angle
information can be obtained through the power flow calculation.

Once the estimation value of the voltage angle is acquired, we are able to establish a
more accurate mathematical model to solve the line parameters.

4.1. Mathematical Optimization Model and Its Solving Algorithm

Taking line admittance as variables, the power flow equations can be rewritten as follows.

pi = ∑
lij∈E

((v2
i − vivj cos θij)gij − vivj sin θijbij) (25)
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qi = ∑
lij∈E

(−vivj sin θijgij − (v2
i − vivj cos θij)bij) (26)

where gij and bij are the conductance and susceptance of line lij, respectively, E is the set of
connected lines.

We take Equation (25) as an example to illustrate the establishment process of the
mathematical optimization model. Equation (25) suggests that there is a linear relationship
between pi and gij, bij. We denote the set of connected lines obtained in stage 1 as Eˆ with
the basis Mˆ, then the matrix form of Equation (25) can be expressed as follows:

p =
[
ag ab

][g
b

]
(27)

where p = [p1 . . . pN]T, is the active power injection measurement, g = [g1 . . . gMˆ]T,
b = [b1 . . . bMˆ]T, are matrices containing the line conductance and susceptance in Eˆ,
ag, ab ϵ RN×M̂, their elements can be expressed as follows.

ag(i,m) =





v2
i − vivj cos θij

(τ(m,1) == i ∧ τ(m,2) == j)∨
(τ(m,2) == i ∧ τ(m,1) == j)

0 otherwise
(28)

ab(i,m) =




−vivj sin θij

(τ(m,1) == i ∧ τ(m,2) == j)∨
(τ(m,2) == i ∧ τ(m,1) == j)

0 otherwise
(29)

where τ ϵ RM̂×2, its first and second columns store the start bus and end bus index of
each line in Eˆ, respectively. We denote ap = [ag ab], x = [g; b], then Equation (27) can be
expressed as follows:

p = apx (30)

A minimized loss function model for solving line parameters can be built based on
Equation (30). We denote the number of data samples in stage 2 as M2, and the optimization
model based on square loss function can be expressed as follows:

min∥A1x − y1∥2
2 (31)

where A1 = [ap1; . . .; apM2], y1 = [p1; . . .; pM2].
In order to prevent overfitting and enhance the stability of the solution, the L2 reg-

ularization term is added to the loss function to construct the ridge regression model
as follows:

min∥A1x − y1∥2
2 + λ∥x∥2 (32)

where λ is the regularization parameter.
The regularization term of the ridge regression model equally penalizes all parameters

of x; consequently, biased estimates may occur when the distribution grid contains several
lines with relatively large admittance values. Therefore, an adaptive ridge regression model
is established as follows:

min∥A1x − y1∥2
2 + λ∥w · x∥2 (33)

where ‘·’ is the matrix dot product operator, w ϵ RM̂×2 as follows:

w = (|x0|γ + δγ)
−1
γ (34)

where both δ and γ are constant parameters, referring to [28], we select δ = 10−5, γ = 2, x0
is the initial estimated value of x, which can be obtained by least square method as follows:

x0 = (AT
1 A1)

−1
AT

1 y. (35)
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Equations (33)–(35) indicate that the adaptive ridge regression model adds a penalty
weight coefficient to each variable according to the initial estimated value of the corre-
sponding line parameter. The weight coefficient is smaller when the admittance of the
corresponding line is larger; as a result, the degree of shrinkage is reduced.

Analogically, we can obtain (36) from Equation (26):

min∥A2x − y2∥2
2 + λ∥w · x∥2 (36)

where A2 = [aq1; . . .; aqM2], y2 = [q1; . . .; qM2], aq = [ab −ag], q = [q1 . . . qN]T.
Based on the above analysis, the flow chat of the proposed enhanced identification

algorithm is shown in Figure 2. In the figure, ξ is the empirical threshold for deciding
whether the iteration converges or not, which is set to 0.02. Appendix A specifically intro-
duces the process of determining the value of ξ. It is worth noting that the adaptive ridge
regression model in (33) and (36) are convex optimization problems, and stage 1 provides an
appropriate initial value for the estimation of branch admittance; as a result, the enhanced
identification algorithm has a fast solution speed and good convergence performance.
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4.2. Parameter Selection
4.2.1. The Number of Measurement Samples

In order to improve the accuracy of the initial identification results, the measurement
data of stage 1 should have a certain degree of redundancy. Fortunately, the linear regression
problem is easy to solve, and the identification algorithm with redundant measurements
still has a fast execution speed. The number of optimization variables is lower in stage
2 than in stage 1; as a consequence, we can reduce the samples used in stage 2 to save
computing resources. In order to ensure the robustness of the algorithm, the number of
independent equations M2 × N in Equation (33) should not be less than 2 × Mˆ. Therefore,
M2 should not be less than 2Mˆ/N.

4.2.2. The Value of λ

λ directly affects the performance of the algorithm. When the value of λ is too small,
the effect of the penalty term is not obvious; when the value of λ is too large, there is a
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high risk of eliminating too many lines, which makes it difficult to converge in a power
flow calculation. Generalized cross-validation (GCV) selects the appropriate value of λ by
minimizing V(λ), defined as follows [29]:

V(λ) =
(M2 × N)−1∥(I − K1)y1∥2

2[
(M2 × N)−1tr(I − K1)

]2 (37)

where I is the identity matrix, tr() represents the trace of matrix, K1 is defined as follows:

K1 = A1(AT
1 A1 + (M2 × N)λw · w · I2Mˆ)

−1
AT

1 . (38)

Figure 3 shows the V(λ) curve of an IEEE 33-bus system in one iteration. The blue
dot in the figure is the minimum point, and the curve changes gently near the minimum
value. In order to better reflect the advantage of regularization, we select λ where the curve
begins to rise significantly; that is, the λ corresponding to the red star point in the figure.
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5. Results
5.1. Simulation Parameter Setting

The identification algorithm was executed in MATLAB, and the convex optimization
model was solved by CVX toolbox. IEEE 33- and 118-bus systems (case 1 and case 2
respectively for short) were used to verify the effectiveness of the proposed identification
method. The grid structure of the test cases is shown in Figure 4. We chose bus 1 as the
slack bus and assumed that all buses in the grids were equipped with smart meters.
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high risk of eliminating too many lines, which makes it difficult to converge in a power
flow calculation. Generalized cross-validation (GCV) selects the appropriate value of λ by
minimizing V(λ), defined as follows [29]:

V(λ) =
(M2 × N)−1∥(I − K1)y1∥2

2[
(M2 × N)−1tr(I − K1)

]2 (37)

where I is the identity matrix, tr() represents the trace of matrix, K1 is defined as follows:

K1 = A1(AT
1 A1 + (M2 × N)λw · w · I2Mˆ)

−1
AT

1 . (38)

Figure 3 shows the V(λ) curve of an IEEE 33-bus system in one iteration. The blue
dot in the figure is the minimum point, and the curve changes gently near the minimum
value. In order to better reflect the advantage of regularization, we select λ where the curve
begins to rise significantly; that is, the λ corresponding to the red star point in the figure.
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5. Results
5.1. Simulation Parameter Setting

The identification algorithm was executed in MATLAB, and the convex optimization
model was solved by CVX toolbox. IEEE 33- and 118-bus systems (case 1 and case 2
respectively for short) were used to verify the effectiveness of the proposed identification
method. The grid structure of the test cases is shown in Figure 4. We chose bus 1 as the
slack bus and assumed that all buses in the grids were equipped with smart meters.
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The one-day active power injection measurement data of 1200 users in China were
collected as the original sample sets, and 50–150 users were randomly assigned to each bus
except the slack bus to simulate the power consumption characteristics of the distribution
network. We emulated the corresponding reactive power injection according to a random
lagging power factor cos φ, e.g., cos φ~Unif (0.85, 0.95) [30], and the voltage magnitude
data were simulated by MATPOWER. The sampling period of the original datasets was
1 min. With the intention of alleviating the data redundancy of the regression model
and reducing the consumption of computational resources, we set the sampling interval
as 5 min. Affected by the accuracy of the measuring equipment, the sample data were
contaminated with noise. In order to verify the practical applicability of the proposed method
in real scenarios, noise was added to the measurement data. In most cases, the accuracy level
of existing smart meters deployed in distribution networks is 0.2 s, so we set 0.2% additional
error ε for the power injection data. Furthermore, we set ωg of case 1 and case 2 as 0.03 and
0.008, respectively, and the M2 of case 1 and case 2 as 10 and 20, respectively.

5.2. Performance Evaluation Index

We selected the F1 score as the index to evaluate the accuracy of the topology identifi-
cation results. The F1 score was defined as follows:

F1 =
2 × fP × fR

fP + fR
(39)

where fP and fR are, respectively, the index of precision and recall as follows:

fP =
TP

TP + FP
(40)

fR =
TP

TP + FN
(41)

where TP, FP and FN, respectively, denote the number of branches that are correctly
identified, the number of branches that are mistakenly identified as connected, and the
number of branches that are mistakenly identified as unconnected.
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We selected the mean absolute percentage error (MAPE) as the index to evaluate the
accuracy of line parameter identification results, which is defined as follows:

IMAPE(g) =
1
m ∑

lij∈E

∣∣∣∣∣
ĝij − gij

gij

∣∣∣∣∣× 100% (42)

IMAPE(b) =
1
m ∑

lij∈E

∣∣∣∣∣
b̂ij − bij

bij

∣∣∣∣∣× 100% (43)

where m is the number of lines, ĝij and b̂ij are the estimated conductance and susceptance
of lij, respectively.

5.3. Identification Results and Comparative Analysis
5.3.1. Identification Results

The identification results of test cases are shown in Table 2. The F1 scores of two
cases both exceed 0.9 after stage 1, indicating that the initial identification algorithm can
effectively remove most of the unconnected lines. However, due to the simplification of
the power flow model and the neglect of the voltage angle information, there is still a
fraction of misidentified elements in Eˆ and certain errors in the estimated value of the
line admittance. After stage 2, two cases both achieved correct identification of the grid
topology, and the MAPE of line parameters was between 0.26% and 0.65%. Considering
that we set ε as 0.2%, the line parameter identification accuracy of the two cases is within
the acceptable range. Figures 5 and 6 show the parameter estimation errors of each line
after stage 1 and stage 2, respectively. After modifying the identification results in stage 2,
the estimation accuracy of all line parameters has been significantly improved.

Table 2. Identification results of test cases.

Index Case 1 Case 2

Actual number of lines 32 117
Number of identified lines after stage 1 33 133

F1 score after stage 1 0.98 0.94
IMAPE(g)/% after stage 1 28.80 33.02
IMAPE(b)/% after stage 1 26.90 27.76

Number of identified lines after stage 2 32 117
F1 score after stage 2 1 1

IMAPE(g)/% after stage 2 0.35 0.26
IMAPE(b)/% after stage 2 0.54 0.65

The number of enhanced identification algorithm iterations 15 19

5.3.2. Comparative Analysis of Linear Models

In order to verify the superiority of the proposed linear power flow model in topology
identification, we select two typical linear power flow models for comparative testing with
different levels of measurement errors. The corresponding mathematical model is shown
in Table 3.

The initial identification results of case 2 with three linear models are shown in Table 4.
For all levels of measurement errors, the topology identification accuracy of proposed
model is higher than that of other two comparison models, and the proposed model is
robust to data noise.
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Table 4. Initial identification results under different linear power flow models.

Model
F1 Score after Stage 1

ε = 0.1% ε = 0.2% ε = 0.5% ε = 1% ε = 2%

Proposed 0.94 0.94 0.94 0.92 0.92
[24] 0.81 0.82 0.80 0.82 0.81
[25] 0.93 0.93 0.93 0.91 0.92

5.3.3. Comparative Analysis of Optimization Models

In order to verify the performance superiority of the adaptive ridge regression model,
we selected the minimum loss function model (model A for short), the ridge regression
model (model B for short), and the adaptive lasso regression model based on L1 regulariza-
tion (model C for short) [31] for comparison. The test results are shown in Figure 7.
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All models except model B can correctly identify the topology—model B has the
misidentified lines in case 2. The reason for this is that, for case 2, there are more line
parameters to be estimated, and stage 1 can only output rough admittance estimates. Due
to model B adding the same penalty weight to all variables, branches are more likely to
be deleted incorrectly, resulting in errors in topology identification. Compared with the
adaptive ridge regression model, the number of algorithm iterations based on model A
is higher and the estimation error of the line admittance is relatively higher. The IMAPE(g)
in case 2 increases by 0.72%, indicating that the over-fitting can be effectively solved by
regularization, so that the proposed model has better regression performance. Among
the four optimization models, the identification algorithm based on model B has the most
iterations and the lowest accuracy with respect to line parameter estimation. The IMAPE(b)
in case 1 reaches 5.69%. This is because the ridge regression model excessively penalizes the
elements with large admittance values, which leads to suboptimal estimation. The iterations
of the identification algorithm based on model C are fewer, indicating that, compared with
L2 regularization, L1 regularization has a faster convergence speed. However, the model
proposed in this paper still has higher accuracy with regard to line parameter estimation.
This is because L1 regularization can not only constrain parameters and prevent overfitting,
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but also constrains some line parameters with small admittances to zero, thus is more
suitable for feature selection. While the constraint characteristic of L2 regularization can
prevent a variable from being deleted directly, if the weight is too large in the optimization
process, the optimization model is not particularly sensitive to data noise; therefore, the
identification performance is superior.

5.4. Sensitivity Analysis

In this subsection, we tested the influence of measurement errors and various grid
structures on the identification results to verify the robustness of proposed identifica-
tion method.

5.4.1. Sensitivity to Measurement Errors

Data samples inevitably have measurement errors. The identification results of pro-
posed method with different measurement errors are shown in Figure 8. For all levels of
errors, the proposed method can correctly identify the grid topology, and the number of
iterations is relatively stable for the enhancement identification algorithm. With the increase
of measurement errors, the estimation accuracy of line parameters decreases accordingly.
When ε is 2%, IMAPE(g) and IMAPE(b) in case 1 are 3.66% and 4.80% respectively, which are
less than 2.5 times of ε, IMAPE(g) and IMAPE(b) in case 2 are 2.57% and 5.96% respectively,
which are less than 3 times of ε. Therefore, even if the data accuracy is low, the estimation
error of line parameters is still within the normal range.
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5.4.2. Sensitivity to Various Grid Structures

Distribution networks have various topology structures. By changing the state of line
switches in case 1, we generated 9 comparative cases (called T1–T9, respectively). The
specific modification scheme is shown in Table 5. Notably, the structures of T8 and T9 are
weakly meshed.
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Table 5. Topology structure modification scheme.

Index Line Switch Off Line Switch On

T1 l7,8 l8,21
T2 l11,12 l12,22
T3 l28,29 l25,29
T4 l7,8, l14,15 l8,21, l9,15
T5 l11,12, l28,29 l12,22, l25,29
T6 l7,8, l14,15, l11,12 l8,21, l9,15, l12,22
T7 l7,8, l14,15, l11,12, l28,29 l8,21, l9,15, l12,22, l25,29
T8 l18,33
T9 l25,29

The identification results are shown in Table 6. For various grid structures, the pro-
posed method can correctly identify the topology, and the estimation accuracy of line
parameters has strong stability. However, compared with others, there are more iterations
of the enhanced identification algorithm in T9 due to the robustness of the ridge regres-
sion. Therefore, the proposed identification method is effective for various grid structures;
however, for some weakly meshed grids, the time cost of the identification algorithm may
be relatively high. If real-time application is strictly required, the iterative convergence
condition can be relaxed to improve the solving speed, which may sacrifice some accuracy.

Table 6. Identification results under different topology structures.

Index F1 Score
after Stage 2

IMAPE(g) after
Stage 2

IMAPE(b) after
Stage 2

Number of Enhanced
Identification Algorithm

Iterations

T0 1 1 0.35 0.54 15
T1 1 0.33 0.59 15
T2 1 0.24 0.46 19
T3 1 0.32 0.55 15
T4 1 0.36 0.49 16
T5 1 0.38 0.52 17
T6 1 0.36 0.47 15
T7 1 0.35 0.57 16
T8 1 0.38 0.47 16
T9 1 0.40 0.55 40

1 T0 is the original topology of case 1.

6. Conclusions

Accurate topology and line parameters are prerequisites for the safe and efficient
operation of a distribution network. Based on the measurement data collected by smart
meters, a method for the joint identification of grid topologies and line parameters was
proposed in this paper. First, a linear power flow model was established according to the
operation characteristics of the distribution network, and the initial identification results
were quickly obtained based on linear regression. On this basis, a decoupling iterative
optimization algorithm was proposed to modify the identification results. The superiority
and robustness of the proposed method were verified in a case study. The method is
suitable for distribution networks without PMU equipment. Moreover, our method was
also validated for both radial and weakly meshed grids.
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Appendix A

ξ is an empirical threshold used to judge whether the iterative process of enhanced
identification algorithm converges or not. Due to ∆xˆ containing the change informa-
tion of the estimated line admittance, we can observe the change of ∆xˆ in the iterative
process, when the absolute value of the ∆xˆ difference before and after iteration is lower
than the convergence threshold ξ, it is considered that stable values for estimated line
parameters have been obtained and the algorithm ends its iterations and outputs the final
identification results.

When we select the value of ξ, the IEEE-33 bus system is first used to execute the
enhanced identification algorithm without setting ξ. The changes in ∆xˆ, IMAPE(g) and
IMAPE(b) in the iterative process are shown in Figure A1. ∆xˆ is basically stable after the 15th
iteration, and the variation range of ∆xˆ before and after iteration is 0.017, which is lower
than 0.02. As the iteration continues, the variation range of ∆xˆ is very small, suggesting
that the estimated values of line parameters will not change greatly, and we can observe
that both IMAPE(g) and IMAPE(b) do not decrease obviously. As a result, we can end the
algorithm after the 15th iteration; thus ξ is set as 0.02.
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Figure A1. Convergence characteristics of IEEE 33-bus distribution system in stage 2.

Furthermore, for the purpose of verifying the effectiveness of the selected ξ in a
large-scale distribution network, the IEEE-118 bus system was used to execute the same
algorithm with ξ = 0.02. The results show that the algorithm ends after 19 iterations. In
order to confirm the validity of ξ, we continued to execute the algorithm artificially, and the
changes in ∆xˆ, IMAPE(g) and IMAPE(b) in the iterative process are shown in Figure A2. It can
be observed that ∆xˆ, IMAPE(g) and IMAPE(b) are basically stable after the 19th iteration, after
which the estimation errors of the line parameters will not decrease obviously. It is thus
appropriate to end the algorithm after the 19th iteration; consequently, 0.02 is a suitable
value for ξ.
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