
Citation: Perez-Anaya, E.; Jaen-

Cuellar, A.Y.; Elvira-Ortiz, D.A.;

Romero-Troncoso, R.d.J.; Saucedo-

Dorantes, J.J. Methodology for the

Detection and Classification of Power

Quality Disturbances Using CWT and

CNN. Energies 2024, 17, 852. https://

doi.org/10.3390/en17040852

Academic Editor: Dinko Vukadinović
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Abstract: Energy generation through renewable processes has represented a suitable option for
power supply; nevertheless, wind generators and photovoltaic systems can suddenly operate un-
der undesired conditions, leading to power quality problems. In this regard, the development of
condition-monitoring strategies applied to the detection of power quality disturbances becomes
mandatory to ensure proper working conditions of electrical machinery. Therefore, in this work
we propose a diagnosis methodology for detecting power quality disturbances by means of the
continuous wavelet transform (CWT) and convolutional neural network (CNN). The novelty of this
work lies in the image processing that allows us to precisely highlight the discriminant patterns
through spectrograms into 2D images; the images are cropped and reduced to a standard size of
128x128 pixels to retain the most relevant information. Subsequently, the identification of six power
quality disturbances is automatically performed by a convolutional neural network. The effectiveness
of the proposed method is validated under a set of synthetic data as well as a real data set; the
obtained results make the proposal suitable for being incorporated into the monitoring of power
quality disturbances in renewable energy systems.

Keywords: power quality disturbance; condition monitoring; continuous wavelet transform; convo-
lutional neural network

1. Introduction

Nowadays, electric power generation has taken a turn towards the implementation
of renewable energies (RE), a situation that supposes not only a change but a challenge.
Therefore, the power system is suffering a transition that is being carried out in a gradual
and controlled manner. The International Renewable Energy Agency (IRENA) estimates
that by 2050, around 90% of the power demand around the world can and should come
from renewable energies [1] Currently, power generation systems are based on the burning
of fossil and mineral fuels, but this way of production is facing environmental and economic
problems, becoming less and less profitable every day. Thus, many global policies are
encouraging the implementation of distributed generation systems that include renewable
sources. This way, we can achieve greater sustainability because the use of RE reduces
the amount of green-house gas emissions, which are related to air pollution and climate
change. However, RE are susceptible to problems related to power quality (PQ), which is
derived from the erratic behavior of renewable generation systems [2]. In this sense, some
conditions like the shadows generated by clouds and buildings [3,4], the accumulation
of dust, snow, or dirt generated by wildlife [5,6], and the temperature [7], all impact the
performance of the photovoltaic system (PVS) by obstructing the solar radiation that reaches
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the system, decreasing its performance by up to 20%, as shown in [8]. All these variations
downgrade the amount of generated power, but they also degrade the PQ [9]. This is not
a minor situation, because when the PVS is interconnected to the grid, the disturbances
related to the use of RE are also incorporated into the conventional grid, affecting the
end-users. Therefore, PQ has become a topic of interest because it has been shown to have
an impact on the performance of both electrical and electronic equipment. The term PQ
derives from a standard given by IEEE std 1159 [10], which specifies the ideal characteristics
that the sinusoidal signal should have both in frequency and magnitude to ensure optimum
operation of the equipment. Within this same standard, certain anomalous behaviors are
already defined and called power quality disturbances (PQD). Some of the most common
can be classified as sag, swell, fluctuations, harmonics, and transient impulses. Additionally,
each of these disturbances has its own well-defined characteristics that serve as a basis
for the detection, classification, and mitigation of these types of disturbances when they
appear in an electrical signal.

Due to the importance of PQ, a number of processing tools and techniques have been
developed to address the presence of disturbances and anomalies in power systems. The
events related to PQ may be classified as stationary and non-stationary depending on
the nature of the phenomenon [11], and they have different behaviors in time, frequency,
and amplitude. Therefore, the developed processing techniques must be able to properly
identify variations and deviations in all these magnitudes. Several signal processing
techniques have been used to address this problem; some of them use frequency analysis
by means of the Fourier transform (FT) [12]. Although this technique provides good results,
it is limited because it does not provide temporal information and is focused only on
the analysis of stationary signals. Additionally, some other more specialized techniques
have been used to perform not only a frequency track, but also a time-frequency analysis,
such as the wavelet transform (WT) [13], empirical mode decomposition (EMD) [14], the
short time Fourier transform (STFT), the S-Transform (ST), continuous wavelet transform
(CWT) [15], and the Hilbert Huang transform (HHT) [16], among others. Due to their ability
to perform an adaptive time and frequency trace, these methods are suitable for analyzing
transient, nonlinear and non-stationary signals, and they have shown good results in the
analysis of PQD. Each of these techniques has characteristics that improve or decrease
its performance depending on the analyzed signal. The CWT, for example, is one of the
most used techniques due to its windowing characteristic that allows precise monitoring in
frequency, time, and magnitude resolution, providing versatility and adaptability to treat a
vast number of signals within different frequency ranges. Recently, these time–frequency
techniques have been considered from an image processing point of view because the
resulting spectrogram is in fact an image, and spectral component information may be
extracted from it. For instance, in [17], the STFT and the S-Transform are used to obtain
different spectrograms that help to characterize different PQD, such as voltage sag, voltage
swell, momentary interruption, harmonic content, and DC offset. With the methodology
proposed in that work, it is possible to visualize and classify these disturbances in an easy
way, and it is demonstrated that the S-transform helps to improve the results delivered
by the STFT. In a similar approach, the work in [18] uses the Chirplet transform (CT) and
different time-frequency-scale transform (TFST) to show how it is possible to detect and
classify different PQD through a spectrogram, facilitating the interpretation of the results.
Even though these techniques have been shown to be useful in the detection of PQD, they
still depend on the interpretation of the information by an expert user, whether performing
a direct parameter comparison based on statistical indicators or by visual comparison. This
implies a drawback, because there is the possibility of misinterpretation, resulting in false
positive or false negative situations that may cause permanent damage to the equipment
connected to the grid. Additionally, it is important to mention that the amount of data
obtained from the time-frequency domain techniques and the spectrogram images is huge,
complicating the correct analysis of the results even more.
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In order to improve the results delivered by the space-transform-based methodologies
and to avoid the misinterpretations resulting from human error, some other methodologies
have been developed to receive the large amount of data delivered from the analysis of the
power signals and to perform automatic detection of PQD. In this sense, the methodologies
that make use of deep learning (DL) and machine learning (ML) have gained popularity
in recent years. These approaches are provided with the ability to learn; thus, they can
be adapted to perform continuous monitoring that allows the automatic classification of
different disturbances related to PQ. On the machine learning side, the work developed
in [19] proposes an approach based on dimensionality reduction through a linear discrimi-
nant analysis (LDA); moreover, statistical features are used to characterize the behavior
of different PQD, and finally, using a Neural Network as a classifier, it is possible to per-
form an automatic classification of the disturbance in the signal. Another example of this
approach is presented in the work of [20]. Here, four main steps are defined: generation
of PQD classes, feature extraction, selection of highly discriminating features, and then
the classification of PQDs using selected features. Both approaches demonstrated high
classification rates related to PQDs. On the other hand, the work presented in [21] analyzes
different machine learning approaches that have been carried out in recent years. In that
work, the authors show different techniques, like the support vector machine (SVM), artifi-
cial neural network (ANN), k-nearest neighbors (kNN), and fuzzy logic (FL). They test the
effectiveness of all of them in the detection and classification of different PQD, demonstrat-
ing that machine learning is a suitable tool for this task. On the deep learning side, several
works have been developed. For instance, in [22,23] the authors use an auto-encoder neural
network to find the most representative features of PQ-related events in an automated way.
Also, in [24] the large number of images and information required for the correct training
of the network takes at least 87 min; thus, it requires a high computational effort and
hinders its application in continuous monitoring systems. Moreover, they do not explore if
image pre-conditioning (like resizing and zones cutting) may reduce the computational
burden, preserving the accuracy of the methodology; finally, they only perform tests in
synthetic signals, and it is not shown how the method responds to real signals. Even
with the difficulties that may arise, there are works that have demonstrated that CNN is a
powerful tool for the identification of deviations in electric signals. For instance, in [25,26]
the authors applied the CNN for analyzing electrical motor failures using spectrogram
images that show the benefits of working under a deep-learning scheme. Given the results
obtained in different fields, it is possible that similar results can be obtained in the PQ
field. One of the limitations of the discussed works is that most of them only work with
ideal synthetic signals without the effects of noise contamination, achieving classification
accuracies up to 97%, which do not reflect their performance under real conditions.

This work proposes a methodology for the automatic detection and classification of
PQD using CWT and CNN as main tools. This approach is based on image processing
techniques and pattern recognition. Therefore, a 2D image bank is generated from the
spectrograms of different disturbances obtained by means of the CWT. To ensure that only
the most relevant information is retained in the images, they are cropped, reducing their
resolution by resizing the images to a standard 128 × 128 pixels. This way, the amount of
data is highly reduced, and an improvement is achieved in the classification process that
turns to the next task. Such classification is performed by a CNN that receives the resized
spectrogram images as inputs and delivers the PQD that exists in the signal as outputs. The
proposed methodology is validated first using synthetic signals that simulate six different
PQ conditions: healthy signal, sag, swell, harmonic distortion, voltage fluctuation, and
impulsive transient. Additionally, with the aim to improve the methodology strength
by giving a synthetic signal with a level of realistic behavior, each one of the synthetic
disturbances considered adding four levels of white Gaussian noise (0, 10, 20 and 30
dB). These signals are used to train the deep learning model and determine whether the
methodology is suitable for performing the automatic classification of the PQD. Next,
the proposed approach is tested with real signals coming from a 30 MW photovoltaic
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park located in Spain. Since in this type of system it is necessary to guarantee that the
voltage signal remains within very specific ranges in amplitude and phase, the proposed
methodology considers the voltage signals from the PV system as the inputs to be analyzed.
The novelty of this work consists of the use of real signals from a PVS and a preprocessing
stage consisting of the reduction of the data set by applying a resize to the spectrogram
images and using signals of short duration (maximum one minute). The obtained results
show that the developed method can detect and classify a wide variety of PQD, making it
a useful tool to assess the impact that a PVS may cause regarding PQ.

2. Theoretical Background

This section describes the theoretical aspects that are considered for performing the
proposed diagnosis approach, relevant definitions of power quality disturbances (PQD)
are given, and the general description of a CNN structure is mentioned.

2.1. Power Quality Disturbances

PQ is a general term that refers to a phenomenon that can affect electrical equipment
when the power supply presents instabilities or disturbances associated with amplitude,
continuity, waveform, and frequency. Therefore, the PQ is often measured through different
international standards where the most important are the IEC 61000, IEEE 1159, and the
EN 50160 [27,28]. Although different standards can be used to describe PQD, the IEEE 1159
is the most recognized one, and it is recommended and implemented for monitoring PQ;
thus, five main disturbances such as sags, swells, transients, fluctuations, and harmonics
are defined by the IEEE 1159 [10].

Therefore, three of these five disturbances are directly related to the amplitude of the
voltage signal, and the other two are associated with changes in the frequency. Certainly,
the sag is represented as a phenomenon that shows a loss of amplitude. The occurrence of
sag can also be measured in terms of the RMS value of the voltage signal within a range
from 0.1 to 0.9 pu (per unit) with a duration greater than 5 cycles in 60 s. On the other hand,
the swell occurs when the voltage signal is subjected to amplitude increases of around
1.1 pu in terms of the RMS value and with a duration greater than 30 to 60 s. Although the
sag and swell modify the amplitude of the voltage signal, the transient impulse appears
as a sudden change in steady-state frequency conditions that can produce changes on
both signals, voltage, or current, and is unidirectional in polarity; hence, this kind of
disturbance is measured by quantifying the amplitude of the disturbance, the onset time,
and the duration.

Regarding the disturbances linked to changes in the frequency, the harmonic distortion
is known as the result from the sum of multiple frequencies of the fundamental component
at which the system is intended to operate; consequently, the occurrence of harmonics
leads to a waveform distortion, and it can be evaluated by estimating the total harmonic
distortion (THD). According to the standards, the THD level must be lower than 8% in
power grids that operate under voltages lower than 1.0 kV. Finally, voltage fluctuations are
conditions where random changes in the voltage signal appear. Such changes can also be
defined as systematic variations of the signal envelope within ranges from 0.95 to 1.05 pu.

2.2. Continuous Wavelet Transform (CWT)

Condition monitoring strategies are commonly supported by signal processing tech-
niques that allow highlighting those fault-related patterns; hence, the time domain, fre-
quency domain, and time–frequency domain remain the most preferred processing tech-
niques, and each one of them can be selected according to specific aims. Certainly, time–
domain processing techniques represent a practical solution, since trends and changes of the
signals can be modeled through the estimation of statistical features with an excellent trade-
off between simplicity and performance [29]. By their part, frequency domain techniques
represent some of the most reliable approaches since the existence of specific undesired
frequency components on the signal usually indicates malfunctioning problems [30]. On
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the other hand, time-frequency techniques are also incorporated for the processing of
signals due to their capability of providing temporal and spectral information.

In this sense, the continuous wavelet transform (CWT) is considered a time–frequency
technique that allows the analysis of multiscale non-stationary signals using a windowing
approach to extract information from segments of a signal [31]. These signal segments are
then evaluated by a window called mother wavelet [32], this process allows the CWT to
have the versatility of lengthening or shortening the window size depending on the selected
scale of the mother wavelet. Consequently, a smaller scale is associated with a greater
sensitivity in frequency variations; Equation (1) depicts the mathematical expression:

C(a, τ) =
∫ 1√

a
ψ

(
t − τ

a

)
x(t)dt (1)

where C is the transform, a is the scale factor, τ is the overlap time, ψ is the mother wavelet
function, and x(t) is the signal input as a function of time.

Hence, one of the main advantages of the CWT is its capability of contraction and
dilation, which can lead to high spectral resolution depending on the needs of the signal to
be analyzed. Likewise, an additional property of the wavelet function is that it can obey a
certain limit, since the energy represented must be finite and must meet the admissibility
condition. These parameters are described by Equations (2) and (3), respectively.

E =
∫ ∞

−∞
|ψ(t)|2dt (2)

E =
∫ ∞

−∞
ψ(t)dt = 0 (3)

where E is the energy of the wavelet and ψ is the wavelet mother function.
The graphical representation of the correlation between the waveform scale and time is

known as a Scalogram; subsequently, the CWT automatically adjusts the time and frequency
based on the resolution, depending on the contraction or dilation of the window that best
fits the signal to be analyzed [33]. Within this same aspect, there is another representation
offered by the CWT, which shows a time-frequency-scale distribution mapping the distri-
bution of the energy contained within the signal expressing this energy per unit frequency.
This representation is known as the spectrogram [34]. This last feature makes the CWT
suitable for the analysis of non-stationary signals since this representation considers the
three main characteristics that make up a signal, showing them graphically, and facilitating
their interpretation.

2.3. Convolutional Neural Network

Convolutional neural networks (CNN) have been widely used in several methods
based on image classification under large sets of information; certainly, a CNN is a feed-
forward network that uses partial variance to learn behavioral patterns, and it is specifically
designed for image processing [34]. As in any network structure, the input layer of the
CNN evaluates the set of original images to be processed, obtaining an output block that
contains the estimated features derived from the original image. Accordingly, a series of
filters are applied for further processing. These filters consist of four main processes, where
the first one consists of a convolutional layer, polishing, vectorization, and classification.
These are described in more detail below.

Convolutional layer: A convolutional layer is the main component in a CNN containing
a series of filters (Kernels), which map the image by generating a new space through
convolutions [35]. This means that from the original image, the most representative features
are extracted as the filtering process progresses. Equation (4) shows the process carried out
by a convolutional network.

yk
j = ∑ Wk

ij ∗ xk
j + bk

j (4)
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where yk
j is the mapping feature output, xk

j is the plane feature input, Wk
ij is the 2D filter set,

and bk
j is the bias training parameter.

Polishing layer: The polishing layer is a non-linear process that reduces the sample size.
This process is performed to reduce the number of patterns that will be fed to the training
process without losing a large amount of information in the process. This feature extraction
process when performing max-pooling is given by Equation (5).

hr = maxMxM
1

(
Xpj

)
(5)

where hr is the output of the features when mapping, Xpj is the element of the clustered
region, and M is the size of the clustered mapping dimension.

Flattened layer: This layer is responsible for applying a vectorization process of the
mapping performed by the previous layers, forming a vector that contains the informa-
tion already processed by the whole stages of convolution and polishing, generating a
concentrated vector of features that can be more easily processed by the classification layer.

Classification layer: The classification layer oversees processing all the information
delivered by the vectorization layer when performing a class classification process em-
ploying activation functions. One of the most used for the solution of class classification
problems is the “Softmax” [36]. Image processing through CNN is a highly recommended
and widely used procedure to tackle different classification and pattern detection problems,
some related works can be found in references [35,37].

3. Proposed Methodology

The proposed methodology for detecting and classifying PQ disturbances occurring
in photovoltaic cogeneration systems is presented through the general block diagram of
Figure 1. As can be noticed, three main stages encompass the methodology to know:
(i) Signals bank, (ii) Image processing, and (iii) Pattern recognition and classification.

First, a description of the stage “Signals banks” is presented. Here, two different sets
of signal banks (voltage signals) are used for processing by the proposed methodology; on
one hand, there is the bank of synthetic signals, and on the other hand, there is the bank
of real signals. The set of synthetic voltage signals are generated having a fundamental
frequency of 60 Hz with a sampling rate of 8 kHz during 0.3 s. Therefore, these signals
presented in Figure 2. comprise the healthy state (ideal sine wave behavior) and five
different types of power quality disturbances, such as sag (SAG), swell (SWL), flicker (FLC),
harmonic content (HAR), and transient impulse (IMP). Additionally, with the purpose
of being considered as power disturbances, their generation considered the normativity
established by the standard IEEE-1159 in relation to parameters like duration, amplitude,
and frequency [10]. Now, assuming that a synthetic signal behaves somewhat ideally
and cannot provide enough variability, some noise is added to test the strength of the
methodology. As a consequence, white Gaussian noise is added to the synthetic signal, and
this is repeated in four different noise levels (0 SNR dB, 10 SNR dB, 20 SNR dB, and 30 SNR
dB), generating 250 images per level, leaving a total of 1000 images per synthetic signal. By
its part, the bank of real signals comprises a signal from a photovoltaic cogeneration system
in Spain, located in the south-central area of the country, which is a 30 MW photovoltaic
power plant. The acquisition of the signal was performed on a 100 kW three-phase inverter
at 230 RMS volts with a fundamental frequency of 50 Hz with sag disturbances. In Figure 3,
an example of the acquired signal under the occurrence of SAG is shown. It must be
emphasized that signal acquisition should always be performed as close as possible to the
point of interest for the analysis since this ensures measurements without environmental or
structural interferences that may affect the data collection. In this specific case, the subjects
of interest were the PQ signals generated by the cogeneration system, so the acquisition
was performed as close as possible to it in one of the phases of the inverter. The amplitudes
of all the signals are normalized, and the units remain as per-units (pu).
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Figure 1. General block diagram of the proposed methodology based on CWT and CNN for detecting
and classifying standardized PQ disturbances.

In the second stage of the proposed methodology “Images processing”, the synthetic
signals coming from the first bank are processed through the continuous wavelet transform
(CWT). To perform the CWT, the analytic Morlet-Gabor is selected as the mother wavelet,
and an extended signal configuration is used to mitigate the boundary effects. This way, the
normalized voltage signals are transformed into 2D images, having the information about
whether a power disturbance appears or not. Thus, through the CWT, a spectrogram image
is generated from the original signal as output with an original format of 875 × 656 pixels.
However, since not all the zones of the image contain relevant information about the power
disturbance, it is necessary to cut the upper area of the spectrogram, leaving only the
bottom area where the magnitude components are observed, yielding a clipped frame of
600 × 200 pixels size. Additionally, with the aim of reducing the computational effort
required to process the data, a resizing is performed to this new frame, yielding a final
image with a format of 128 × 128 pixels. This procedure will be repeated for each one of
the six signals (normal signal and the five signals with power disturbances), considering
the free noise (250 samples) signal and the three noise levels per disturbance condition
(750 spectrograms); then, a total of 6000 resized spectrograms are finally generated.

The third stage, named “Pattern recognition and classification”, consists of applying
a classifier structure based on deep learning, which in this case is a convolutional neural
network (CNN) ideal for processing data in image format. This way, the final images
of 128 × 128 pixels with the different noise levels are fed into the network with a binary
structure that considers four hidden convolutional layers of 8, 16, 32, and 64 neurons,
respectively. The vectorized output from the CNN (flatten layer) is finally processed by a
SoftMax multiclass classifier with the purpose of labeling the type of power disturbance
contained in the spectrogram. The training process of the CNN considers Stochastic
Gradient Descent Momentum (SGDM), and the convolution layers have a Rectified Linear
Unit (ReLU) activation function. With this, the network training speed is increased, and
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the convergence of the gradient descent algorithm is ensured. What exactly happens is
that the CNN learns patterns about the power disturbances contained in the spectrogram
image, and then SoftMax provides a final label of the specific disturbance found. It is worth
mentioning that the images are first fed to the CNN for training purposes, but some images
are reserved for validation, and additionally, some images from the real data bank are tested
to probe the methodology effectiveness. The detailed description of the network structure,
and the percentage of data considered for training and validation, are also specified in the
next section.
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4. Results

This section is divided into two main parts. The first one presents the results that
are achieved when the proposed diagnosis methodology is applied to a bank of synthetic
signals, and the second one shows that the results that are carried out when real signals
from a 30 MW PVS located in Spain are evaluated through the proposed approach.

4.1. Competency of the Proposed Methodology in Front of Synthetic Signals

The proposed methodology is first evaluated under a bank of synthetic signals in
order to validate its applicability to real systems. Thus, as mentioned previously, a bank
of synthetic signals is generated involving a total of six different conditions: healthy
signal (HLT), voltage sag (SAG), voltage swell (SWL), harmonic distortion (HAR), voltage
fluctuations (FLC), and impulsive transient (IMP). Such synthetic signals are generated
by considering the mathematical formulation presented in [38], thereby, for each one of
the considered conditions, a total of 1000 signals with a duration of 0.3 s are synthetically
generated. Indeed, it should be mentioned that these signals were randomly generated, but
the duration, location, and severity are within the parameters established by the standard
IEEE 1159. Moreover, white Gaussian noise has been added to the generated signals to
ensure their similarity to those that appear in real conditions; hence, the noise was added
by considering random SNR values from 0 dB to 40 dB. Accordingly, the synthetic signals
were generated as shown in Figure 2, where it is possible to appreciate the waveform of the
conditions under study, such as for the healthy condition, voltage sag, voltage swell, flicker,
harmonics, and transients, respectively.

In addition, it can be observed from the synthetic signals of Figure 2 that the amplitude
of each one of them is expressed as per unit (p.u.) as is defined in the standard IEEE 1159.
Certainly, the use of p.u. is a mandatory suggestion that must be followed during the
implementation of monitoring strategies since this particular scale defines the amplitude
parameters of any PQD. Consequently, the implementation of the proposed methodology to
real signals may consider a normalization process in order to ensure the proper assessment
and identification of disturbances. Additionally, it is observed that the disturbances are
present in the signals, but its identification usually requires expertise; on the other hand,
it is common to make mistakes during the identification of PQD when the assessment is
carried out by visual inspection. This assertion is due to how there are some disturbances
that are difficult to detect even by experts. For instance, the IMP disturbance in Figure 2f
presents a low amplitude and a short duration, making it difficult to find. Therefore, the
development of an efficient strategy to identify and classify the PQD remains necessary.

Thus, following the proposed methodology, the synthetic signals are then subjected
to a processing stage by means of the CWT; as a result, a spectrogram represented by a
2D image is obtained for each one of the signals. Consequently, a set of 1000 images is
generated for each condition under study; afterward, the images are preprocessed with
the aim of reducing the amount of data that must be treated without compromising the
information provided by the image. Such preprocessing is mainly performed for resizing
the original images as shown in Figure 4; thereby, all the images are scaled to a new size by
preserving the most important information.

The 2D spectrogram presented in Figure 4 belongs to one of the generated signals that
simulate a voltage sag. The spectrogram is obtained by applying the DWT to the signal
under evaluation, and then it is saved as an image with an original size of 875 × 656 pix-
els. It is observed that the original image provides relevant information regarding the
disturbance behavior; for instance, a frequency component linked to the fundamental
frequency appears horizontally in yellow at the bottom of the image, but at the beginning
and at the end of the 2D spectrogram, it can be noticed that there are changes that affect
the amplitude of the fundamental component. These amplitude changes are due to the
occurrence of the voltage sag, and this is explained because the signal being analyzed is
healthy at the beginning, but around 0.02 s, the voltage sag starts; then, the voltage sag
remains until 0.25 s, when the healthy condition returns. It should also be highlighted that
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during the transition from sag to healthy condition, a faint line appears that is relevant for
the identification of amplitude variations. In this regard, a first size reduction is carried out
by making a crop to the original image with the aim of removing most of the redundant
information, but the most relevant information is preserved. The region of high frequencies
is completely removed from the original 2D spectrogram by applying the cropping, thus,
although it could be thought that relevant information is being eliminated, it should be
mentioned that high frequencies do not provide significant information from the viewpoint
of power quality analysis. Finally, the image is resized to a standard 128 × 128 pixel size;
hence, despite the size reduction to 128 × 128 pixels, it is still possible to observe the
amplitude changes at the beginning and at the end of the signal. Truthfully, the faint line
that depicts the transition from the disturbance to the healthy state remains in the final
image, proving that the relevant information is preserved after the resizing. Although the
processing that is applied to the images seems trivial, it has a significant impact, since it
allows us to significantly reduce the amount of data processed by the CNN; consequently,
the computational burden is also reduced.
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Hence, the resizing procedure is applied to all images of all considered conditions;
then, the new images are used as input in the CNN structure in order to carry out the
classification task. Due to there being a total of 6000 spectrograms (1000 per disturbance)
that compose the dataset under assessment, 60% of the 2D spectrograms is used during
the training process, 20% is used for testing purposes, and the remaining 20% is used
for validation. Afterward, the CNN structure is subjected to the training procedure for
550 iterations, leading to achieving an accuracy of around 99.41% during the test process
and a maximum value of around 99.48% during the validation. In Figure 5, the qualitative
representation of the accuracy that was reached during the training of the CNN is shown.
The achieved accuracy is promising, and it can be considered as a metric that validates
the effectiveness of the proposed methodology and its feasibility for being applied in the
detection and classification of PQD. On the other hand, Figure 6 shows the qualitative
representation of loss achieved by the CNN, which at the end of the process tends to zero.
From the results presented in Figure 6, it can be inferred that the hyperparameters of the
CNN are well-adjusted, and therefore, it is expected that the classification errors remain
low. Regarding the individual classification for each one of the assessed conditions, the
confusion matrix obtained during the individual classification is presented in Table 1. As
observed, for the HLT, FLC, HAR, and IMP conditions, 100% of the individual classification
is achieved, whereas the SAG and SWL conditions reached an individual classification
of about 99.0% and 97.5%, respectively. Only two and five misclassification errors were
made between the SAG, SWL, and the HLT conditions. Although the proposed classifier
sometimes produces classification errors and confuses the SAG and SWL conditions with
the HLT one, this is an expected situation, because all the generated signals have at least a
part of the HLT condition. Nevertheless, the high-performance of the accuracy indicates that
the proposed methodology has the capability to detect and classify different disturbances,
and it can be used as a diagnostic tool for assessing the quality of power grids.
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Table 1. Confusion matrix achieved by the CNN structure during the validation for all assessed
conditions.

True Class

HLT SAG SWL FLC HAR IMP
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SAG 0 198 0 0 0 0
SWL 0 0 195 0 0 0
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HAR 0 0 0 0 200 0
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Finally, for practical implementation, it should be mentioned that the proposed
methodology has been implemented in a personal computer with an intel core i7-12700H
12th gen (4.7 GHz), and the image processing is configured to be performed by a dedicated
GPU NVIDIA GeForce RTX 3070 (Manufactured by Micro-Star International-MSI Co., Ltd.,
New Taipei City, Taiwan). In this sense, the whole process is carried out in an approximated
time of 120 s, which is a relatively short time of response considering that the processing is
purely carried out on images.

4.2. Study Case: 30 MW Photovoltaic System

Once the proposed method is successfully applied to identify and classify different
PQD through the analysis of synthetic signals, the analysis of real signals acquired from a
real electric system is then carried out. Certainly, the experimentation is performed with
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the voltage signals acquired from a PV generation plant located in south-central Spain;
such PVS can generate a total of 30 MW, and it is interconnected to the local grid. The
measurement of electric signals is carried out in a 100 kW three-phase PV inverter with
a nominal voltage of 230 Vrms at 50 Hz. The acquired signals are measured in this place
because it has been demonstrated that the PQD that appear in a power grid are produced
due to the action of the loads that are connected to grid; therefore, the measurement is
performed in the AC side of the PV inverter, which is the device in charge of feeding the
loads connected to the grid. Hence, it is important to mention that current signals in a PV
system can present many natural variations throughout the day. These variations occur
because the current delivered by the PV system is determined by the amount of solar
radiation that reaches the PV panels. In this sense, the current signals are not suitable to be
analyzed, but the voltage signals must always remain at an amplitude of 230 Vrms with
a 50 Hz frequency; therefore, any deviation from these values may be dangerous for the
equipment connected to the grid. Accordingly, the analysis of PQD through the analysis
over voltage signals is adequate.

Consequently, the signals are acquired and stored using a proprietary data acquisition
system (DAS) based on field programmable gate array (FPGA) technology; the DAS is able
to acquire the three-phase voltages and currents at the same time at a sampling frequency of
8000 Hz. Although the PVS is designed to keep the failures and disturbances to a minimum,
it eventually presents some undesired phenomena. As mentioned before, the real signals are
subjected to a normalization procedure in order to transform the original amplitudes into
the p.u. scale. Afterward, the proposed methodology is applied as described in Section 3 in
order to carry out the assessment and identification of PQD. In this sense, Figure 7a shows a
voltage sag that was identified by the proposed methodology; as observed, the occurrence
of two different severities of voltage sag produces effects in the voltage signal during
3 s. Thus, two main different amplitudes are identified. The first one is around 0.4 p.u.,
and the second one is about 0.6 p.u. Finally, at around the 0.25 s, the signal returns to a
normal amplitude that falls within the permitted range established by the standard IEEE
1159. Additionally, the corresponding 2D spectrogram obtained by the CWT is shown in
Figure 7b, where it can be seen that there are two faint lines that represent the two changes
in the amplitude of the signal. However, the fundamental component of frequency cannot
be clearly appreciated in Figure 7b since it is hindered by the background noise. In this
sense, the image resizing procedure is then applied as a filter that allows highlighting the
fundamental frequency component due to non-useful frequencies (high-frequencies) being
removed from the original spectrogram (see Figure 7c)). Also, it is observed that the two
lines that depict the amplitude changes of the signal are more visible in the resized image
than in the original one, marking the importance of the resizing process in this methodology
being able to achieve accurate results while reducing the computational burden.

The proposed methodology also has the capability to detect other different PQD;
hence, an impulsive transient is also identified in the 30 MW PVS as presented in Figure 8a.
In fact, it is necessary to zoom in over the affected signal zone in order to clearly identify the
appearance of the impulsive transient; hence, it must be highlighted that the identification
of this kind of disturbance is difficult through a visual inspection. Then, the CWT is applied
over the affected signal to obtain its corresponding 2D spectrogram (see Figure 8b), and
a line appears extended over the entire range of frequencies. This line is located around
0.1 s, approximately. Afterward, the resizing procedure is carried out, highlighting the
details of the 2D spectrogram (see Figure 8c). The final 2D spectrogram may facilitate the
identification and classification of the disturbance performed by the CNN.
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Figure 7. Real signal acquired from the 30 MW photovoltaic system, (a) voltage signal under
the occurrence of SAG (horizontal red lines represent different SAG severities), (b) its original 2D
spectrogram obtained by means of the CWT and, (c) the resized 2D spectrogram obtained after the
resizing procedure.
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Figure 8. (a) real signal from the PVS with an impulsive transient (red rectangle), (b) original
spectrogram image obtained by means of the CWT over the signal with the impulsive transient (red
rectangle indicates the occurrence of impulsive transient), and (c) resized spectrogram of the signal
with impulsive transient.

It is worth mentioning that there are some other methodologies that do not require the
use of images. Such methodologies use a waveform approach by analyzing the amplitude
and phase angle of the electric signals. However, the waveform-based methodologies
commonly perform a track of patterns and behaviors in the signals by performing a feature
extraction. These features used to be statistical, entropy-based features, energy features,
among others. The selection of these features is not a trivial task, and it has a very deep
impact on the accuracy of the results. Therefore, to properly select the relevant features
and to discard redundant information, the waveform-based methodologies implement
complimentary processing for the optimized feature selection. Additionally, the use of
several features results in a high number of parameters to describe a single PQD, and
to obtain an accurate classification, it is necessary to implement a complex classification
scheme that requires of the tuning of a high number of parameters; many times, the
optimum performance is not achieved even after multiple trials. Thus, in this work, a
2D-CNN is used that performs the feature extraction and the classification in a single step,
without requiring of the tuning of many parameters. The tradeoff of using this technique is
that the input of the 2D-CNN is an image, and the only preprocessing that is performed is
a resizing, which is a simple task. In this sense, the use of image processing is helpful for
reducing the complexity of the optimal feature selection and the high number of parameters
to be tuned in the classification task by using a single technique (2D-CNN) to perform all
these steps.
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4.3. Comparative Analysis

Observing the results shown above, it is clear that the proposed methodology has
been able to adequately classify the different phenomena related to PQDs with a global
classification ratio up to 99.48%, for all the six power disturbances. However, with the
purpose of demonstrating the effectiveness of the proposed approach, a comparative
analysis versus some previously mentioned works in the introduction section is carried
out. In this sense, Table 2 summarizes the results obtained by the previous literature and
also shows the conditions evaluated, as well as the used classification technique.

Table 2. Comparison of different techniques and performances.

Ref PQD ND Technique Noise Total Performance (%)

[19] Normal, sag, swell, harmonic, fluctuation Feature extraction/
NN N/A 99.7%

(≈79% for sag)

[20] Normal, harmonics, interruption, notch, sag,
swell, transient impulse Cubic SVM N/A 99.7%

(≈79% for sag)

[22] Normal, swell, swell with harmonics,
harmonics with oscillatory transient OC-SVM Combination of

PQDs 94.2%

[23] Normal, interruption, harmonics Auto encoder N/A 80.0%

[24] Normal, impulsive, interruption, oscillatory,
sag, swell 2D-CNN 30 SNRdB 96.67%

Proposed Normal, sag, swell, flicker, harmonic,
transient impulse

2D-CNN with
image resizing 60 SNRdB 99.4%

Results reported in [19,20] present general values with high accuracy (99.7%); however,
a classification percentage around 79% has been reported when the sag disturbance appears.
This situation may be explained by the fact that the behavior of a signal with a sag is very
similar to one that presents a healthy signal. Another important aspect is that the signals
analyzed in [19,20] are free of noise, which is an important issue that significantly affects
the performance of classification when real signals are under evaluation. For the remaining
works, such as in [22–24], the overall percentages show variations within the range of 80%
to 96.67%, which are lower than the accuracy reached by the proposed approach. Therefore,
it seems that conventional methods provide high percentages of classification accuracy, but
such results are reached only because the analyzed signals are ideally perfect without noise.
In contrast, methodologies where noise is considered show accuracy percentages below 97%
(lower than the proposed methodology). This is because the phenomena related to PQDs
are very susceptible to noise conditions, reducing the classification accuracy. Therefore, it
can be emphasized that the proposed method, in comparison with approaches of previous
works, shows better results of up to 99.48%, even in high noise conditions.

At this point, it is also noticeable that the proposed methodology aims to fill some of
the existent gaps in the field of power quality monitoring and in the analysis of distributed
generation grids with renewable sources. Beyond the high classification accuracy achieved
by the proposed methodology, this approach is not affected by the window size, since the
CWT performs an automatic windowing process that allows us to enhance the performance
of the overall technique. In this regard, most of the proposed methodologies so far are
highly dependent on the window size, and they fail in classification if the window size is
not properly tuned. Also, most of the reported works so far only deal with synthetic signals
where the classification of disturbances is easier than in real environments. Moreover,
the analysis of distributed generation grids that contain renewable generation sources
like the photovoltaic one has been scarcely reported. In this sense, the proposed work
demonstrates that is able to work with signals from real environments and to perform an
analysis in a power grid with PV generation, making it a tool to be used in the reliable
assessment of renewable generation sources. Finally, it must be mentioned that some of the
reported works so far treat the quasi-stationary disturbances and the transient disturbances
separately; the methodology proposed here is able to deal with both types of disturbances
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(quasi-stationary and transient) at the same time. Table 3 summarizes the strengths of the
proposed approach compared with some previously reported works.

Table 3. Summary of the bullet points and strengths of the proposed methodology compared with
some previously reported works.

Ref Window Size
Sensitive

Transient Disturbance
Identification

Quasi-Stationary
Disturbance

Identification

Use Real
Signals

Consider Renewable
Generation Power Grids

This work No Yes Yes Yes Yes
[19] Yes No Yes No No
[20] Yes Yes Yes No No
[22] Yes Yes Yes No No
[23] Yes No Yes No No
[24] No Yes Yes No No

5. Conclusions

In this work, we propose a condition monitoring strategy for the detection and identi-
fication of power quality disturbances that can occur in energy generation systems that are
based on renewable processes. The capability of continuous wavelet transform to highlight
those representative fault-related features that are linked to the occurrence of PQD should
be emphasized; hence, the obtained results demonstrate that the appearance of a PQD
produces changes that can be identified through a visual analysis over the obtained spec-
trograms; that is, the occurrence of any of the studied disturbances may produce a specific
pattern. Additionally, the processing of the spectrograms as 2D images also influences
the resulting diagnosis outcome that is achieved by the proposed CNN; specifically, the
selection of the optimal image size plays an important role in the training of the CNN.
The proposed methodology is first validated under a synthetic set of signals where six
different PQD are considered, and then, validation under a real set of signals acquired from
a 30 MW photovoltaic system is also performed. According to the obtained results, the
method is suitable to be implemented since it can be exported to any software containing
the necessary tools for CNN development, for example PYTHON, which would facilitate
its implementation in maintenance programs to detect the occurrence of disturbances in
renewable-energy-based generation systems.

Also, it is worth mentioning that certain conditions contribute to generating more than
one power quality disturbance at the same time, acting in a combined way, and this situation
could be reflected in the collected data. For instance, the switching of several resistance
load types together with the startup of some induction motors in the system can induce
phenomena of sags, swells, harmonic content, and transient spikes in the power lines at the
same time or combinations of them. Thus, the proposed methodology could handle these
situations because of the considered deep feature-learning approach. For instance, once
the signals with combined power disturbances are preprocessed in stage two, spectrogram
images are created containing information of these combined disturbances. Therefore, they
will be used for training the CNN structure for detection, and the SoftMax for classification.
Of course, it is assumed that the signals will have different behavior in their spectrograms
when an isolated disturbance is present than when combined disturbances occur. Thus,
this training will provide the networks with the capability to recognize the patterns of
combined disturbances to give them a category. However, these cases are detected as
an area of opportunity in this work, and they will be addressed as future work. Also,
hardware implementation is considered future work in order to develop a diagnostic tool
for online implementations. Another point of interest is the realization of a method that
allows the optimization of the area to be cut out of the image to improve the process by only
containing the most relevant information of the phenomenon, depending on the sampling
frequency. This can vary according to the needs of each user, allowing the automation of
the entire process.
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