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Abstract: Perovskite solar cells (PSCs) are currently among the most promising solar cell technologies.
A key component influencing their efficiency and stability is the electron transport layer (ETL). This
study examined the carrier transport properties of various ETL materials, including TiO2, SnO2, and
TiO2/SnO2 bilayer ETLs, to understand their effects on PSC performance. The study proposed a
hypothesis that the bilayer design, integrating TiO2 and SnO2, enhances performance, and it used
experimental results to substantiate this. Through analysis and discussion of the ETLs, the interface
between perovskite (PVSK) and ETLs, and other PSC components, we gained insights into the
carrier transport dynamics in PSCs with different ETL configurations. Our findings indicate that the
TiO2/SnO2 bilayer ETL structure can significantly improve PSC performance by reducing current
leakage, improving carrier transport, and minimizing carrier recombination. This enhancement is
quantified by the increase in efficiency from 13.58% with a single-layer TiO2 ETL to 20.49% with the
bilayer ETL.
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1. Introduction

Perovskite solar cells (PSCs) have garnered considerable attention in recent years due
to their excellent material properties, which have resulted in significant increases in their
conversion efficiencies [1–3]. Over the past decade, the power conversion efficiencies (PCEs)
of PSCs have increased from 3.8% [4] to a remarkable 25.5% [5–7], which is approaching the
efficiency record of silicon solar cells at 26.7% [8]. This advance puts PSCs at the forefront
of next-generation solar cell technologies, offering not only high efficiency but also low
cost [9,10]. As a result of these advantages, PSCs have the potential to be widely used in
solar energy applications and to help to reduce reliance on fossil fuels [11,12].

PSCs are typically composed of a transparent electrode, an electron transport layer
(ETL), an absorber layer, a hole transport layer (HTL), and a metal electrode. In pursuit of
high-performance PSCs, ETL has become one of the highly researched topics [13]. TiO2 is
currently the most commonly used ETL material; however, it causes degradation of the
perovskite (PVSK) under UV light, which leads researchers to explore alternative materials
with better optoelectronic properties to replace TiO2. Due to its high electron mobility, high
conductivity, wide optical bandgap, and excellent chemical stability, SnO2 has emerged as
one of the most studied ETL materials after TiO2 [14,15]. However, the lower conduction
band of the SnO2 ETL reduces the built-in potential of the Schottky barrier between PVSK
and SnO2, affecting the collection of carriers at the PVSK/SnO2 interface and reducing the
open-circuit voltage (Voc) of PSCs [16].

In recent years, researchers have started using bilayer ETL structures to improve the
efficiency of PSCs, and related studies can be summarized into the following findings: (1)
The development of TiO2/SnO2 bilayer ETLs has encompassed various structures [17],
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fabrication techniques [18,19], and doping strategies [20,21]. (2) Combining TiO2/SnO2
bilayer ETLs with various PVSK materials enhances the performance and stability of
PSCs [22,23]. (3) The mechanism of improving the light stability of PSCs using TiO2/SnO2
bilayer ETL has been investigated [24]. Although the use of TiO2/SnO2 bilayer structures
has achieved some success in improving the efficiency of PSCs, an understanding of
the carrier transport mechanisms and defect mitigation of TiO2/SnO2 bilayer ETL at the
ETL/PVSK interface remains incomplete.

To gain a deeper understanding of various ETLs such as TiO2, SnO2, and TiO2/SnO2
bilayer ETLs, and their impact on perovskite solar cells (PSCs), this study embarks on a
detailed exploration. The focus is on analyzing the carrier transport and defect charac-
teristics at the ETL/perovskite interface, and how these influence the efficiency of PSCs.
This is achieved through a comprehensive study of the ETL itself, the ETL/perovskite
interface, and their collective effect on PSC performance. The methodology includes ex-
amining the ETLs using scanning electron microscopy (SEM) and conductive atomic force
microscopy (C-AFM). These techniques provide insights into the structure and function
of the TiO2/SnO2 bilayer ETL, particularly in relation to current leakage suppression.
Additionally, this study utilizes photoluminescence (PL) quenching and time-resolved
photoluminescence (TR-PL) analyses. These methods are instrumental in understanding
carrier transport behavior at the perovskite/ETL interface, especially in terms of how the
TiO2/SnO2 bilayer ETL can enhance carrier transport, minimize carrier recombination due
to interface defects, and thus potentially improve the PSCs’ performance metrics such as
the short-circuit current density (Jsc), fill factor (FF), and overall conversion efficiency.

2. Materials and Methods

Materials: FTO glass substrates were purchased from Ruilong Optoelectronics Technol-
ogy Co., Ltd. (Miaoli, Taiwan). Zinc powder of 100 mesh (purity 97%) was obtained from
Thermo Scientific (Waltham, MA, USA). Tin (II) chloride dihydrate (SnCl2·2H2O, purity
98%) was purchased from Sigma-Aldrich (St. Louis, MO, USA), while Formamidinium
iodide (FAI, purity 98%) and Methylammonium bromide (MABr, purity 99.99%) were
sourced from Greatcell Solar Materials Pty Ltd. (Queanbeyan, Australia). Lead (II) bromide
(PbBr2, purity 99.99%) and Cesium iodide (CsI, purity 99.998%) were acquired from Alfa
Aesar (Haverhill, MA, USA). Spiro-MeOTAD (purity 99%), Lithium bis (trifluoromethane-
sulfonyl) imide (LiTFSI, purity 99.95%), and 4-tert-butylpyridine (tBP, purity 98%) were all
purchased from Sigma-Aldrich. Lead (II) Iodide (PbI2, purity 99.99%) was obtained from
TCI. Other solvents were purchased from Sigma-Aldrich or J.T. Baker (Phillipsburg, NJ,
USA) and were used without further purification.

Device fabrication: The FTO glass (NSG-10) was etched with a zinc powder and HCl
solution (2M) to create the desired electrode pattern. The substrates were then washed
with Triton X100 (1 Vol% in deionized water), deionized water, acetone, and ethanol.
Three different ETLs were then deposited on the FTO glass separately using the following
methods: (1) TiO2 ETL: The FTO glass substrate was soaked in a 70 ◦C 40 mM TiCl4
aqueous solution for 30 min in a water bath, rinsed with deionized water, and repeatedly
deposited three times. Finally, the substrate was annealed at 475 ◦C for 30 min to form
an approximately 15–20 nm-thick TiO2 compact layer. (2) SnO2 ETL: SnCl2·2H2O powder
was dissolved in an ethanol solution (0.05 M) and spin-coated at 4000 rpm for 30 s. The
SnO2 ETL was subsequently formed by annealing at 180 ◦C for 30 min, resulting in an
approximately 25–30 nm-thick SnO2 layer. (3) TiO2/SnO2 bilayer: A layer of SnO2 was
deposited on top of the deposited TiO2 ETL to form a TiO2/SnO2 bilayer ETL structure.
PVSK was then deposited on the ETL as an absorber layer.

For the PVSK configuration, a solution was prepared by mixing formamidine iodide
(FAI, 1.105 M), PbI2 (1.16 M), methyl ammonium bromide (MABr, 0.195 M), and PbBr2
(0.195 M) together and dissolving them in a mixed solvent of DMF:DMSO = 4:1 (volume
ratio). A 5 Vol% CsI solution (1.5 M in DMSO) was then added to make a ternary cation
PVSK solution. The PVSK solution was spin-coated on the above three kinds of ETL
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substrates separately at 1000 rpm for 10 s and 4000 rpm for 30 s. Chlorobenzene (200 µL)
was dropped on the substrate 15 s before the end of the rotation, and then the substrate
was annealed at 100 ◦C for 60 min to form a PVSK absorber layer with a thickness of
approximately 550 nm. The cross-sectional SEM image of the PVSK with the bilayer ETL
on the FTO glass is shown in Figure S1 of Supplementary Materials.

Spiro-OMeTAD was then deposited as an HTL. The spiro-OMeTAD powder was dis-
solved in 1 mL of chlorobenzene (70 mM), and 18 µL of bis(trifluoromethylsulfonyl)imide
lithium salt (Li-TFSI), dissolved in acetonitrile (520 mg/1 mL), and 33µL of 4-tert-butylpyridine
(tBP) solution were added. The spiro-OMeTAD solution was then spin-coated on the PVSK
light-absorbing layer at 4000 rpm for 20 s, resulting in an approximately 400 nm-thick
spiro-OMeTAD HTL. Finally, 80 nm-thick gold was vapor-deposited as the back elec-
trode, completing the PSC device structure consisting of FTO/TiO2/SnO2/PVSK/Spiro-
OMeTAD/Au.

Characterizations and Measurements: In this study, we utilized high-resolution scan-
ning electron microscopy (HRSEM) JEOL JSM-7800F (Tokyo, Japan) to analyze the mor-
phology of ETL films. Atomic force microscopy (AFM) Veeco D3100 (Plainview, NY, USA)
and conductive atomic force microscopy (C-AFM) BRUKER Dimension Icon (Billerica, MA,
USA) were used to examine the topography and carrier transmission characteristics of
the ETL films. Photoluminescence (PL) and time-resolved photoluminescence (TR-PL)
analyses were conducted at the perovskite/ETL interface using a 473 nm pulse laser from
Omicron (Vacaville, CA, USA) and an Andor Kymera 328i spectrometer (Oxford Instru-
ments plc, Oxfordshire, UK). The external quantum efficiency (EQE) was measured using
Enlitech equipment to assess the conversion efficiency of photons into external electrons in
solar cells. Additionally, space charge limited current (SCLC) and dark current measure-
ments were performed to investigate the defect properties of perovskite solar cells (PSCs).
Current–voltage measurements were conducted under 100 mW/cm2 AM 1.5 G illumina-
tion using a Yamashita Denso YSS-100A (Tokyo, Japan) solar simulator and a Keithley
2400 power supply (Solon, OH, USA). All measurements were carried out at a constant
temperature of 25 ◦C in an ambient environment.

3. Results and Discussion
3.1. The Properties of the Different ETLs Subsection
3.1.1. SEM Images of ETLs

The ETLs are important components in the fabrication of PSCs, as they help to trans-
port electrons generated by the PVSK absorber layer to the electrode. In this study, the
TiO2, SnO2, and TiO2/SnO2 bilayer ETLs were deposited on FTO substrates. SEM images
visually compare the surface morphology of TiO2, SnO2, and TiO2/SnO2 bilayer ETLs, as
shown in Figure 1. The small particles present on the surface of TiO2 may be attributed
to the aggregation of TiO2 nanoparticles during the chemical bath deposition process.
Conversely, the smoother surface of SnO2 suggests that the spin-coating process resulted
in a more uniform and homogeneous film during the formation of SnO2. The TiO2/SnO2
bilayer ETL structure combines both TiO2 and SnO2, and the SEM image shows a surface
morphology that falls in between that of TiO2 and SnO2 ETL. A smoother ETL surface
facilitates the transport of charge carriers at the interface of PVSK and ETL.

3.1.2. AFM of ETLs

As shown in Figure 2, atomic force microscopy (AFM) was used to analyze the surface
roughness of the three different ETL films deposited on FTO glass. The AFM images (with
a scan area of 5 × 5 µm2) reveal that the root-mean-square roughness (RMS) values for
the TiO2, SnO2, and TiO2/SnO2 ETLs are 24.4 nm, 21.7 nm, and 22.7 nm, respectively. The
results from the AFM show that the TiO2/SnO2 bilayer can reduce the surface roughness of
TiO2 and decrease the pinholes in the TiO2 and SnO2 ETLs, providing better film coverage
on the electrode. This helps to reduce the leakage current generated at the ETL/electrode
interface in the PSC devices.
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Figure 2. AFM images of (a) TiO2, (b) SnO2, and (c) TiO2/SnO2 bilayer ETLs deposited on
FTO substrates.

3.1.3. C-AFM of ETLs

The study aimed to investigate the current leakage of different ETL materials on FTO
substrates and to determine their impacts on the efficiency of PSCs. C-AFM was used
to analyze the current leakage. Figure 3 shows the C-AFM images of TiO2, SnO2, and
TiO2/SnO2 bilayer ETLs on an FTO substrate. The results show that SnO2 ETL had the
highest leakage current, followed by TiO2 ETL, and the TiO2/SnO2 bilayer ETL had the
lowest leakage current in Figure 3. The significantly lower leakage current of the bilayer
structure (<4.5 pA) indicates that it can effectively reduce the current leakage of the ETL,
resulting in higher FF values and efficiency of the PSCs. The results suggest that the
use of a TiO2/SnO2 bilayer structure can improve the performance of PSCs by reducing
current leakage.

Energies 2024, 17, x FOR PEER REVIEW 5 of 14 
 

 

   
(a) (b) (c) 

Figure 3. C-AFM images of (a) TiO2, (b) SnO2, and (c) TiO2/SnO2 bilayer ETLs on FTO substrates. 

3.2. Carrier Transfer at the Interface of PVSK and ETLs 

3.2.1. PL Quenching at PVSK/ETL Interface 

PL quenching is a phenomenon that occurs when the radiative recombination of pho-

toexcited carriers in a material is suppressed due to non-radiative recombination pro-

cesses. In this study, PL quenching with an excitation wavelength of 473 nm was used to 

investigate the carrier transport behavior between the interfaces of PVSK and ETLs. 

PVSK films were grown on different substrates, including glass, TiO2, SnO2, and a 

TiO2/SnO2 bilayer. The PL intensity of the films was measured. The results showed that 

the PVSK film grown on the glass substrate exhibited the strongest PL intensity as shown 

in Figure 4, indicating that carriers were effectively recombining and radiating in the 

PVSK film. However, when the PVSK was grown on ETLs, the PL intensity successively 

decreased, suggesting that carriers were more easily transported from the PVSK to the 

ETLs. 

Furthermore, the PL quenching was found to be the strongest for the PVSK film 

grown on the TiO2/SnO2 bilayer ETL, suggesting that the carrier transport between PVSK 

and the bilayer ETL was the most efficient. This result is consistent with the lower current 

leakage observed in the C-AFM analysis, indicating that the bilayer ETL can effectively 

reduce the leakage current of the ETL and enhance carrier transport between the PVSK 

and the ETL. 

650 700 750 800 850 900

0.0

5.0x10
3

1.0x10
4

1.5x10
4

2.0x10
4

2.5x10
4

3.0x10
4

3.5x10
4

4.0x10
4

 PVSK on glass

 PVSK on TiO
2

 PVSK on SnO
2

 PVSK on TiO
2
 / SnO

2
 Bilayer

In
te

n
s
it
y
 (

c
o

u
n

ts
)

Wavelength (nm)
 

Figure 4. PL spectra of PVSK/glass, PVSK/TiO2, PVSK/SnO2, and PVSK/bilayer ETL interfaces. 

  

Figure 3. C-AFM images of (a) TiO2, (b) SnO2, and (c) TiO2/SnO2 bilayer ETLs on FTO substrates.
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3.2. Carrier Transfer at the Interface of PVSK and ETLs
3.2.1. PL Quenching at PVSK/ETL Interface

PL quenching is a phenomenon that occurs when the radiative recombination of
photoexcited carriers in a material is suppressed due to non-radiative recombination
processes. In this study, PL quenching with an excitation wavelength of 473 nm was used
to investigate the carrier transport behavior between the interfaces of PVSK and ETLs.

PVSK films were grown on different substrates, including glass, TiO2, SnO2, and
a TiO2/SnO2 bilayer. The PL intensity of the films was measured. The results showed
that the PVSK film grown on the glass substrate exhibited the strongest PL intensity as
shown in Figure 4, indicating that carriers were effectively recombining and radiating in
the PVSK film. However, when the PVSK was grown on ETLs, the PL intensity succes-
sively decreased, suggesting that carriers were more easily transported from the PVSK to
the ETLs.
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Furthermore, the PL quenching was found to be the strongest for the PVSK film grown
on the TiO2/SnO2 bilayer ETL, suggesting that the carrier transport between PVSK and the
bilayer ETL was the most efficient. This result is consistent with the lower current leakage
observed in the C-AFM analysis, indicating that the bilayer ETL can effectively reduce the
leakage current of the ETL and enhance carrier transport between the PVSK and the ETL.

3.2.2. TR-PL at PVSK/ETL Interface

TR-PL spectroscopy was employed to examine the charge carrier recombination be-
havior and dynamics of PVSK films grown on different ETLs. An excitation wavelength
of 473 nm was used, and the photoluminescence (PL) decay time and amplitude were
modeled using a biexponential expression:

f (x) = ∑ Aie
− t

τi + K (1)

where Ai is the decay amplitude, τi is the decay time, and K is a constant used for the
baseline offset. The average PL decay times (τave) were then estimated using the τi and Ai
values obtained from the fitted curve data as follows [25]:

τave =
∑ Aiτ

2
i

∑ Aiτi
(2)
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In this model, the two exponential components are interpreted to represent distinct
physical processes. The first exponential component (τ = 1) corresponds to the non-radiative
capture of free carriers, while the second (τ = 2) relates to the radiative recombination of
perovskite carriers. τave is then calculated using both τ1 and τ2, following Formula (2).

Figure 5 illustrates TR-PL fitting curves and the corresponding calculated lifetimes for
different samples, which include PVSK/glass, PVSK/TiO2, PVSK/SnO2, and PVSK/bilayer.
The respective lifetimes for these samples are as follows: 584.7 ns for PVSK/glass, 179.4 ns
for PVSK/TiO2, 142.6 ns for PVSK/SnO2, and 101.9 ns for PVSK/bilayer. The TR-PL results
demonstrate that the PVSK grown on glass exhibits the longest carrier lifetime. Interestingly,
as different ETLs are added, the carrier lifetime in PVSK significantly decreases. This
reduction can be attributed to the accelerated transfer of carriers from PVSK to ETL, leading
to a decrease in carrier lifetime. The TR-PL data also indicate that the PVSK film on the
TiO2/SnO2 bilayer ETL has the shortest carrier lifetime, suggesting that carrier transport at
the PVSK/bilayer ETL interface is highly efficient. The findings reveal that the TiO2/SnO2
bilayer ETL can effectively promote carrier transport and minimize carrier recombination,
both of which are crucial for enhancing the performance of PSCs.
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3.3. The Impact of PSC Properties on Device Performance
3.3.1. The Dark Current of PSCs

Figure 6 shows the dark current density-applied voltage curves of PSCs grown using
different ETLs under dark conditions. The results indicate that PSCs fabricated with a
TiO2/SnO2 bilayer structure exhibit a significant reduction in dark current under negative
bias, suggesting that the bilayer structure effectively suppresses the leakage current of
PSCs. In fact, the leakage current densities of PSC with the bilayer ETL are one-third lower
than those of the traditional SnO2 and TiO2 single-layer ETL, which is consistent with the
C-AFM results measured for the ETLs in the previous paragraph.

In addition, the Voc of a solar cell can be calculated using the equation Voc = nkT/q ln
(Jsc/Jo), where n is the ideality factor, k is the Boltzmann constant, T is the temperature, q
is the elementary charge, and Jsc and Jo are the photo-generated current density and dark
saturation current density, respectively [26]. Using this equation, it was found that the
bilayer ETLs structure had a lower Jo and higher Jsc, resulting in an increase in the value of
Voc of the device. This result is consistent with the J-V efficiency measurement results and
indicates that incorporating a bilayer ETL structure in PSCs can significantly improve the
Voc of the device.
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3.3.2. The SCLC Behavior in PSCs

To investigate the defect density at the interface between different ETLs and PVSK
absorbers, we utilized the SCLC method for measurement. SCLC is a phenomenon of charge
transport in thin films, and by analyzing the current–voltage curve, relevant parameters
such as charge transport and defect density of solar cells can be obtained. In the current–
voltage curve of PSCs, two regions can be distinguished: the “Ohmic region” and the
“Trap-filled region”; the intersection point of these two regions is called VTFL (trap-filled
limit voltage) [27,28].

Figure 7 shows the VTFL values for three different ETLs (TiO2, SnO2, and TiO2/SnO2)
are 0.60 V, 0.54 V, and 0.39 V, respectively. The results showed that TiO2/SnO2ETL had the
lowest VTFL, indicating the smallest defect density. Finally, the defect density (Ndefect) of
the PSCs made with three different ETLs was calculated using the formula Ndefect = 2 εε0

VTFL/eL2 where ε is the relative dielectric constant, ε0 is the vacuum dielectric constant, e is
the basic charge, and L is the thickness of the film [27]. The calculated results indicate that
the defect densities in PSCs with TiO2, SnO2, and TiO2/SnO2 bilayer ETLs are 5.28 × 1015,
4.75 × 1015, and 3.43 × 1015 cm–3, respectively. The results show that the PSC with
TiO2/SnO2 ETL had the lowest defect density, confirming that the bilayer structure can
effectively reduce the defect density at the interface between the ETL and PVSK and reduce
radiative recombination at the interface. Therefore, reducing the defect density can improve
the Voc, FF, and Jsc of PSCs, thereby increasing the conversion efficiency of the devices.

3.3.3. The Analysis of External Quantum Efficiency (EQE) of PSCs

The external quantum efficiency (EQE) is defined as the number of free electrons
(which are produced by the incident photons) collected from the device to the external
circuit of the device per photon incident on it [29]. Figure 8 shows the EQE of PSCs
fabricated using different ETLs. From the EQE measurement results, it can be observed
that the TiO2/SnO2 bilayer ETL exhibits the highest EQE and photocurrent collection
efficiency. As previously analyzed, the bilayer ETL structure facilitates current collection
and can reduce the defects at the interface between the PVSK and the ETL, thereby in-
creasing the Jsc and the efficiency of the PSCs. The integrated Jsc values obtained from
the EQE of the devices fabricated using TiO2, SnO2, and TiO2/SnO2 ETLs were 19.33,
21.04, and 22.93 mA/cm2, respectively, which are consistent with the Jsc trends simulated
under illumination.
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3.3.4. The J-V Curves Analysis of PSCs

Figure 9 presents the J-V curves and indicates that PSCs with a TiO2/SnO2 bilayer
result in a higher Jsc, Voc, and FF compared to traditional SnO2 or TiO2 single-layer ETLs,
leading to superior PCEs for the solar cells.
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Based on previous PL and TR-PL analysis, it is evident that the TiO2/SnO2 bilayer
ETL structure can effectively promote carrier transport at the interface between PVSK and
the bilayer ETL. This substantially enhances the Jsc of PSCs, thereby resulting in a higher
EQE. Additionally, C-AFM and dark current measurements corroborate the significant role
of the bilayer ETL structure in reducing the leakage current in PSCs. This contributes to the
improvement of both Voc and FF in PSCs.

Furthermore, SCLC results illustrate that PSCs with TiO2/SnO2 ETL possess the
lowest defect density. This finding underscores the benefits of the bilayer structure, which
can effectively reduce the defect density at the interface between the ETL and PVSK and
mitigate radiative recombination at the interface. The decrease in defect density directly
impacts the Jsc, Voc, and FF of PSCs, ultimately boosting the overall efficiency of PSCs.

Based on the J-V curve measurement results, the Voc of PSCs increased from 1.07 V (TiO2
ETL) and 1.04 V (SnO2 ETL) to 1.12 V (bilayer ETL). The Jsc escalated from 19.88 mA/cm2

(TiO2 ETL) and 21.69 mA/cm2 (SnO2 ETL) to 23.49 mA/cm2 (bilayer ETL). The FF rose
from 63.85% (TiO2 ETL) and 72.52% (SnO2 ETL) to 77.90% (bilayer ETL). The PCE of the
solar cell, with an active area of 0.45 cm2, improved from 13.58% (TiO2 ETL) and 16.36%
(SnO2 ETL) to 20.49% (bilayer ETL).

In conclusion, the bilayer ETL structure plays a pivotal role in enhancing the Jsc, Voc,
and FF of PSC components, thereby bolstering the conversion efficiency of the devices.

3.3.5. The Statistical Distribution of PSCs

To study reproducibility, we evaluated 16 independent PSCs fabricated using three
different ETLs. Figure 10a–d show the histograms of the statistical distribution for PSCs
based on different ETLs. Notably, compared to traditional single-layer ETLs, the PSCs
based on the TiO2/SnO2 bilayer ETL exhibit higher average Jsc, Voc, FF, and efficiency
values of 23.08 ± 0.5 mA cm2, 1.12 ± 0.01 V, 0.77 ± 0.02, and 19.8 ± 0.6%, respectively.
These results demonstrate that the TiO2/SnO2 bilayer ETL has significant advantages in
improving the Jsc, Voc, FF, and power conversion efficiency of PSCs.
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3.3.6. The Defect Compensation Mechanism of the TiO2/SnO2 Bilayer ETL

According to the analysis above, when TiO2 is used as the ETL, many defects are
generated within the film, which leads to carrier recombination and leakage current in the
PSC, thereby affecting the efficiency of the device. When SnO2 is used as the ETL, its energy
gap matching with the PVSK absorption is not ideal and it cannot perfectly cover the FTO
electrode, which affects the Voc of the device and leads to localized short-circuit phenomena,
further affecting the current collection and efficiency of the PSC. However, when using a
TiO2/SnO2 bilayer structure, SnO2 effectively reduces the surface defects of TiO2, as shown
in Figure 11, and can better adjust the energy gap matching with the PVSK absorption,
which helps to improve the carrier collection efficiency and further increase the Jsc and
FF of the PSC, thereby significantly improving the efficiency of the device. In addition,
the TiO2/SnO2 bilayer structure also improves the photocatalytic phenomenon between
TiO2 and the PVSK interface under UV light irradiation, thus improving the stability and
durability of the PSC [23].
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4. Conclusions

This study investigated the properties of different ETLs in PSCs and their impacts
on device performances. The TiO2, SnO2, and TiO2/SnO2 bilayer ETLs were compared
by analyzing their surface morphology, current leakage, and carrier transport behavior.
The results showed that the TiO2/SnO2 bilayer ETL owned the lowest current leakage and
the most efficient carrier transport between PVSK and ETL, leading to the higher FF and
efficiency of the PSCs.

This study also used PL and TR-PL analyses to investigate the carrier recombination
properties of PVSK films grown on different ETLs. The results showed that the TiO2/SnO2
bilayer ETL can effectively suppress carrier recombination and improve carrier transport,
leading to higher PCE and FF values of PSCs.

In addition, the dark current of the PSCs was analyzed, which showed that the PSCs
with the TiO2/SnO2 bilayer ETL had the lowest dark current, indicating better charge
carrier extraction and lower recombination losses. Overall, the study demonstrated that
the use of a TiO2/SnO2 bilayer ETL can significantly improve the performance of PSCs by
reducing current leakage, improving carrier transport, and suppressing carrier recombina-
tion. The conversion efficiency of PSCs can be enhanced from 13.58% (TiO2 ETL) to 20.49%
(bilayer ETL).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/en17040871/s1, Figure S1: The cross-sectional SEM image
of PVSK with bilayer ETL on FTO glass.
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