Assessing the Impacts of Technological Innovation on Carbon Emissions in MENA Countries: Application of the Innovation Curve Theory
Abstract
:1. Introduction
2. Literature Review
2.1. Economic and Environmental Factors
2.2. Technological Innovation
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuznets, S. Economic Growth and Income Inequality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Schumpeter, J.A. Capitalism, Socialism and Democracy; Routledge: London, UK, 1943. [Google Scholar]
- Zhou, H.; Sandner, P.G.; Martinelli, S.L.; Block, J.H. Patents, trademarks, and their complementarity in venture capital funding. Technovation 2016, 47, 14–22. [Google Scholar] [CrossRef]
- Raiser, K.; Naims, H.; Bruhn, T. Corporatization of the climate? Innovation, intellectual property rights, and patents for climate change mitigation. Energy Res. Soc. Sci. 2017, 27, 1–8. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- World Bank Group. World Development Report 2016: Digital Dividends; World Bank Publications: Washington, DC, USA, 2016. [Google Scholar]
- Chien, F.; Ajaz, T.; Andlib, Z.; Chau, K.Y.; Ahmad, P.; Sharif, A. The role of technology innovation, renewable energy and globalization in reducing environmental degradation in Pakistan: A step towards sustainable environment. Renew. Energy 2021, 177, 308–317. [Google Scholar] [CrossRef]
- Nakhle, C. Nuclear Energy’s Future in the Middle East and North Africa. 2016. Available online: https://carnegie-mec.org/2016/01/28/nuclear-energy-s-future-in-middle-east-and-north-africa-pub-62562 (accessed on 4 December 2023).
- BP Energy Outlook 2030; BP: London, UK, 2013; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2013.pdf (accessed on 11 December 2023).
- Dauda, L.; Long, X.; Mensah, C.N.; Salman, M. The effects of economic growth and innovation on CO2 emissions in different regions. Environ. Sci. Pollut. Res. 2019, 26, 15028–15038. [Google Scholar] [CrossRef] [PubMed]
- Bilal, A.; Li, X.; Zhu, N.; Sharma, R.; Jahanger, A. Green technology innovation, globalization, and CO2 emissions: Recent insights from the OBOR economies. Sustainability 2021, 14, 236. [Google Scholar] [CrossRef]
- Albaker, A.; Abbasi, K.R.; Haddad, A.M.; Radulescu, M.; Manescu, C.; Bondac, G.T. Analyzing the impact of renewable energy and Green Innovation on carbon emissions in the MENA region. Energies 2023, 16, 6053. [Google Scholar] [CrossRef]
- Vo, D.H.; Vo, A.T. Renewable energy and population growth for sustainable development in the Southeast Asian countries. Energy Sustain. Soc. 2021, 11, 30. [Google Scholar] [CrossRef]
- Tzeremes, P. Time-varying causality between energy consumption, CO2 emissions, and economic growth: Evidence from US states. Environ. Sci. Pollut. Res. 2018, 25, 6044–6060. [Google Scholar] [CrossRef]
- Nathaniel, S.P.; Adeleye, N.; Adedoyin, F.F. Natural resource abundance, renewable energy, and ecological footprint linkage in MENA countries. Estud. Econ. Apl. 2021, 39, 1–30. [Google Scholar] [CrossRef]
- Kahia, M.; Omri, A.; Jarraya, B. Green energy, economic growth and environmental quality nexus in Saudi Arabia. Sustainability 2021, 13, 1264. [Google Scholar] [CrossRef]
- Gorus, M.S.; Aydin, M. The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain. Energy 2019, 168, 815–822. [Google Scholar] [CrossRef]
- Alharthi, M.; Dogan, E.; Taskin, D. Analysis of CO2 emissions and energy consumption by sources in MENA countries: Evidence from quantile regressions. Environ. Sci. Pollut. Res. 2021, 28, 38901–38908. [Google Scholar] [CrossRef]
- Kahia, M.; Ben Jebli, M.; Belloumi, M. Analysis of the impact of renewable energy consumption and economic growth on carbon dioxide emissions in 12 MENA countries. Clean Technol. Environ. Policy 2019, 21, 871–885. [Google Scholar] [CrossRef]
- Ekwueme, D.C.; Zoaka, J.D. Effusions of carbon dioxide in MENA countries: Inference of financial development, trade receptivity, and energy utilization. Environ. Sci. Pollut. Res. 2020, 27, 12449–12460. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Fereidouni, H.G.; Lee, J.Y.; Sab, C.N.B.C. Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries. Renew. Sustain. Energy Rev. 2013, 23, 107–112. [Google Scholar] [CrossRef]
- Kahia, M.; Kadria, M.; Aissa, M.S.B.; Lanouar, C. Modelling the treatment effect of renewable energy policies on economic growth: Evaluation from MENA countries. J. Clean. Prod. 2017, 149, 845–855. [Google Scholar] [CrossRef]
- Ibrahim, M.D.; Alola, A.A. Integrated analysis of energy-economic development-environmental sustainability nexus: Case study of MENA countries. Sci. Total Environ. 2020, 737, 139768. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Schmalensee, R.; Stoker, T.M.; Judson, R.A. World carbon dioxide emissions: 1950–2050. Rev. Econ. Stat. 1998, 80, 15–27. [Google Scholar] [CrossRef]
- Taylor, M.S.; Copeland, B.R. International Trade and the Environment: A Framework for Analysis; National Bureau of Economic Research: Cambridge, MA, USA, 2014. [Google Scholar]
- Ansari, M.A.; Haider, S.; Khan, N. Does trade openness affects global carbon dioxide emissions: Evidence from the top CO2 emitters. Manag. Environ. Qual. Int. J. 2020, 31, 32–53. [Google Scholar] [CrossRef]
- Shahbaz, M.; Lean, H.H.; Shabbir, M.S. Environmental Kuznets curve hypothesis in Pakistan: Cointegration and Granger causality. Renew. Sustain. Energy Rev. 2012, 16, 2947–2953. [Google Scholar] [CrossRef]
- Hettige, H.; Lucas, R.E.; Wheeler, D. The toxic intensity of industrial production: Global patterns, trends, and trade policy. Am. Econ. Rev. 1992, 82, 478–481. [Google Scholar]
- Holdren, J.P.; Ehrlich, P.R. Human Population and the Global Environment: Population growth, rising per capita material consumption, and disruptive technologies have made civilization a global ecological force. Am. Sci. 1974, 62, 282–292. [Google Scholar]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef]
- Namahoro, J.P.; Wu, Q.; Xiao, H.; Zhou, N. The impact of renewable energy, economic and population growth on CO2 emissions in the East African region: Evidence from common correlated effect means group and asymmetric analysis. Energies 2021, 14, 312. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ozturk, I.; Ulucak, R. Sustainable development and pollution: The effects of CO2 emission on population growth, food production, economic development, and energy consumption in Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 17319–17330. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Zhang, Y.; Yin, J. Energy technology patents–CO2 emissions nexus: An empirical analysis from China. Energy Policy 2012, 42, 248–260. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Lu, N.; Wang, D.; Jiang, H.; Zhang, C. Does increasing carbon emissions lead to accelerated eco-innovation? Empirical evidence from China. J. Clean. Prod. 2020, 251, 119690. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Adedoyin, F.F.; Kirikkaleli, D. Toward a sustainable environment: Nexus between consumption-based carbon emissions, economic growth, renewable energy and technological innovation in Brazil. Environ. Sci. Pollut. Res. 2021, 28, 52272–52282. [Google Scholar] [CrossRef]
- Destek, M.A.; Manga, M. Technological innovation, financialization, and ecological footprint: Evidence from BEM economies. Environ. Sci. Pollut. Res. 2021, 28, 21991–22001. [Google Scholar] [CrossRef]
- Kihombo, S.; Ahmed, Z.; Chen, S.; Adebayo, T.S.; Kirikkaleli, D. Linking financial development, economic growth, and ecological footprint: What is the role of technological innovation? Environ. Sci. Pollut. Res. 2021, 28, 61235–61245. [Google Scholar] [CrossRef] [PubMed]
- Fethi, S.; Rahuma, A. The role of eco-innovation on CO2 emission reduction in an extended version of the environmental Kuznets curve: Evidence from the top 20 refined oil exporting countries. Environ. Sci. Pollut. Res. 2019, 26, 30145–30153. [Google Scholar] [CrossRef] [PubMed]
- Mensah, C.N.; Long, X.; Boamah, K.B.; Bediako, I.A.; Dauda, L.; Salman, M. The effect of innovation on CO2 emissions of OCED countries from 1990 to 2014. Environ. Sci. Pollut. Res. 2018, 25, 29678–29698. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.Z.; Li, Y.; Larik, A.R.; Monaheng, M.P. The effects of FDI, technological innovation, and financial development on CO2 emissions: Evidence from the BRICS countries. Environ. Sci. Pollut. Res. 2020, 27, 23899–23913. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; You, S.; Agyekum, E.B.; Matasane, C.; Uhunamure, S.E. Exploring the Impacts of Renewable Energy, Environmental Regulations, and Democracy on Ecological Footprints in the Next Eleven Nations. Sustainability 2022, 14, 11909. [Google Scholar] [CrossRef]
- Suki, N.M.; Suki, N.M.; Sharif, A.; Afshan, S.; Jermsittiparsert, K. The role of technology innovation and renewable energy in reducing environmental degradation in Malaysia: A step towards sustainable environment. Renew. Energy 2022, 182, 245–253. [Google Scholar] [CrossRef]
- Khan, I.; Han, L.; BiBi, R.; Khan, H. The role of technological innovations and renewable energy consumption in reducing environmental degradation: Evidence from the belt and road initiative countries. Environ. Sci. Pollut. Res. 2022, 29, 73085–73099. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kirikkaleli, D. Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: Application of wavelet tools. Environ. Dev. Sustain. 2021, 23, 16057–16082. [Google Scholar] [CrossRef]
- Weina, D.; Gilli, M.; Mazzanti, M.; Nicolli, F. Green inventions and greenhouse gas emission dynamics: A close examination of provincial Italian data. Environ. Econ. Policy Stud. 2016, 18, 247–263. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis; Pearson Education India: Haldwani, India, 2003. [Google Scholar]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels. 2004. Available online: https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID572504_code170891.pdf?abstractid=572504&mirid=1&type=2 (accessed on 11 December 2023).
- Pesaran, M.H.; Ullah, A.; Yamagata, T. A bias-adjusted LM test of error cross-section independence. Econom. J. 2008, 11, 105–127. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Dougherty, C. Introduction to Econometrics; Oxford University Press: Oxford, MS, USA, 2011. [Google Scholar]
- Baltagi, B.H.; Baltagi, B.H. Econometric Analysis of Panel Data; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4. [Google Scholar]
- Hausman, J.A. Specification tests in econometrics. Econom. J. Econom. Soc. 1978, 46, 1251–1271. [Google Scholar] [CrossRef]
- Herwartz, H. Testing for random effects in panel models with spatially correlated disturbances. Stat. Neerl. 2007, 61, 466–487. [Google Scholar] [CrossRef]
- Gierałtowska, U.; Asyngier, R.; Nakonieczny, J.; Salahodjaev, R. Renewable energy, urbanization, and CO2 emissions: A global test. Energies 2022, 15, 3390. [Google Scholar] [CrossRef]
- Niu, J. The impact of technological innovation on carbon emissions. E3S Web Conf. 2021, 275, 02039. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, C.-C. Does technological innovation reduce CO2 emissions? Cross-country evidence. J. Clean. Prod. 2020, 263, 121550. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- de Souza Mendonça, A.K.; Barni, G.d.A.C.; Moro, M.F.; Bornia, A.C.; Kupek, E.; Fernandes, L. Hierarchical modeling of the 50 largest economies to verify the impact of GDP, population and renewable energy generation in CO2 emissions. Sustain. Prod. Consum. 2020, 22, 58–67. [Google Scholar] [CrossRef]
- Namahoro, J.; Wu, Q.; Zhou, N.; Xue, S. Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels. Renew. Sustain. Energy Rev. 2021, 147, 111233. [Google Scholar] [CrossRef]
- Islami, F.S.; Prasetyanto, K.; Kurniasari, F. The effect of population, GDP, non-renewable energy consumption and renewable energy consumption on carbon dioxide emissions in G-20 member countries. Int. J. Energy Econ. Policy 2022, 12, 103–110. [Google Scholar] [CrossRef]
- Mirza, F.M.; Sinha, A.; Khan, J.R.; Kalugina, O.A.; Zafar, M.W. Impact of energy efficiency on CO2 Emissions: Empirical evidence from developing countries. Gondwana Res. 2022, 106, 64–77. [Google Scholar] [CrossRef]
- Dong, K.; Hochman, G.; Zhang, Y.; Sun, R.; Li, H.; Liao, H. CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Econ. 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Rahman, M.M.; Saidi, K.; Mbarek, M.B. Economic growth in South Asia: The role of CO2 emissions, population density and trade openness. Heliyon 2020, 6, e03903. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, L.-C.; Wu, G.; Wei, Y.-M. Analyzing impact factors of CO2 emissions using the STIRPAT model. Environ. Impact Assess. Rev. 2006, 26, 377–395. [Google Scholar] [CrossRef]
- Coiante, D.; Barra, L. Renewable energy capability to save carbon emissions. Sol. Energy 1996, 57, 485–491. [Google Scholar] [CrossRef]
- Paramati, S.R.; Sinha, A.; Dogan, E. The significance of renewable energy use for economic output and environmental protection: Evidence from the Next 11 developing economies. Environ. Sci. Pollut. Res. 2017, 24, 13546–13560. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Lei, J.; Chen, C.; Song, X.; Zhong, Y. Contribution of renewable energy consumption to CO2 emission mitigation: A comparative analysis from a global geographic perspective. Sustainability 2021, 13, 3853. [Google Scholar] [CrossRef]
- Managi, S.; Hibiki, A.; Tsurumi, T. Does trade openness improve environmental quality? J. Environ. Econ. Manag. 2009, 58, 346–363. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F. The effects of trade openness on decoupling carbon emissions from economic growth–evidence from 182 countries. J. Clean. Prod. 2021, 279, 123838. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Gapay, J.A. Factors Affecting Carbon Dioxide Emissions Embodied in Trade. Asian Development Bank Economics Working Paper Series. 2023. Available online: https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID4618106_code1478488.pdf?abstractid=4618106&mirid=1&type=2 (accessed on 11 December 2023).
- Akin, C.S. The impact of foreign trade, energy consumption and income on CO2 emissions. Int. J. Energy Econ. Policy 2014, 4, 465–475. [Google Scholar]
- Munksgaard, J.; Pade, L.-L.; Minx, J.; Lenzen, M. Influence of trade on national CO2 emissions. Int. J. Glob. Energy Issues 2005, 23, 324–336. [Google Scholar] [CrossRef]
- Kim, D.-H.; Suen, Y.-B.; Lin, S.-C. Carbon dioxide emissions and trade: Evidence from disaggregate trade data. Energy Econ. 2019, 78, 13–28. [Google Scholar] [CrossRef]
- Oyebanji, M.O.; Castanho, R.A.; Genc, S.Y.; Kirikkaleli, D. Patents on Environmental Technologies and Environmental Sustainability in Spain. Sustainability 2022, 14, 6670. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Sofuoğlu, E.; Ojekemi, O. Does Patents on Environmental Technologies Matter for the Ecological Footprint in the USA? Evidence from the Novel Fourier Ardl Approach. Geosci. Front. 2023, 14, 101564. [Google Scholar] [CrossRef]
Variables | Description | Symbols | Data Source |
---|---|---|---|
CO2 emission | intensity (kg per kg of oil equivalent energy use) | CO2 | World Bank Indicators |
Gross domestic product | Gross domestic product per capita (constant 2015 USD) | GDP | World Bank Indicators |
Renewable energy consumption | Renewable energy consumption % of total final energy consumption | REC | World Bank Indicators |
Patent application by resident | A measure of innovation technology | PAT | World Bank Indicators |
Trade | Trade as % of GDP | TRADE | World Bank Indicators |
Population | Total population | POP | World Bank Indicators |
Variable | Observation | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
CO2 | 180 | 184,545.2 | 175,437.8 | 14,671.90 | 637,433.7 |
GDP | 180 | 5871.828 | 5875.806 | 1521.217 | 20,627.92 |
PAT | 180 | 1190.428 | 3241.189 | 6 | 15,403 |
REC | 180 | 5.118605 | 6.844913 | 0.009032 | 23.000 |
TRADE | 180 | 62.88441 | 18.60216 | 29.22822 | 114.3437 |
POP | 180 | 41,528,348 | 26,095,556 | 8,440,023 | 106,000 |
(p-Value) Variables | CO2 | GDP | REC | PAT | PAT2 | Trade | POP |
---|---|---|---|---|---|---|---|
Breusch-Pagan LM | 426.86 | 341.29 | 111.38 | 300.62 | 239.93 | 124.29 | 446.48 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |
Pesaran scaled LM | 75.19 | 59.57 | 17.59 | 52.14 | 41.06 | 19.95 | 78.77 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |
Bias-corrected scaled LM | 75.09 | 59.47 | 17.49 | 52.04 | 40.96 | 19.85 | 78.67 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |
Pesaran CD | 20.65 | 18.15 | 6.713 | 17.25 | 15.19 | 10.25 | 21.13 |
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) |
Variables | Level | First Different | Critical Value |
---|---|---|---|
CO2 | −2.52 | −4.48 * | −3.1 |
GDP | −1.281 | −4.138 * | −3.1 |
PAT | −1.859 | −5.772 * | −3.1 |
PAT2 | −1.442 | −5.459 * | −3.1 |
REC | −3.267 * | _ | −3.1 |
Trade | −1.49 | −5.40 * | −3.1 |
POP | −3.85 * | _ | −3.1 |
Variables | POL Model | FE Model | RE Model | |||
---|---|---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
Constant | 1276.7 | 0.9678 | 63461.0 | 0.1768 | 1276.7 | 0.96W |
GDP | 17.24 | 0 | 16.801 | 0 | 17.23 | 0 |
PAT | 73.28 | 0 | 73.487 | 0 | 73.28 | 0 |
PAT2 | −0.0033 | 0 | −0.003 | 0 | −0.003 | 0 |
Rec | −1533.0 | 0.1165 | −1835.0 | 0.0819 | −1533.0 | 0.14 |
Trade | −443.29 | 0.1851 | −1045.2 | 0.037 | −443.29 | 0.21 |
POP | 0.0016 | 0 | 0.001 | 0.0029 | 0.0016 | 0 |
Model fit | N = 180 | R2 = 0.90 | N = 180 | R2 = 0.90 | N = 180 | R2 = 0.90 |
Husman test | 6.87 | 0 | ||||
Breusch-Pagan | 138.70 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnafisah, N.; Alsmari, E.; Alshehri, A.; Binsuwadan, J. Assessing the Impacts of Technological Innovation on Carbon Emissions in MENA Countries: Application of the Innovation Curve Theory. Energies 2024, 17, 904. https://doi.org/10.3390/en17040904
Alnafisah N, Alsmari E, Alshehri A, Binsuwadan J. Assessing the Impacts of Technological Innovation on Carbon Emissions in MENA Countries: Application of the Innovation Curve Theory. Energies. 2024; 17(4):904. https://doi.org/10.3390/en17040904
Chicago/Turabian StyleAlnafisah, Nouf, Eman Alsmari, Amal Alshehri, and Jawaher Binsuwadan. 2024. "Assessing the Impacts of Technological Innovation on Carbon Emissions in MENA Countries: Application of the Innovation Curve Theory" Energies 17, no. 4: 904. https://doi.org/10.3390/en17040904
APA StyleAlnafisah, N., Alsmari, E., Alshehri, A., & Binsuwadan, J. (2024). Assessing the Impacts of Technological Innovation on Carbon Emissions in MENA Countries: Application of the Innovation Curve Theory. Energies, 17(4), 904. https://doi.org/10.3390/en17040904