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Abstract: Intelligent water usage is required in order to target the challenging goals for 2030 and 2050.
Hydroelectric power plants represent processes wherein water is exploited as a renewable resource
and a source for energy production. Hydroelectric power plants usually include reservoirs, valves,
gates, and energy production devices, e.g., turbines. In this context, monitoring and maintenance
policies together with control and optimization strategies, at the different levels of the automation
hierarchy, may represent strategic tools and drivers for energy efficiency improvement. Nowadays,
these strategies rely on different basic concepts and elements, which must be assessed and investigated
in order to provide a reliable background. This paper focuses on a review of the state of the art
associated with these basic concepts and elements, i.e., digitalization, Industry 4.0, data, KPIs,
modelization, and forecast.
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1. Introduction

The efficiency of large production facilities, in terms of energy and more generally in
terms of the use of the resources exploited, is of primary importance in a world that aims
to respect nature and that desires to limit air pollution and the waste of environmental
resources. Increasing alarm over current climate change and the future of the planet
is leading to a shift away from nonrenewable resources (e.g., fossil fuels). Renewable
energy source (RES) exploitation is encouraged, and this encouragement contributes to
decarbonization. Projects on energy sustainability are shifting political–economic focus
from fossil fuel consumption to the use of alternative and less polluting energies, such as
wind, hydropower or solar energy [1–3].

Water represents a key RES, and its rational usage represents a crucial milestone
when targeting the challenging goals for 2030 and 2050 [4,5]. Water resource systems
require advanced and innovative solutions to guarantee the needed performance required
to focus on, assess and approach these objectives. Water is exploited in many sectors,
e.g., water distribution networks (WDNs) [6,7] and renewable energy production. Among
the various types of renewable energy that exploit water, hydroelectricity is certainly of
fundamental importance. Hydropower is a type of renewable energy generation based
on the production of electricity via exploitation of the movement of large masses of water.
Electricity is generated thanks to the action and to the force of these masses, moved by
gravity within penstocks. In fact, moving or falling water generates kinetic energy and this
kinetic energy is converted into electricity by plants equipped with turbines, generators
and transformers. It is indeed essential to make full use of available resources, e.g., water
from river courses, in order to avoid waste and maximize plants’ efficiency [8].

Hydroelectric power plants are experiencing strong growth in global energy produc-
tion, partly due to the exploitation of innovative technologies that have a focus on electricity
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production monitoring and the proper use of water resources [9,10]. Hydropower plants
can take the form of a reservoir (water is managed through one or more reservoirs) or
run-of-river (placed directly on the course of rivers). Within reservoir hydropower plants, a
particular subcategory is that represented by pumped storage stations. In this type of plant,
reservoirs are located at significantly different vertical levels and water is brought back to
the upper reservoirs through pumps. The output of a plant, on the other hand, depends
basically on two factors, i.e., flow rate and head. The mass of water flowing through a point
in the unit of time is named as flow rate and the head is the difference in height that exists
between the elevation at which the water resource is available and the level at which it is
returned, after passing through the turbine. Hydroelectric power plants are characterized
by electrical, hydraulic and mechanical coupling effects and their management can also
involve market conditions and incentives [11–13]. Different components can be included
in hydroelectric power plants, including rivers, intakes, regulation gates, water collection
reservoirs, sand traps, turbines, floodgates, and dams. Figure 1 depicts some typical ele-
ments of a hydroelectric power plant. Figure 2 depicts a general scheme of a hydroelectric
power plant.
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In the last decades, equipment in hydropower plants has been enhanced in order
to target high levels of availability, performance, and flexibility, and these results have
been contributing to the energy transition. The efficiency of hydroelectric power plants
has been improved thanks to the key role of Industry 4.0 and digitalization in monitoring,
maintenance, control, and optimization applications [14–18]. Tailored cross-fertilization
procedures can be applied in order to exploit the available knowledge on these topics in
other fields, thus customizing them for the hydropower sector. Monitoring, maintenance,
control and optimization systems are included in Figure 1, together with some typical
information exchanged with the hydroelectric power plant.

The design, manufacture and installation of hydropower plants require a large initial
investment. Moreover, in many cases, the revenue that can be obtained depends on the
weather; periods of water scarcity, resulting in low inflows from rivers, could limit the
production of this type of plant. In this sense, and similar to other types of renewable
energy production, effective production is not always guaranteed for hydropower and,
as a consequence, management of the plants is not a trivial task [19]. Energy efficiency
is a crucial need in the management of hydropower plants. Energy efficiency can be
associated with the single components of the plants and/or subparts of the plants; tailored
key performance indicators (KPIs) must be defined and exploited for efficiency certification.
In order to optimize the plants’ management with regard to different aspects, tailored
monitoring, maintenance, control, and optimization procedures must be applied.

Different review papers are present in the current literature of hydroelectric power
plants. Some of the proposed topics are:

• Assessment of innovative technological aspects for hydropower plants, focusing on
research and development (R&D) [9];

• Climate change mitigation and adaptation for the hydropower sector [20,21];
• Energy revolution for the hydropower sector [22];
• Analysis of the greenhouse gas (GHG) emissions in the hydropower sector [23];
• Operation strategies for hydropower plants [24–29];
• Methods for the solution of scheduling problems in hydroelectric power plants [30–35];
• Modelization and control in hydroelectric power plants [26,27,36–38];
• Hydropower case study collection [39].

Table 1 reports the topic and the main findings of the previously mentioned review
papers.

Table 1. Main features of some review papers for the hydropower sector.

Topic Main Findings Ref.

Analysis of emerging technologies in
the hydropower sector.

Review of R&D aspects in the hydroelectric power sector, including
digitalization and operation. [9]

Climate change mitigation
and adaptation.

Significant role of hydropower technology in the mitigation of climate
change and its crucial role in the adaptation of the availability of water

resources to climate change.
[20]

Climate change mitigation
and adaptation.

Assessment of the relationship between climate change and the
hydropower sector.

Identification of methods for improvement on the analysis of the net
pros of hydropower technology subject to climate change.

[21]

Energy revolution. Revealing the as-yet untapped potential of the hydropower sector in
most areas of Europe and of its contribution to future energy needs. [22]
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Table 1. Cont.

Topic Main Findings Ref.

GHG emissions.

Discussion on GHG emissions from hydroelectric reservoirs, mitigation
techniques, methodological know-how, and relationship between the

parameters affecting GHG emissions.
Review of crucial approaches and methods for the prediction of GHG

emissions associated with reservoirs, investigating also life cycle
assessment, uncertainty sources, and knowledge gaps.

[23]

Operation strategies.
Review of the optimization of operation in hydropower plants with a
focus on minimizing the costs, minimizing the environmental impact,

and maximizing energy generation.
[24]

Operation strategies.

Evaluation of revenue maximization focused on head impact and
price values.

Comparison between mean yearly energy generation and mean
yearly revenue.

Identification of benefits provided exploiting various operation
methodologies.

[25]

Operation strategies, modelization
and control.

Investigation of applications, control, operation, modeling and
environmental impacts of hydroelectric power with a focus on

power systems.
[26]

Operation strategies, modelization
and control.

Focus on the priorities of the European Union (EU) with regard to
applications, case studies, challenges, limitations, benefits, technology
readiness level (TRL), and transversal pros associated with predictive

operation and maintenance (O&M) and energy generation

[27]

Operation strategies. Review of impact and role of distributed flexible AC transmission
system (D-FACTS) devices in the function of microgrids. [28]

Operation strategies. Review of retrofit and upgrade of hydro power plants through the
analysis of research papers, reports, guidelines and standards. [29]

Scheduling problem. Survey on optimal scheduling generation methodologies with a focus
on meta-heuristic optimization methods. [30]

Scheduling problem. Review of machine learning (ML) for short-term hydropower
scheduling, considering the cyber–physical systems (CPSs) paradigm. [31]

Scheduling problem.

Review of mathematical programming methods for the solution of the
short-term scheduling problem on single hydropower units.

Classification of different techniques for the modelling of constraints
and objectives.

[32]

Scheduling problem.
Review of the hydropower scheduling problem with focus on ML and

artificial intelligence (AI) applications for optimization, prediction,
and scheduling.

[33]

Scheduling problem.
Review of ML techniques for hydropower operation optimization, with

a focus on optimal dispatch of hydropower plants in the context of
energy production enhancement.

[34]

Scheduling problem. Review of hydropower optimization R&D activities using a
metaheuristic approach, also considering scheduling problems. [35]

Modelization and control. Review of modelling and control systems development of the
hydro turbine. [36]

Modelization and control. Review of models, stability analysis and control methods for hydro
turbine governing systems. [37]

Modelization and control. Review of data-driven methods for modeling plant operations. [38]

Hydropower case study collection.
Discussion of significant case studies on hydropower installations of

different companies, highlighting decarbonization and ecosystem
protection aspects.

[39]
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The present paper aims to supply a comprehensive review of the existing literature
on the basic concepts and elements needed for the design of monitoring, maintenance,
control and optimization strategies with a focus on energy production. Some basic concepts
and elements, if in-depth approached, may provide the ingredients for the construction
and implementation of these strategies. Based on the authors’ knowledge and based on
the literature analysis of review papers reported in Table 1, a thorough overview on the
proposed topics is not present on the literature. Figure 3 reports a word cloud containing
the most important words of the paper.
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The organization of the paper is as follows: Section 1.1 details the methodology used
for the conduction of the literature analysis. Section 2 focuses on digitalization and Industry
4.0 for the hydropower sector. Section 3 analyzes data and KPIs while modelization and
forecast are detailed in Section 4. Section 5 reports some discussion while conclusions and
future research directions are reported in Section 6.

1.1. Methodology for the Conduction of the Literature Analysis

For the identification of the documents to be analyzed in the proposed review, different
databases have been explored, i.e., IEEE Xplore, Scopus, Web of Science, Google Scholar,
Springer Link, and MDPI. In addition, Google search has been exploited.

Different search strings were used to identify significant documents. An example of
one of these search strings is “hydropower” AND “word”. “word” was replaced based
on the effective topic to be investigated, e.g., “Industry 4.0”. Starting from the available
documents, a selection based on the impact and on the relevance to the considered topics
was performed. A total of 159 references was considered.

Figure 4 reports the number of reviewed and investigated documents associated
with previous review works in the hydropower sector (see Table 1), based on the year of
publication. The total number of documents is 21. Among the 159 references, 115 documents
on hydropower plants were exploited for the technical core of the paper (Sections 2–4).
Figure 5 reports the number of reviewed and investigated documents on hydropower
plants that were exploited for the technical core of the paper (Sections 2–4), based on the
year of publication. Figure 6 reports the number of reviewed and investigated documents
on hydropower plants that were exploited for the technical core of the paper (Sections 2–4),
based on the topic. Some documents were considered for more than one topic, so these
documents are considered more than once in Figure 6. In addition, all of the references
considered for each topic are summarized in Table 2.
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Table 2. References associated with each topic.

Topic Associated References

Digitalization and Industry 4.0 [9,15,16,27,39–55]

Data [9,31,41,47,53,56–80]

KPIs [6,7,75,81–101]

Modelization [57,75,94–96,102–136]

Forecast [75,94–96,117,127,130–132,137–157]

2. Role of Digitalization and Industry 4.0 in the Hydropower Sector

In this section, the role of digitalization and Industry 4.0 in the hydropower sector is
analyzed. In particular, some research works about these themes are reported, with a focus
on the main topic, on the scope and on the main findings.

The concept of Industry 4.0 was created as part of the fourth industrial revolution.
Industry 4.0 represents the way to digitalization and it is focused on the encapsulation of
the “digital industry” concept in different industrial areas. Applying cross-fertilization
procedures to the sectors that exploit RESs, the Industry 4.0 paradigm can allow conven-
tional plants to evolve into smart plants. In particular, Industry 4.0 technologies, e.g., the
internet of things (IoT), simulation, cloud computing, augmented reality (AR), big data
analytics, CPSs, cybersecurity, blockchain, AI and ML, can contribute to the improvement
of the energy processes [15]. In the hydropower sector, digitalization can allow remote
monitoring that is oriented to diagnostic actions to be executed for sustainable operation.
This digital transformation can be coupled to modernization actions in order to support
energy flexibility [16]. This potential could be effectively verified if the field implementa-
tion of digitalization takes place in the hydropower sector. In this context, a revolution is
occurring because a large number of hydropower plants were designed a long time ago and
their design working conditions consequently differ from current scenarios [9]. Practical
projects can be implemented in order to exploit Industry 4.0 and digitalization to maintain
and monitor hydropower plants. Some examples of applications are condition monitoring,
fault detection, and operations’ optimization aimed at efficiency improvement [39,40].
These projects could lead to the implementation of Industry 4.0 platforms, which can then
contribute to risk reduction and to a sustainable energy supply through the facilitation of
data consultation and analysis [41]. In addition, digital technology platforms may represent
a key tool in the proposal of pioneering business models [42].

Digitalization in the hydropower sector includes digital technologies, e.g., systems,
infrastructures, networks, sensors, and connected devices [43–45]. The digital technologies
aim to improve efficiency and/or to increase the competitiveness of the business models.
Digitalization provides access to new sources of data and communications, while exploiting
decision support systems (DSSs), automation, and control. Digitalization tools, aimed at the
convergence between information technology (IT) and operation technology (OT), can be
exploited for design, construction, investment decisions, O&M, rehabilitation, and modern-
ization. Some fields of interest are safety, sustainability, and commerce [46]. In [47], five key
themes are claimed as drivers of the digital transition of hydropower plants: production
management and optimization, asset analytics, process improvement and automation,
connected workers, and cybersecurity. Digitalization activates an improved reliability
of forecasting associated with internal factors (e.g., reservoir level), external factors (e.g.,
water inflow and weather), and market conditions (e.g., price and demand). Predictions
that are more reliable can play a key role in the automation, control, optimization, and
maintenance fields [48]. Power production, spillage minimization and energy sources
integration represent some of the benefits that could be obtained. In addition, the selection,
acquisition, storage, analysis and visualization of data on O&M of assets represent drivers
for the transition from periodic maintenance to predictive maintenance. Furthermore, IoT
can contribute to process improvement and automation, enabling remote operations which
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can in turn improve safety and reduce costs [49]. In this context, the connected worker
is a fundamental requirement. As a main drawback, data protection can be subjected to
threats and cybersecurity approaches are needed [47]. In [50], digitalization is defined as a
modernization technology for hydropower plants’ upgrade. In particular, a hydropower
gain can be obtained with regard to the provided power and to the optimization of stor-
age. In [51], the digitalization process in hydropower plants is defined as a driver for
asset performance management, equipment condition monitoring, outage management,
supervisory control and data acquisition (SCADA) systems, IoT, AI, and ML. In addition,
the concept of “Hydropower 4.0” is mentioned. All of these features allow one to obtain
an enhanced flexibility of operations in hydropower stations and an enhancement of the
digital tools in order to fully exploit the resources and to provide upgraded digital security
levels [52]. Industry 4.0-enabling technologies, e.g., IoT, ML and big data analytics, can
be successfully combined with tools provided by other areas, e.g., photogrammetry [53].
Connecting and contaminating different research areas, it can be observed that the digital
and the green transitions are interconnected challenges. In this context, digitalization plays
a key role in the path toward these transitions. Environmental and energy benefits can be
obtained through this process in the hydropower sector, e.g., hydropeaking mitigation, and
water management improvement [27]. Tailored methodologies can be used to evaluate
the potential economic benefits provided by digitalization in hydropower generation and
operation. Increase of efficiency, improvement of the reservoir operation and damage
prevention can be taken into account together with the fact that the hydropower sector can
be associated with other sectors in a water–energy–food ecosystem [54]. Optimal trade-offs
between empowering renewable energy and the reduction of the costs in hydropower
plants must be ensured;, hydropower trading and predictive maintenance on hydro plants
are methodologies that can be accelerated by digital transformation [55].

Table 3 reports some research work about digitalization and Industry 4.0 in the hy-
dropower sector, with a focus on the main topic, on the scope and on the main findings.

Table 3. Main features of the selected papers regarding digitalization and Industry 4.0 in the
hydropower sector.

Main Topic Scope Main Findings Ref.

Optimization opportunities in the
digital revolution for renewable

energy sector.

Evaluation of the impact of the
Industry 4.0 paradigm within RESs

energy generation sectors.

Industry 4.0 can enhance the existing
plants and offer some opportunities to

increase efficiency, e.g., sustainable
circular economy aimed at waste

management.

[15]

Digitalization and modernization
of hydropower

operating facilities.

Define the actions for the extension of
the lifetime of a hydropower plant.

Evaluation of the residual life of
generators and retrofit of components

can help in the modernization of
hydropower plants.

Digitalization can allow remote
monitoring oriented to diagnostic

actions to be executed during
sustainable operation.

[16]

Analysis of emerging
technologies in the
hydropower sector.

Collection of information on the
challenges, innovation trends and

emerging hydropower technologies.

There is an emerging need to digitalize
hydropower design and operation. In
this sense, a revolution in hydropower

plants is expected.

[9]

Hydropower case
study collection.

Discussion regarding a number of
representative examples of hydropower
installations from different companies,

highlighting decarbonization and
ecosystem protection aspects.

Digitalization can improve efficiency in
hydropower plants through different

ways, e.g., preventing failures and
optimizing their operation.

[39]
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Table 3. Cont.

Main Topic Scope Main Findings Ref.

Report on an Industry 4.0 and
digitalization research project

applied to maintenance and fault
detection of hydropower plants.

Provision of a set of methods for the
implementation of Industry 4.0 and
digitalization on hydropower plants

Proof of the potential of Industry 4.0
and digitalization methods for the

optimization of maintenance through
condition monitoring and fault

detection.

[40]

Case report on a developed
commercial digital transformation
process for a hydropower plant.

Implementation of a modern platform
based on Industry 4.0 tools in order to
facilitate consultation and analysis of

data for the management of
applications of hydrological,

operational, and market information,
and commercial information systems

and platforms.

The developed activities contribute to
risk reduction and to a sustainable

energy supply.
[41]

Report on the exploitation of
digital technology platforms in an

RES context.

Investigation of the impact of digital
technology platforms on the

implementation of innovative business
models in the RES sector.

Digital technology platforms play a key
role in the development of innovative

business models.
[42]

Report on the digital revolution of
hydropower in Latin American

countries.

Investigation of the digitalization status
in hydropower plants of Latin

American countries.

Assessment of the level of digitalization
in hydropower sector in Latin

American countries through the
detection of barriers and challenges of

incorporating digitalization.

[46]

Report on the opportunity to
transform the future of

hydropower sector through
digital generation.

Investigation of challenges of
digitalization and its risks.

Assessment of the current challenges
toward a digitally enabled and

data-driven operation of
hydropower plants.

Assessment of the risks to be taken into
account and to be mitigated within the

digital transition.

[47]

Report on the technical route,
maturity evaluation and content

planning associated with the
digital transformation of

hydropower plants

Study and analysis of the technical
route, the maturity evaluation and

construction planning of hydropower
digital transformation.

Assessment of the problems
encountered within the digital

transformation process.
Definition of a digital maturity

evaluation model for
hydropower systems.

Assessment of digital transformation
planning, including top-level design,

information and communication
standards, and intelligent application.

[48]

Report on digital technologies for
hydropower plant operation.

Study on the impact of digitalization,
contemporary technologies and

optimization on hydropower
plants operations.

Enhanced flexibility, better safety, larger
energy production and lower costs of
maintenance can be targeted through

the implementation of digital
technologies.

[49]

Report on the energy potential of
modernizing the European

hydropower fleet.

Evaluation of different options for
upgrading existing facilities, excluding
measures that are expected to increase

hydromorphological pressure on
water bodies.

Indicative estimation of the additional
annual generation and power that

could be obtained compared with the
current condition if modernization

techniques are implemented.

[50]
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Table 3. Cont.

Main Topic Scope Main Findings Ref.

Report on state-of-the-art
hydropower technologies.

Provision of an overview of the state of
the art of hydropower technologies and

techniques, in order to set a baseline
reference to identify and prioritize

future R&D actions.

Process analysis and assessment of
recent technologies for hydropower
plants aimed at enhancing flexibility,
improving efficiency and resilience,

and optimizing O&M.
Discussion of current techniques and
technologies by which to mitigate the

environmental impact of
hydropower projects.

[51]

Report on the most recent
advances in hydropower

technology.

Presentation of a set of research
activities for hydropower plants.

Focus on technological projects.
Focus on studies aimed at the

improvement of the simulations of the
hydrological cycle and climate change
associated with hydropower operation.

[52]

Case study for the design of a
small hydropower plant.

Exploitation of IoT, photogrammetry,
ML and big data analytics as support

tools toward the digital transition.

Evaluation and application of the
proposed design method based on data
analysis, cost estimation, and revenues.

[53]

Digitalization and real-time
control of rivers for the mitigation

of environmental impacts.

Discussion on the development of
different technologies for the

hydropower sector.

Focus on the priorities of the EU with
regard to challenges, case studies,
applications, limitations, benefits,

and TRL.

[27]

Digitalization of the European
water sector to nudge the digital

and green transitions.

Investigation of advantages provided
by digital solutions in the hydropower
sector in terms of economic benefits for

operation and generation.

Computation of the benefits for EU
states and for UK (excluding

environmental and social benefits).
[54]

Digital transformation in
renewable energy.

Provision of significant use cases and
experiences with regard to a Nordic

power producer.

The digital transformation can act for
the empowering the value of renewable
energy and to the reduction of the costs.

Examples of significant use cases are
hydropower trading and predictive

maintenance on hydro plants.

[55]

3. Role of Data and KPIs in the Hydropower Sector

In this section, the role of data and KPIs in the hydropower sector is analyzed. In
particular, some research works about these themes are reported, with focuses on the main
topic, on the scope and on the main findings.

Thanks to Industry 4.0 and digitalization, data selection, acquisition, and storage
is acquiring high relevance in the hydropower sector. The overall hydropower fleet can
benefit from data gathering and from data analysis [9]. The development of information
technology in the hydropower sector has resulted in abundant data resources, thus in-
troducing the hydropower big data era [56]. In this context, big data analytics can play
a crucial role at all O&M and business levels through the harnessing of data for proac-
tive decision-making [9]. Cross-fertilization procedures can be applied from industrial
sectors in order to define efficient data analysis methodologies [57]. The collection and
analysis of data associated with the overall equipment of hydropower plants represents a
challenging objective. These steps can provide huge advantages thanks to the information
contained in the data [31]. Consultation and analysis of data through specific platforms
is a real added value for hydropower plants [41]. Decision-making could benefit from
these platforms thanks to the integration of big data collection, storage, and analysis for
monitoring purposes [58]. Data-driven O&M and business management may represent a
nudge for energy efficiency improvement and O&M cost reduction [47]. In order to acquire
a large amount of data, different technologies can be used, e.g., IoT, photogrammetry,
and satellite [53,59,60]. Big data can be exploited for different types of analysis, e.g., the
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investigation of potentially untapped hydropower exploitation based on the exploration
of the energy markets [61]. A strategic combination of cloud computing, big data and
IoT can support an intelligent hydropower enterprise construction process. Efficient and
scalable unified data management and analysis platforms can guarantee intelligent, safe,
efficient and economic operation and can support command and decision-making [62].
In order to exploit all of the needed data for a defined scope, extensive databases may
be needed. In these databases, data associated with the crucial general information and
process variables in terms of plant operation are stored. For example, spatial distribution
and georeferenced data may represent important sources of information for preliminary
analysis [63,64], while rainfall data can support the decisions [65]. On the other hand,
extensive datasets may represent a driver for hydropower system modelling purposes [66].
Data on full operating ranges may represent an added value because they may be able to
cover a large number of working conditions [67]. In this context, data mining can play a
significant role. It would introduce big data characteristics, connotation and origin, allow-
ing in-depth analysis to be performed and providing a basis for the principles of large data
associated with hydropower science [68]. Data mining techniques can be integrated in a
SCADA system in order to speed up the data processing and allow an acceleration of the
decision processes to the decision makers [69]. In fact, decision makers are not usually able
to work with large databases or to extract information in a short time horizon. The extracted
information can be used for different purposes, e.g., scheduling [70]. An issue to be tackled
with big data is the analysis of the data quality. Data quality can be subjected to different
issues, e.g., failures of sensors, actuators and data transmission systems, and defects of data
storage systems. Data reliability is a fundamental requirement when extracting the needed
information from the available data. In this context, data cleaning represents a strategy
by which to detect abnormal conditions within data and to correct them [71]. In order to
fully exploit data potential, data classification and classification management aspects are
important steps. These phases can be based on databases and aim to provide support for
data analysis [72]. In addition, in the exploration of massive data, data island and data
heterogeneity issues can arise, and customized platforms are thus required [73].

The added value provided by data can also be appreciated in terms of the long-term
analysis associated with market and business development for hydropower plants. For
example, a recent contaminated combination between the data of different research areas,
e.g., market and policy, showed an expected slowdown of the growth of the hydropower
sector in the decade 2021–2030 [74].

Data analysis, selection, storage, and acquisition can also assume a crucial role for
the feasibility study of an advanced process control (APC) project in order to perform an
in-depth plant inspection with the help of information related to that plant’s devices [75].
Another field of application of data analysis in hydropower plants can be the evaluation of
silt erosion in order to intelligently plan maintenance scheduling activities. In this context,
clustering and ML can be exploited [76]. Massive data information can also be used for the
development of digital twins aimed at fault diagnosis in hydropower plants [77]. For the
creation of advanced systems like an APC system and digital twins in a hydropower CPS,
networks of connected subsystems are needed. For example, digital twins need to simulate
the real world in cyber space. Real-time connections between physical and digital systems
are required and cybersecurity represents a challenging objective [78]. Cyber-attacks and
cyber threats must be managed through multilevel protection architectures, which must
be characterized by encryption, access control, and secure virtual private networks [79].
Suitable standards, e.g., the IEC 62443 standard, can be exploited for the development of
cyber security systems in hydropower plants with different generation units [80].

Table 4 reports some research works about data in the hydropower sector, with focuses
on the main topic, on the scope and on the main findings.
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Table 4. Main features of the selected papers focused on data for the hydropower sector.

Main Topic Scope Main Findings Ref.

Analysis of emerging
technologies in the hydropower

sector.

Collection of information on the
challenges, innovation trends and

emerging hydropower technologies.

The overall hydropower fleet can benefit
from data gathering and from data
analysis. In this context, big data

analytics can play a crucial role at all
O&M and business levels through

harnessing data for proactive
decision-making.

[9]

Big data assessment for the
hydropower sector.

Exploration for promoting the
exploitation of big data and the

associated resources.

The exploration, analysis and application
of big data will retain an important role
in hydropower facilities, thus providing

new opportunities and challenges.

[56]

Review of ML techniques for
hydropower scheduling.

In-depth assessment of the
state-of-the-art of ML for scheduling

in hydropower plants.

The collection and analysis of data
associated with the overall equipment of

hydropower plants represents a
challenging objective. These steps can

provide huge advantages thanks to the
information contained in the data.

[31]

Report on a developed
commercial digital transformation
process for a hydropower plant.

Implementation of a modern Industry
4.0 platform in order to facilitate

consultation and analysis of data for
the management of applications of

hydrological, operational, and market
information, and commercial

information systems and platforms.

The developed activities contribute to
risks’ reduction and to a sustainable

energy supply.
[41]

Design of university hydropower
intelligent decision service

platform.

Implementation of a big data-driven
platform for decision-making support
based on data collection, storage, and

analysis.

Design of a platform architecture with
explicit references to technologies and

tools.
[58]

Report on the opportunity to
transform the future of

hydropower sector through
digital generation.

Investigation of challenges of
digitalization and its risks.

Assessment of the current challenges
toward a digitally enabled and

data-driven operation of hydropower
plants.

Assessment of the risks to be taken into
account and to be mitigated within the

digital transition.

[47]

Case study for the design of a
small hydropower plant.

Exploitation of IoT, photogrammetry,
ML and big data Analytics as support

tools toward the digital transition.

Evaluation and put into practice of the
proposed design method based on data
analysis, cost estimation, and revenues.

[53]

Assessment of the reliability of
the hydropower sector in Malawi.

Design and validation of an
energy-climate-water system

associating remotely sensed data
from multiple satellite missions and
instruments and field observations.

A framework for modelling exploiting
open-access data from satellites and

based on ML algorithms and regression
analysis can provide data and enhance

vulnerabilities explanation.

[60]

Big data analysis for the
hydropower sector.

Investigation of the hydropower
development potential within

ASEAN-8.

Existence of an untapped potential for
hydropower development. The potential

development must assume an
international power exchange.

[61]

Research on intelligent
construction of hydropower

enterprises.

Provision of a strategic framework
and scheme of intelligent construction

of hydropower enterprises.

Cloud computing, big data and IoT can
reinforce operation, command and

decision-making in hydropower
enterprises.

[62]
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Table 4. Cont.

Main Topic Scope Main Findings Ref.

Spatial distribution and key
parameters of hydropower plants.

Investigation of spatial distribution
and key parameters of bio- and river

hydro powerplants in Germany.

Provision of a dataset that includes the
spatial configuration, capacity, and year

of commissioning of river- and bio
hydropower plants in Germany.

[63]

Enhance the consideration of data
for decision support tools.

Investigation of hydropower plants in
Africa.

Georeferenced database on existing and
proposed plants in Africa. [64]

Quantitative precipitation
estimates.

Investigation of quantitative
precipitation estimates and the

needed checks for ensure good data
quality.

Provision of a dataset that contains
precipitation statistics calculated by
German Weather Service and their
combination with rainfall statistics

through rain gauge data.

[65]

Enhance the consideration of data
for power system modelling

purposes.

Creation of a dataset for European
hydropower plants modelling.

Provision of a dataset that collects some
information on the European

hydro-power plants.
[66]

Digitalization in hydropower
generation.

Development of a model-based Smart
Power Plant Supervisor.

Digital tools can play a crucial role with
regard to the optimization of O&M to

enhance the supply of auxiliary services
to the electric system.

[67]

Big data and data mining in the
hydropower sector.

Investigation of the hydropower big
data science and technology based on

data mining.

Provision of a value analysis application
prospect of hydropower science large

data.
[68]

Enhance operation of hydropower
plants through data mining.

Empowering of a SCADA system
through the inclusion of data mining

algorithms.

Implementation of a SCADA system with
the integration of data mining techniques

to support decision makers.
[69]

Enhance the scheduling
operations in the hydropower
sector through data mining.

Investigation of the application of
data mining and clustering

techniques for scheduling pattern
identification.

Implementation of a rule-based
procedure aimed at daily generation

scheduling enhancement.
[70]

Research on data cleaning method
for hydropower plants.

Investigation of data quality
enhancement through data cleaning
on dispatch and operation datasets.

Design and implementation of a data
cleaning framework. [71]

Big data management for
hydropower enterprises.

Investigation of classification issues
for big data.

Development of a data classification and
classification management framework for

hydropower enterprises big data.
[72]

Massive data value exploitation in
hydropower stations.

Investigation of the construction of a
platform for the development of a

smart hydropower station.

Assessment of the origin, definition, and
development of data middle platform for

smart hydropower station.
Test of the designed system on practical

application scenarios.

[73]

Exploration of the data related to
market for hydropower plants.

Data-driven investigation of past,
present and future of hydropower

sector, with outlook to 2030.

Based on today’s policy settings, the
growth of hydropower globally is set to

slow in the decade 2021–2030.
[74]

Reservoir advanced process
control (APC) for hydroelectric

power production

Design and implementation of an
APC system for water management

in a hydroelectric power plant.

Definition of data-driven methods for
in-depth plant study before the design of

an APC system.
The selection, acquisition, storage,

and analysis of data cover a crucial role
in the plant study, together with an

in-depth analysis of the devices.

[75]

Application of ML for silt data
analysis in hydropower plants.

Exploitation of ML for the reduction
of the risk caused by the silt erosion.

Based on silt data analysis, maintenance
planning of hydropower plants can be

obtained.
[76]
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Table 4. Cont.

Main Topic Scope Main Findings Ref.

Digital twin for hydropower
plants.

Construction and application of a
data-driven model for different

purposes.

The model is investigated with a
hydropower fault diagnosis application. [77]

Digital twins for energy systems
and smart cities.

Review of literature and practices of
digital twin in energy systems and

smart cities.

Assessment of cybersecurity, efficiency,
sustainability and reliability through

digital twin.
[78]

Security in automated control
systems of hydropower
engineering facilities.

Assessment of the concept of CPS to
manage computer security of

automated process control systems at
hydropower engineering facilities.

Security systems can be integrated in an
efficient manner with automated process

control systems of hydropower
engineering facilities.

[79]

Cybersecurity in hydropower
plants.

Assessment of cybersecurity in
hydropower plants.

Exploitation of the standard IEC
62443-2-1 for the implementation of a

cybersecurity management system on a
hydropower plant with two generation

units.

[80]

In the context of Industry 4.0 and digitalization, thanks to the added value provided
by massive data, KPIs represent a fundamental tool in the hydropower sector. Tailored
KPIs must be defined based on the studied context. KPIs can be associated with different
objectives, e.g., business, optimization, control, and maintenance. Generally, KPIs can be
exploited to evaluate whether a project really provides benefits in terms of efficiency and
optimal performance. As mentioned above, a project can be referred to different areas. KPIs
represent a metric by which to evaluate performance. Examples of general project KPIs
in hydroelectric power plants are availability, revenue, return on investment, efficiency,
energy output, capacity factor, and generation capacity. KPIs can support a wide variety of
economic, ecological, cultural, and social objectives [81].

In order to enhance a system’s availability, i.e., the percentage of current uptime con-
sidering the total service hours, tailored plant models can be obtained using the reliability
block Diagram and of the stochastic block diagram. This approach can support decision
makers in the optimization of maintenance management [82]. In addition, intelligent
mitigation measures can be adopted in order to manage the trade-off between economic
constraints, climatic variability, and increased demand. These measures can be associated
with tailored indicators that explain the production reliability of hydropower plants [83].
Plant modelization can be used also to obtain tailored sustainability KPIs in order to assess
the sustainability of hydropower plants [84]. Generally, KPIs can be formulated based
on tailored process models in order to achieve a global evaluation of the performance
of hydropower plants [85]. For example, transfer function modelling can be exploited
and models can be obtained based on input/output data and the statistic features of the
computed indicators can be analyzed in order to compare different production periods [86].

KPIs can also be exploited for companies’ sustainability analyses based on key environ-
mental, technical and social aspects [87]. For example, relationships between water supply,
biodiversity and ecosystem service losses can be investigated [88]. Furthermore, electricity
consumption of hydropower plants, economic growth and a power system’s losses can
be related in order to support decision-making regarding electric energy policies [89]. In
addition, KPIs can be used as proof of the feasibility of hydropower projects thanks to their
capability to take into account financial and non-financial aspects [90].

Tailored KPIs can also be exploited for the design of condition monitoring, early
diagnostics and predictive maintenance systems aimed at supporting and enhancing the
O&M of hydropower plants [91]. In-depth analysis is required in order to formulate peculiar
indicators [92]. Poor maintenance can cause process failures that can represent threats to
revenue, operation feasibility and people’s health. For this reason, the performance of
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maintenance must be monitored and analyzed through specific indicators based on tailored
regulations [93].

In order to formulate the mathematical optimization problems and to verify the perfor-
mance of APC systems in hydropower plants, tailored KPIs can be formulated, monitored
and analyzed [75,94]. An example of a KPI to be verified is the service factor, i.e., the time
percentage associated with full service of the APC system [6,7]. The service factor can
also represent a significant performance metric for the achievement of plant operators’
feedback when they are required to use APC systems based on different methodologies
and techniques, e.g., model predictive control (MPC) [95–99]. The formulation of math-
ematical optimization problems associated with control and optimization systems may
depend on tailored KPIs, represented by the cost functions to be minimized/maximized.
These cost functions can be formulated taking into account different objectives, e.g., the
maximization of hydropower production, water supply reliability, spill prevention, and
revenue income [100,101].

Table 5 reports some research works about KPIs in the hydropower sector, with focuses
on the main topic, on the scope and on the main findings.

Table 5. Main features of the selected papers focused on KPIs for the hydropower sector.

Main Topic Scope Main Findings Ref.

System availability improvement.
Maintenance management

optimization aimed at system
availability improvement.

Design of a method based on a stochastic
block diagram adopting a hydropower

plant as case study.
[82]

Reliability of performance in
hydropower plants.

Selection of features able to provide a
reliability analysis associated with the
performance of hydropower plants.

Adoption of multi-criteria
decision-making methods for the

identification of the indicators.
[83]

Assessment of the sustainability
in the hydropower sector

Development of a sustainability
framework.

Design of a sustainability index based on
plant mathematical modelization. [84]

Evaluation of the performance of
Brazilian hydropower plants.

Investigation of the performance of
the largest Brazilian hydropower

plants based on O&M indicators and
quality of service.

Design of an approach for the
construction of composite indicators

based on modelization.
[85]

Hydropower generation system
performance evaluation.

Development of a method for the
evaluation of the hydropower

generation facilities for performance
improvement.

Exploitation of transfer function
modelling to obtain performance

indicators.
[86]

Environmental reporting
associated with some Italian

hydropower companies.

Analysis on the evaluation of
sustainability data by the companies.

Reporting on the key environmental,
technical, and social aspects (significance,
indicators, and improvement objectives).

[87]

Integrated energy and economic
evaluation for hydropower plants.

Assessment of the impact of the
donor-side and the user-side on

ecosystem services.

Design of an integrated evaluation
framework able to evaluate impacts on

water supply, biodiversity and ecosystem
service losses.

[88]

Losses (power), consumption,
performance (economic) of

hydroelectricity in Indonesia.

Investigation of causality relationship
between electricity consumption of

hydropower plants, losses of the
power system and economic growth.

Proposal of a statistical method for the
evaluation of the considered causality
relationships and exploitation of the

results for the decision of electric energy
policy.

[89]

Small-scale hydropower project
attractiveness analysis.

Design of tools for the assessment of
small-scale hydropower plants

performance in the
pre-implementation phase.

Exploitation of balanced scorecard as
evaluation tool in the feasibility studies

on plant implementation.
[90]
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Table 5. Cont.

Main Topic Scope Main Findings Ref.

Condition monitoring and
predictive maintenance

methodologies for hydropower
equipment.

Development of a system able to
support O&M through condition

monitoring, early diagnostics, and
predictive maintenance.

Formulation of a KPI for operating
hydropower plants in order to identify

faults and to support O&M tasks.
[91]

Performance analysis of
hydropower units.

Condition monitoring of hydropower
generation units.

Formulation a correlation transmissibility
indicator to analyze degradation

performance.
[92]

Maintenance monitoring and
analysis in hydropower plants.

Determination of maintenance
performance indicators for asset

management.

Formulation of tailored indicators
associated with different evaluation

levels and test of the proposed
methodology on a Brazilian hydroelectric

power plant.

[93]

Reservoir advanced process
control (APC) for hydroelectric

power production.

Design and implementation of an
APC system for water management

in a hydroelectric power plant.

Use of tailored KPIs for the mathematical
formulation of the control problem.
The satisfactory performance of the

developed APC system was proven by
the high service factor achieved.

[75]

APC for water resources systems.
Presentation and analysis of two case

studies where APC systems were
successfully applied.

Use of tailored KPIs for the mathematical
formulation of the control problem.

Use of the service factor as support KPI
for APC system’s performance

evaluation.

[94]

Production plan satisfaction for
hydropower production.

Design and implementation of an
MPC strategy for the satisfaction of

the production plan in a hydroelectric
power plant.

Use of tailored KPIs for the mathematical
formulation of the control problem.
The satisfactory performance of the

developed MPC strategy was proven by
the high service factor achieved.

[95]

Reservoir water management for
hydropower production.

Design and implementation of an
MPC strategy for reservoir water

management.

Use of tailored KPIs for the mathematical
formulation of the control problem.
The satisfactory performance of the

developed MPC strategy was proven by
the high service factor achieved.

[96]

Performance appraisal of
agricultural–water systems.

Assessment of the performance of
agricultural–water systems based on
comparative performance indicators.

Formulation of a high-level optimization
problem to maximize monthly irrigation

and hydropower releases.
[100]

Performance evaluation for
multipurpose multi-reservoir

system operation.

Development of a performance
evaluation model.

Formulation of a performance index that
takes into account spill prevention,
reliability of water supply, revenue

income, and energy production.

[101]

4. Role of Modelization and Forecast in the Hydropower Sector

In this section, the role of modelization and forecast in the hydropower sector is
analyzed. In particular, some research works about these themes are reported, with focuses
on the main topic, on the scope and on the main findings.

Modelization can play a crucial role in the hydropower sector. Modelization practices
represent an important aspect in both design and in the O&M phases of the hydropower
plants. Data support the modelization phase, especially in the O&M phase. Reliable
data allows one to obtain robust models, which are crucial for different applications [57].
Design could also benefit from reliable data. For example, data from already commissioned
hydropower plants could be exploited to improve the design of future plants.

Another area that can significantly affect the design and O&M of hydropower plants is
associated with the capability to forecast. Forecasts can be exploited for different purposes
and in different contexts.
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4.1. Modelization for Design

Effective design procedures require reliability assessment. In [102], a mixed integer
non-linear program (MINLP) is proposed as an optimization problem by which to guarantee
the maximization of the hydropower production while considering the reliability level. The
model-based optimal design is applied to a real plant. Reliability assessment can represent
a crucial aspect in large-scale hydropower plants, e.g., hydropower plants characterized by
multiple interconnected reservoirs. In order to guarantee an optimal design for the energy
generation, cellular–automata-based approaches can be exploited for the modelization
of reliability, taking into account the interdependency between O&M and design [103].
Reliability could also be referred to the energy yield in multi-reservoir systems. For this
purpose, a reliability-based simulation model is needed in order to formulate objective
functions, taking into account reservoir releases and/or reservoir storages [104].

Accurate modelization procedures could also be exploited for design changes on
already installed plants. For example, multi-objective optimization models can be used to
analyze economic–ecological tradeoffs in order to support decision making regarding dam
removal [105]. Additionally, ex-post assessments can be performed in order to discover
trade-offs, dependencies and robustness in hydropower plants, e.g., in dam design and
operation. For this purpose, design problems associated with operation and dam sizing
must be formulated and solved [106]. In addition, sensitivity analysis could support
plants’ modifications; an example is represented by a dam that supplies drinking water,
where, thanks to sensitivity analysis, some margins for the installation of a hydropower
unit can be detected [107]. Furthermore, different tools can be used for the computation
of the potential associated with a design change. For example, geographic information
system (GIS) tools can be exploited for the evaluation of the benefits that can be achieved
through the transformation of conventional hydropower schemes into pumped hydropower
schemes [108].

O&M and design challenges may result in a highly non-convex optimization problem,
so tailored methods for the achievement of a feasible solution must be applied, e.g., honey
bee mating optimization (HBMO) [109]. In this context, multi-objective evolutionary
algorithms can reduce the computational cost [110]. Specific software and routines are
needed to solve the obtained optimization problems. An example of such software is Water
Evaluation and Planning (WEAP), which can be exploited as simulation software for water
resources planning. The invasive weed optimization (IWO) algorithm represents another
specific tool [111].

Effective design procedures require reliable simulation frameworks. In this way, some
crucial features of the hydropower plants to be constructed can be simulated, e.g., the
capacity of installation (design discharge) [112]. In order to provide holistic simulation
frameworks, environmental impact evaluation must be incorporated into optimization and
decision making, wherein different scenarios are needed for the optimization of the design
of the facilities [113]. Various factors must be included in the simulation frameworks, e.g.,
market price. These factors could support the assessment of the economic feasibility of
a hydropower project. In this context, design parameters associated with plant sizing
cover a crucial role and the computation of their optimal values can be performed through
effective simulation frameworks based on reliable models and efficient optimizers [114].
Hydropower projects can affect the ecosystem and a proper planning of hydropower
projects must include an efficient cost–benefit analysis framework. In this way, decision-
making can also take into account ecosystem services [115]. For the mitigation of the huge
budget required for projects of the hydropower field, the design phase must optimize
both the design and the future operation. An example is represented by reservoir plants
equipped with pump stations, because these systems are energy producers characterized
by cost effectiveness; an optimization model can be formulated in order to maximize the
net benefit [116].

The potential of AI can be exploited for planning and design in dam engineering [117].
In addition, the visualization of a construction process could represent an added value
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for the design of hydropower plants. This involves a modelization approach that is able
to provide real-time and interactive 3D scenes through virtual reality (VR) [118]. In this
context, realistic terrain simulation could also aid in the design through dynamic visual
simulation based on VR [119].

Table 6 reports some research works about modelization for design in the hydropower
sector, with focuses on the main topic, on the scope and on the main findings.

Table 6. Main features of the selected papers focused on modelization (design) for the hydropower
sector.

Main Topic Scope Main Findings Ref.

Optimization of the design and of
the operation of hydropower

plants.

Formulate an optimization problem
aimed at the maximization of the

produced energy and at controlling
the reliability level.

The developed system is exploited for the
capacity optimization of the plants to be

designed.
[102]

Hydropower plants design. Incorporate reliability models in the
design procedures.

Cellular automata are exploited for
reliability model formulation. [103]

Analysis of the integrated
operation of multi-reservoir

hydropower systems.

Reliability assessment as a support
for the design.

The developed model allows one to
exploit tailored objective functions able to
take into account both reservoir release

and storage.

[104]

Proof-of-concept demonstration
on the effects of dam’s removal on

a plant.

Exploit modelization for
decision-making support.

The developed optimization problem
allows one to take into account both
economic and ecological objectives.

[105]

Ex-post assessment of the design
of hydropower plants.

Solve design problems that include
operation and sizing of dams.

The proposed method allows one to
reduce capital costs. [106]

Sensitivity analysis.
Detect potential margins for the

installation of a hydropower plant on
an already existing dam.

The proposed method revealed that a
small-scale hydropower plant can be

installed on the already existing plant.
[107]

Calculation of the potential that
can be achieved from hydropower

plants’ design change.
Development of a GIS-based model. The developed model was tested on some

case studies and revealed its applicability. [108]

Design-operation of
multi-hydropower reservoirs.

Illustrate and test the option to use
the HBMO algorithm in a highly

non-convex optimization problem.

The HBMO algorithm outperforms other
existing algorithms. [109]

Design of cascade hydropower
reservoir systems.

Formulation of a multi-objective
optimization model for the
determination of the design

parameters.

Multi-objective differential evolution can
be exploited to solve hydropower design

optimization problems.
[110]

Optimal design and operation of
hydropower plants.

Formulate an optimization problem
aimed at generated energy

maximization and at flood damage
minimization.

WEAP software and IWO algorithm can
be exploited for the optimal design and

operation of a hydropower plant.
[111]

Simulation of hydropower plants
aimed at design optimization. Formulation of a simulation model.

The developed model allows for the
simulation of hydropower plants’ main

features, e.g., capacity of installation.
[112]

Sustainable planning of
multipurpose hydropower

reservoirs.

Provide a simulation–optimization
framework for design optimization

based on different scenarios.

Environmental economics can
significantly affect the project results. [113]

Optimal design of hydropower
projects.

Provide a simulation-optimization
model for multi-reservoir systems

design.

The proposed framework exploits WEAP
software and adds a hydropower

computation module; the optimization
problem is solved through PSO and takes
into account different economic factors.

[114]
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Table 6. Cont.

Main Topic Scope Main Findings Ref.

Optimal development of
hydropower projects.

Inclusion of ecosystem services
within the optimal development of

hydropower projects.

The formulated cost–benefit analysis
framework allows incorporation of the

services of the ecosystem into
decision-making and into models for the

optimization of the projects.

[115]

Plan a design phase equipped
with simultaneous

design-operation optimization for
pumping systems in reservoir

power plants.

Maximization of the net benefit of
installations in reservoir systems.

Pumped-storage systems have better
outcomes than individual hydropower

systems, taking into account benefits and
efficiency.

[116]

AI and digital technologies in
dam engineering.

Review of AI and digital technologies
application in dam engineering.

Assessment of the role of AI and digital
technologies in dam engineering with

regard to design and planning.
[117]

Exploitation of VR for the
construction process of dams in

hydropower plants.

Development of a system able to
achieve a realistic, 3D real-time and

interactive virtual scene.

The developed system can represent a
support analytical tool to optimize the

construction management of hydropower
plants.

[118]

Dynamic visual simulation of
hydropower construction project.

Development of a system that
uses VR.

The developed system could provide a
design and management environment for

hydropower projects.
[119]

4.2. Modelization for O&M

O&M activities can be supported by modelization and simulation tools. For example,
deep learning, support vector regression and artificial neural network (ANN) techniques
can be exploited for reservoir operation modeling and simulation in order to support deci-
sion making [120]. In addition, data-driven AI can also be exploited for reservoir operation
policy computation; in this context, pattern recognition and metaheuristic optimization are
useful concepts [121]. Dam operation can also benefit from deep learning in order to build
models able to provide key insights through the simulation of different scenarios [122]. In
the field of dam engineering, AI and digital technologies could provide predictive mod-
eling [117]. Dam–reservoir system modelization can be exploited for the computation of
a balance between environmental management and hydropower generation [123]. Cas-
cade hydropower systems can be considered as complex systems and cellular automata
methodologies can be exploited for modelization and optimization in order to maximize
energy production [124]. In order to solve reservoir operation optimization problems,
animal-inspired evolutionary algorithms can be applied, e.g., particle swarm optimization
(PSO), ant colony optimization (ACO), artificial bee colony (ABC), shuffled frog leaping
algorithm (SFLA), firefly algorithm (FA), HBMO, bat algorithm (BA), and cuckoo search
(CS) [125]. In addition, surrogate modeling could contribute to release decisions at the
desired timescale [126].

Different variables and indexes can be modelized for O&M activities. A significant
index that can be modelized is the reliability level of hydro-energy production. The
inclusion of this index in the optimization problem associated with optimal design and
operation strategies can represent an overall enhancement of the considered plant [102].
Among the variables that can be taken into account are design and operation variables.
These variables can be affected by different factors and they can retain different impacts on
the overall system performance [111]. A crucial process operation variable that can be taken
into account is the dammed water level. In order to modelize it, different approaches can be
exploited, e.g., neural networks, support vector regression, and Gaussian processes [127].

Techno-ecological synergy frameworks may be needed in order to evaluate the sustain-
ability of hydropower plant operation at local and regional levels. Life-cycle assessment
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can be exploited for this purpose [128]. In addition, externality theory models can be used
for the evaluation of the impact of a hydropower project [129].

O&M of hydropower plants could benefit from modeling and simulation combined
with forecasting. Hydropower allocation can be guided by forecast-informed reservoir
operations. Hydroclimatic predictions can be converted into actionable information for
the enhancement of the management of hydropower plants [130]. Another context of
application of the combination between modeling, simulation and forecasting is short-term
hydropower operations planning. In this context, a short-term model is required in order to
dispatch the available water to the turbines on a daily basis. The model can be characterized
by a stochastic nature in order to include uncertainties, e.g., inflow uncertainty [131]. The
scheduling task can also be performed through multi-objective models that are particularly
recommended for large-scale systems [132].

An additional field of application of the combination between modeling, simulation,
and forecasting is reservoir level control. Different APC techniques can be applied to
solve this problem, e.g., MPC [133–136]. Among the features needed to apply MPC,
model and forecasts reliability cover a crucial role. A reliable model of the plant allows
the provision of a tool with which to simulate and predict the effect of the manipulated
and unmanipulated inputs on the outputs; on the other hand, forecast reliability can be
referred to the availability of predictions associated with the unmanipulated inputs in
order to include them in the control law computation [75]. Unmanipulated inputs can be
represented by the water discharged toward the turbines, which is connected to the energy
that has to be generated. The relationship between the hydroelectric energy and the water
that has to be provided to the turbines can be obtained by exploiting linear regression
models [94]. The reliability of these models can impact the reliability of the models of the
upstream devices, e.g., reservoirs. The modelization of reservoirs’ levels can be performed
using different types of model, e.g., first-principles models [95]. In order to mitigate model
uncertainties, suitable model mismatch compensation strategies must be used [96]. Table 7
reports some research works about modelization for O&M in the hydropower sector, with
focuses on the main topic, on the scope and on the main findings.

Table 7. Main features of the selected papers focused on modelization (O&M) for the hydropower
sector.

Main Topic Scope Main Findings Ref.

Modeling and simulation of
reservoir operation.

Development of models for
decision-making support.

ANN, support vector regression and
deep learning techniques are exploited to
build models for simulation of reservoir

operation.

[120]

Hydropower reservoir operation
policy computation. Exploitation of AI for modelization.

The developed models are included in a
metaheuristic optimizer and satisfactory

operation results are provided.
[121]

Modeling and simulation of dam
operation.

Development of deep learning
models for decision-making support.

Assessment of the explainability of the
developed deep learning model on dam

operation.
[122]

Exploration of digital
technologies and AI for dams.

Review of digital technologies and AI
application in dam engineering.

Assessment of the role of AI and digital
technologies with regard to predictive

modeling.
[117]

Dam–reservoir system
management.

Mathematical modelling and
computation of a balance between

hydropower generation and
environmental management.

The balanced operation policy is
obtained through the solution of a

stochastic control problem.
[123]
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Table 7. Cont.

Main Topic Scope Main Findings Ref.

Energy production maximization
in complex plants.

Development of a modelization and
optimization method for energy

production maximization.

Cellular automata can be used for
modelization, simulation and

optimization of complex hydropower
plants.

[124]

Modelization of the operation of
reservoirs.

Review of applications of
animal-inspired evolutionary

algorithms in reservoir operation
modelling.

PSO, ACO, ABC, SFLA, HBMO, CS, FA
and BA algorithms can be exploited for

reservoir operation modelling.
[125]

Hydropower optimization. Exploitation of ANNs surrogate
models and water quality models.

The proposed approach provides
high-fidelity modelization and allows
one to support decisions at the desired

timescale.

[126]

Optimal operation and design of
hydropower plants.

Formulate an optimization problem
aimed at produced energy

maximization and at controlling the
reliability level.

The developed system is exploited for the
capacity optimization of the plants to be

designed.
[102]

Optimal design and operation of
hydropower plants.

Formulate an optimization problem
aimed at generated energy

maximization and at flood damage
minimization.

The optimization of design variables can
affect the system performance in a

different manner with respect to the
optimization of operation variables.

[111]

Dammed water level analysis and
prediction in a hydropower

reservoir.
Short- and long-term analyses. Machine learning could represent a

significant driver. [127]

GHG mitigation in hydropower
plants.

Investigation of techno-ecological
synergies of hydropower plants.

The developed techno-ecological
framework, based on life cycle

assessment, can be exploited for the
evaluation of the supply and of the

demand of hydropower plants in order to
evaluate their sustainability level.

[128]

Evaluation of hydropower
projects.

Investigation of externality
evaluation models for hydropower

projects.

Externality theory can be exploited for
hydropower projects evaluation. [129]

Guide hydropower allocation. Provision of forecast-informed
reservoir operations.

The developed model allows one to
convert hydroclimatic predictions into

actionable information for the
enhancement of plants’ management.

[130]

Short-term hydropower
operations planning.

Exploitation of modeling, simulation
and forecasting for the optimal

dispatch of the water to the turbines.

Stochastic short-term models can be
exploited due to their ability to deal with

uncertainty.
[131]

Short-term hydropower
scheduling.

Development of a multi-objective
model for peak shaving.

The proposed approach is applicable,
tractable and robust enough to obtain

near optimal results efficiently.
[132]

Reservoir advanced process
control (APC) for hydroelectric

power production.

Design and implementation of an
APC system for water management

in a hydroelectric power plant.

The achievement of a robust plant model
and of reliable forecasts on the

production plan represent fundamental
requirements for the application of MPC

technique.

[75]

APC for water resources systems.
Presentation and analysis of two case

studies where APC systems were
successfully applied.

The relationship between the
hydroelectric energy and the water that

has to be provided to the turbines can be
obtained by exploiting linear regression

models.

[94]
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Table 7. Cont.

Main Topic Scope Main Findings Ref.

Production plan satisfaction for
hydropower production.

Design and implementation of an
MPC strategy for the satisfaction of a

production plan.

Different types of models may be
formulated and integrated in an MPC

strategy for production plan satisfaction.
[95]

Reservoir water management for
hydropower production.

Design and implementation of an
MPC strategy for reservoir water

management.

The design of ad hoc model mismatch
compensation strategies can mitigate the

model uncertainties.
[96]

4.3. Forecast

Dam engineering could benefit from predictive modeling for the forecasts needed
in order to make the due decisions at the right times [117]. Crucial process variables
need to be predicted in order to support the management of areas with hydrology stress;
in this context, machine learning could represent a significant driver [127]. In addition,
hydroclimatic predictions can support the decision-making process in order to optimally
allocate hydropower energy [130]. The hydropower generation represents a crucial process
variable and its prediction is a very challenging task. Tailored algorithms can be used for
this purpose, e.g., the developed wildebeest herd optimization (DWHO) algorithm; the
convergence speed and the required time to provide a solution represent significant factors
to be considered in the selection of an algorithm [137]. Combinations of different techniques
can be exploited for hydropower generation prediction, e.g., grey wolf optimization (GWO),
and the adaptive neuro-fuzzy inference system (ANFIS) [138]. Additionally, ANNs can
be exploited for the prediction of power production. Good performance can be obtained
if large amounts of significant data are available [139]. The water inflow into reservoirs
represents another crucial process variable to be predicted. For this purpose, historical
data can be exploited together with dynamic non-linear auto-regressive (NAR) and non-
linear auto-regressive with eXogenous input (NARX) models [140]. Additionally, ensemble
forecasts can be used for the verification of the inflow into hydropower reservoirs, taking
into account different meteorological models. These forecasts can provide enhancement in
different aspects, e.g., benefits and flood control [141].

With regard to streamflow, the quality and the value of the forecast are crucial aspects
to be taken into account. The quality refers to the accuracy of predictions while the value
refers to the impact of the decisions’ predictions on the results of the operations [142].
Machine learning could be very useful in the modelization of complex, non-stationary, and
non-linear time series aimed at streamflow forecasting. In particular, data preprocessing
can be combined with modelization and an optimizer can be selected for the achievement
of a feasible parameter configuration [143]. Middle and long-term streamflow forecasts
can also be exploited for hydropower maximization; in order to deal with the stochastic
nature of streamflow, the combination of AI, adaptation and parameter optimization could
be needed [144]. Another paradigm that can be used for streamflow forecasts is that of the
ensemble forecasts used in order to deal with uncertainties [145]. Biases on the ensemble
streamflow predictions could impact the electricity production in the hydropower reservoir
management. Methods for streamflow prediction with a poor robustness to uncertainties
could cause a high risk for the level of reservoirs in the pursuit of maximized short-time
profit; the introduction of suitable constraints can mitigate this aspect [146]. With regard to
short-term streamflow prediction, the combination of stochastic weather generation and
ensemble weather forecasts can help in the extension of the forecasting horizon [147].

The optimal dispatch of the available water to the turbines in a hydroelectric power
plant can benefit from reliable predictions. In particular, stochastic short-term models
can be exploited in order to provide reliable one day ahead forecasts [131]. In addition,
multi-objective short term scheduling models can be exploited for this purpose. The main
challenges are represented by large scale systems, numerous power-receiving grids, com-
plex constraints, and cascaded systems [132]. In this context, the impact of hydrological
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forecasts on the revenue and on the management of reservoirs can be obtained through
sensitivity analysis. In addition, the forecast quality affects the stock evolution, the spillage,
the production rates, and the production hours [148]. Different performances can be pro-
vided by probabilistic and deterministic forecasts in the optimization (short-term) of the
reservoirs. Ensemble forecasts (probabilistic) and multi-stage optimization (stochastic) tech-
niques could provide a higher level of flood protection while guaranteeing an acceptable
energy production [149]. Another problem that can benefit from reliable forecasts is the
monthly runoff prediction in hydropower plants. For this purpose, for the enhancement
of the accuracy of the predictions, hybrid prediction models can be formulated through
the combination of empirical mode decomposition (EMD), time varying filtering (TVF),
extreme learning machines (ELM), and salp swarm algorithm (SSA) [150]. ELM algorithms
can be integrated with the Monte Carlo method in order to provide reliable predictions of
hydropower production and energy saving [151].

The outputs of the optimal dispatch problems are usually represented by the hydro-
electric energy production plan. This plan is connected with the water that has to be
sent to the turbines by the upstream devices. A reliable model between the hydropower
generation and the provided water can provide reliable forecasts of the water that has
to be discharged from the upstream devices [75]. Reliable forecasts of the water that has
to be discharged from the upstream devices can be obtained through the application of
different algorithms, e.g., ANFIS and the cooperative search algorithm (CSA) [152]. Reliable
forecasts of the water that has to be discharged from the upstream devices allows one to
obtain reliable predictions of the process variables associated with these devices, e.g., the
reservoir level [94]. These predictions also depend on the inflows to the upstream devices;
reliability on these forecasts is required in order to accurately predict the needed process
variables, e.g., the reservoir level [95,96]. Inflow prediction is significantly influenced by
precipitation forecasts. Uncertainties and probabilities of the precipitation must be taken
into account [153]. Inflows can be characterized by different lead times. For this purpose,
short-, long-, and medium-term forecasts on inflow can be computed [154]. As mentioned
above, a strategy that can be implemented based on predictions is MPC. In this regard,
the prediction horizon must be selected based on the effective reliability window of the
computed forecasts [155].

Reliable forecasting methods could also be useful in the evaluation of the impact of
hydropower facilities on sustainable development. For example, the long-term prediction
of GHG risk is needed in order to assess life cycle emissions [156]. GHG risk could be
detected through CO2 and CH4 fluxes prediction. Specific tools can be exploited for the
evaluation of GHG emissions vulnerability; in-depth analysis must be conducted in order
to evaluate the reliability of the predictions [157].

Table 8 reports some research works about forecast in the hydropower sector, with
focuses on the main topic, on the scope and on the main findings.

Table 8. Main features of the selected papers focused on forecast for the hydropower sector.

Main Topic Scope Main Findings Ref.

AI and digital technologies in
dam engineering.

Review of AI and digital technologies
application in dam engineering.

Assessment of the role of AI and digital
technologies in dam engineering with

regard to predictive modeling.
[117]

Analysis and prediction of
dammed water level in a

hydropower reservoir.

Long- and short-term predictions of
dammed water level in a hydropower

reservoir.

Machine learning could represent a
significant tool. [127]

Guide hydropower allocation. Provision of forecast-informed
reservoir operations.

Hydroclimatic predictions can be
converted into actionable information in

order to actively support the
decision-making process.

[130]
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Table 8. Cont.

Main Topic Scope Main Findings Ref.

Prediction of hydropower
generation.

Investigation of the algorithms that
can be used.

DWHO algorithm represents a suitable
solution due to its convergence speed

and to the required time to provide the
solution.

[137]

Prediction of hydropower
generation.

Investigation of the algorithms that
can be used.

GWO and ANFIS algorithms can be
combined in order to provide accurate

predictions.
[138]

Prediction of hydropower
generation.

Investigation of the algorithms that
can be used.

ANNs algorithms can represent a
suitable solution. [139]

Water inflow prediction for dam
reservoirs. Development of a prediction method. NAR and NARX models can be exploited

for the prediction. [140]

Verification of inflow into
hydropower reservoirs.

Exploitation of ensemble forecasts
and TIGGE database.

The obtained forecasts can provide
enhancement in terms of benefit and

flood control.
[141]

Subseasonal hydrometeorological
forecasts for hydropower

operations.

Assessment of the quality and of
value of subseasonal

hydrometeorological forecasts for
hydropower operations.

The improvement of forecast quality and
value is strictly related to the used

preprocessing techniques.
The forecast value–quality relationship is
complex and it is related to many factors.

[142]

Streamflow time series forecasting
of hydropower reservoir.

Improvement of the conventional
hydrological forecasting models.

Machine learning and tailored optimizers
could represent significant tools. [143]

Middle and long-term streamflow
forecasts.

Deal with the stochastic nature of
streamflow in order to maximize the

hydropower generation.

The combination of AI, adaptation and
parameters’ optimization could represent

a significant tool.
[144]

Streamflow predictions on short
and long ranges.

Deal with the uncertainties that
characterize the streamflows.

Ensemble forecasts can successfully
predict the streamflow. [145]

Ensemble prediction on
streamflow.

Evaluation of the impact of prediction
bias on electric energy production.

Exploiting algorithms with a poor
robustness to uncertainty, the reservoir

levels can be calibrated to configurations
characterized by high risk in order to

maximize short-term profit. Constraints
can mitigate this aspect.

[146]

Short-term streamflow prediction.

Development of a method that
combines stochastic weather

generation and ensemble weather
forecasts.

The proposed strategy could help in the
extension of the forecasting horizon. [147]

Short-term hydropower
operations planning.

Exploitation of modeling, simulation
and forecasting for the optimal

dispatch of water to the turbines.

Stochastic short-term models can be
exploited due to their ability to deal with

uncertainty.
[131]

Short term hydropower
scheduling.

Development of a multi-objective
model for peak shaving.

The proposed approach is applicable,
tractable and robust enough to obtain

near optimal results efficiently.
[132]

Evaluation of the impact of the
hydrological forecast quality on

operation of reservoirs.

Development of a conceptual
approach for the evaluation of the

hydrological forecast quality impact
on management and revenue.

The developed approach allows one to
evaluate the impact of the revenue and

forecasts, stock evolution, spillage,
production rates, and production hours.

[148]

Short-term optimization of
hydropower reservoirs.

Evaluation of the performance of
deterministic and probabilistic

forecasts.

The exploitation of probabilistic forecasts
is more convenient due to its major

robustness with respect to flood control
while guaranteeing an acceptable level of

energy production.

[149]
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Table 8. Cont.

Main Topic Scope Main Findings Ref.

Monthly runoff prediction in
hydropower plants.

Formulated an enhanced prediction
formulation.

The combination of different techniques,
i.e., TVF, EMD, SSA and ELM, can
provide significant enhancements.

[150]

Production capacity prediction of
hydropower industries for energy

optimization.

Investigation of a method for the
prediction of hydropower production

and energy saving.

ELM algorithms can be successfully
integrated with the Monte Carlo method. [151]

Reservoir advanced process
control (APC) for hydroelectric

power production.

Design and implementation of an
APC system for water management

in a hydroelectric power plant.

The availability of reliable forecasts on
the hydroelectric power production plan
and the formulation of a reliable model
between hydropower generation and

discharged water represent fundamental
ingredients of an MPC strategy.

[75]

Prediction of discharge time series
under hydropower reservoir

operation.

Investigation of the algorithms that
can be used.

ANFIS and CSA algorithms can be
combined in order to achieve better

performance with respect ANFIS
algorithm.

[152]

APC for water resources systems.
Presentation and analysis of two case

studies where APC systems were
successfully applied.

Reliable predictions of the water
discharged toward the turbines allow one

to obtain reliable predictions of crucial
process variables, e.g., reservoir levels.

[94]

Production plan satisfaction for
hydropower production.

Design and implementation of an
MPC strategy for the satisfaction of

the production plan in a hydroelectric
power plant.

Reliable predictions of the water
supplied to the reservoirs contribute to
the computation of reliable predictions

on some reservoirs’ crucial process
variables, e.g., reservoir level.

[95]

Reservoir water management for
hydropower production.

Design and implementation of an
MPC strategy for reservoir water

management.

Reliable predictions of the water
supplied to the reservoirs contribute to
the computation of reliable predictions

on some reservoirs’ crucial process
variables, e.g., reservoir level.

[96]

Real-time decision-making in
hydropower operations.

Development of a decision-making
strategy that includes precipitation

forecasts.

Uncertainty of precipitation, operation
policies and a risk evaluation model are

integrated into the strategy.
[153]

Optimal operation model of
hydropower stations.

Development of a model that
includes inflow forecasts with

different lead-times.

The developed reservoir model can
exploit the short-, long- and

medium-term forecasts on inflow.
[154]

Optimization of the generated
hydroelectric energy.

Evaluation of forecast and decision
horizons assuming medium-range

precipitation forecasts.

The efficiency and reliability are
improved with a shortened effective

decision horizon.
[155]

Long-term prediction of
greenhouse gas risk in

hydropower reservoirs.

Evaluation of the impact on the
sustainable development of electricity

production by hydropower
reservoirs.

The proposed method predicts long-term
GHG risk and the associated life cycle

emissions.
[156]

Assessment of risk of GHG
emissions in hydropower

reservoirs.

Development of a tool for the
prediction of CO2 and CH4 fluxes.

The developed tool allows one to
evaluate the selected fluxes taking into

account potential prediction errors.
[157]

5. Discussion

Decarbonization represents a primary objective and the use of RESs can act as a driver
in this context. Water is an RES and its rational exploitation is a fundamental requirement.
Renewable energy production can exploit water, such as in hydroelectric power plants.
Hydropower production is a very complex sector due to process, environmental and
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economic reasons. With regard to the process, hydraulic, mechanical and electrical aspects
interact and the optimal management of these interactions may have to take into account
conditions and incentives associated with the market. The economic area is also involved
in hydropower plants management for this reason.

Customization of monitoring, maintenance, control and optimization strategies for the
hydropower sector is not a trivial task. This task can be tackled by highlighting the basic
elements and concepts that can represent the basis for the construction of these strategies.
These strategies, if effectively approached, could represent strategic items for the mitigation
of the huge costs that characterize the setup and the management of a hydropower plant.
The design of proficient approaches for the development and implementation of monitoring,
maintenance, control and optimization strategies strictly depends on the level of robustness
associated with some basic elements and concepts, i.e., digitalization, Industry 4.0, data,
KPIs, modelization and forecast.

Digitalization and Industry 4.0 play key roles and will retain these roles in the hy-
dropower sector. Industry 4.0 is a driver for digitalization and suitable cross-fertilization
procedures are being applied for its adaptation to non-industrial sectors like hydropower.
Digitalization, through its capability to merge IT and OT and through the connection and
contamination between different research areas, can speed up the green and digital transitions.

Energy production and efficiency can benefit from the tools provided by Industry 4.0.
Industry 4.0 technologies, e.g., the internet of things (IoT), simulation, cloud computing,
augmented reality (AR), big data analytics, CPSs, cybersecurity, blockchain, AI and ML,
can speed up the evolution of conventional plants into smart plants. This evolution can
massively support the digital and energy transition.

Digitalization and Industry 4.0 highlight the importance of data from different points
of view: selection, acquisition, storage, analysis and visualization. Hydropower 4.0 and
hydropower CPSs provide hydropower big data. Design, O&M and business levels can
benefit from an effective exploitation of the information provided by data. In this context,
DSSs can be designed and implemented in order to enhance command and decision
making at all levels. In this way, data-driven policies can be conceived and implemented
thanks to the shrinking of the time horizon required for making decisions. Databases, data
classification, data mining, data quality and data reliability represent strategic features to
be implemented in order to totally exploit data potential.

To compute, evaluate, assess, analyze and process information about the efficiency
of energy production in hydropower plants, tailored KPIs are needed. These KPIS could
be associated with availability, revenue, return on investment, efficiency, energy output,
capacity factor, and generation capacity. The automatic evaluation of these parameters
represent an additional powerful tool with which to optimize the time horizon for making
decisions, as well as the optimality of those decisions.

Figure 7 reports a summary of the key results that digitalization, Industry 4.0, data
and KPIs can obtain on hydropower plants.

All of the previously cited elements and concepts, together with the knowledge
provided by different research areas, can be exploited for modelization and forecast. Design,
O&M and business can benefit from reliable modelization and forecast. Data, process
knowledge and methodology represent the two main elements needed for the development
of robust modelization and forecast frameworks. Modelization could be referred to design
and O&M. Robust models, together with different Industry 4.0 tools, e.g., AR and VR,
are innovating the design field. Meanwhile, effective and optimized O&M solutions can
massively benefit from the information provided by robust models. In this context, robust
models implemented on the field and run with reliable data have become the digital twins
of their physical counterparts. Figure 8 reports a summary of the role of modelization and
forecast in hydropower plants.
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The presented discussion highlights the potential of each basic element and concept
addressed in the present review paper but at the same time highlights the interactions that
can occur between them.

The described concepts represent a solid background for many applications associated
with monitoring, maintenance, control and optimization strategies. In the authors’ opinion,
in order to further assess and enhance the potential of digitalization, Industry 4.0, data,
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KPIs, modelization and forecast in hydropower plants, the following principles must
be applied:

• Continue to create multidisciplinary teams for the development of specific projects:
due to the extreme complexity of the hydropower CPSs, many competences must
contaminate each other and a fusion of knowledge is required.

• Reduce the gap between university and facilities, the theoretical and scientific ap-
proach provided by university can represent a win-win solution only and only if it
is accompanied by the field experience and knowledge provided by facilities. The
reduction of the gap between university and facilities can speed up the digital and
energy transition in the hydropower sector. In fact, the combination between the
innovative methodologies proposed by the university research groups and the field
experience and knowledge retained by plant managers, engineers, practitioners and
operators represents a strategy with huge potential.

• Increase the small-scale laboratories: small-scale laboratories can support the design
and the O&M of real hydropower plants through the small-scale implementation of
subparts of the real plants. Small-scale implementation can support the design and
the O&M thanks to the fact that it is more convenient and practical to perform modi-
fications and tests in laboratories instead of on the real plants. These modifications
and tests can enhance both the methodological and practical aspects associated with
design and O&M.

• Increase the open access datasets: data represent the main source of information and
the availability of open access datasets reporting, for example, issues and problems,
can significantly promote the cross-fertilization of already existing algorithms to hy-
dropower sector and the conceiving of new strategies tailored for this sector. This cross-
fertilization can represent a powerful method by which to import into the hydropower
sector effective solutions for the speed-up of the energy and digital transition.

• Exploit the analyzed basic elements and concepts, i.e., digitalization, Industry 4.0,
data, KPIs, modelization and forecast, for the development of advanced monitoring,
maintenance, control and optimization solutions. Based on the provided analysis, a
clear and straight connection was created between the basic elements/concepts and
these strategies.

• Exploit the analyzed basic elements and concepts for the enhancement of the control
and monitoring rooms (onsite and remote) of the hydropower plants.

• Exploit the analyzed basic elements and concepts for the search of the best decision in
terms of design, retrofit and O&M on hydropower plants.

6. Conclusions and Future Research Directions

A comprehensive literature review of hydropower plant technology with a focus on the
basic elements and concepts needed for monitoring, maintenance, control and optimization
tasks has been proposed in the present paper. The authors agree that digitalization, Industry
4.0, data, KPIs, modelization and forecast represent milestones for the design of complex
tools; for this reason, an assessment and an outline of the existing state of the art associated
with these basic concepts and elements has been proposed in this paper. In addition, some
insights associated with methods and concepts that can also be applied for their further
assessment and enhancement in hydropower research area have been proposed.

Future research directions should be associated with the following:

• Assessment of Industry 5.0 for the hydropower sector: the “technology-driven” con-
cept promoted by Industry 4.0 (born in 2011) has to be adapted to a new “value-driven”
concept (born in 2017). In this context, a hydropower sector investigation of the co-
existence between Industry 4.0 and Industry 5.0 and on the benefits each can derive
from the other must be conducted [158]. Human-centricity, resiliency and sustain-
ability concepts must be assessed for the hydropower sector. Based on the authors’
knowledge, an assessment of resiliency and sustainability concepts was begun from
a methodological point of view, but it still needs massive field implementation. For
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example, resiliency can be referred to the idea of implementing flexibility into hy-
dropower plants with respect to market conditions in order to maximize the desired
KPIs. On the other hand, sustainability can be considered a rational usage of the water
RES. With regard to human-centricity, for example, advanced control and monitoring
rooms (onsite and remote) can represent a driver. Operators can be placed out of the
lower-level loops in order to gain a crucial supervisory role.

• Assessment of Industry 6.0 for the hydropower sector: the AR/VR and digital twin con-
cepts must acquire major importance within the hydropower sector; in addition, accu-
rate analysis on the possible utilization of quantum computing can be performed [159].
Based on the authors’ knowledge, AR/VR and digital twin concepts are gaining the at-
tention of researchers, practitioners, engineers and managers in the hydropower field.
For example, the design of new hydropower plants and the proof of their features can
be massively supported by AR/VR. In addition, digital twins can support the road to
sustainability. With regard to quantum computing, this can support the computation
at different automation and business levels, especially with very complex CPSs.

• Reduce the gap between simulation and field implementation: projects that examine
hydropower sectors characterized by lasting field implementation are not widespread.
The real implementation of a system in the field requires additional robustness and
reliability assessment with respect to the requirements of a system tested through
virtual environment simulations.

• Further assessment of KPIs aimed at further emphasizing the potential impact of
innovative technologies in the hydropower sector.
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