
Citation: Li, M.; Wu, S.; Zhu, R.; Hu,

S.; Wang, P.; Cai, Y.; Zhang, S.

Heterogeneity and Sedimentary

Characteristics of Shale Laminae of

Fine-Grained Sediments in Alkaline

Lacustrine Strata in the Permian

Fengcheng Formation, Mahu Sag, NW

China. Energies 2024, 17, 962. https://

doi.org/10.3390/en17040962

Received: 28 January 2024

Revised: 16 February 2024

Accepted: 17 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Heterogeneity and Sedimentary Characteristics of Shale Laminae
of Fine-Grained Sediments in Alkaline Lacustrine Strata in the
Permian Fengcheng Formation, Mahu Sag, NW China
Mengying Li 1 , Songtao Wu 2,*, Rukai Zhu 2, Suyun Hu 2, Pengwan Wang 1, Yi Cai 2 and Surong Zhang 2

1 PetroChina Hangzhou Institute of Petroleum Geology, Hangzhou 310023, China; limy0301@163.com (M.L.);
wangpw_hz@petrochina.com.cn (P.W.)

2 Research Institute of Petroleum Exploration and Development (RIPED), China National Petroleum
Corporation (CNPC), Beijing 100083, China; zrk@petrochina.com.cn (R.Z.); husy@petrochina.com.cn (S.H.);
caiyi813@petrochina.com.cn (Y.C.); zsr_win2019@163.com (S.Z.)

* Correspondence: wust@petrochina.com.cn

Abstract: The heterogeneity, sedimentary characteristics, and distribution of fine-grained sediments
of millimeter-scale laminae were studied in alkaline lacustrine strata in the lower Permian Fengcheng
Formation (P1f2) in the Mahu Sag to provide a sound theoretical basis for shale oil exploration and
development. They were investigated by using core and thin-section observation, geochemical and
elemental analysis, mineral identification, and pore examination. Five types of laminae were distin-
guished, with different mineral compositions, pore characteristics, and distributions. These laminae
occur in four distinct combinations. The pore systems predominantly consist of intercrystalline
pores, intragranular pores, and dissolution pores of feldspar and dolomite and also contain imporous
alkaline mineral particles. Influenced by variations in salinity, the influx of volcanic–hydrothermal
material, and the participation of both endogenous and exogenous materials, the formation has
gone through five stages of sedimentary evolution. Furthermore, felsic laminae (FQL), dolomite
laminae (DOL)/reedmergnerite laminae (RL)/shortite laminae (SL), and chert laminae (CL) devel-
oped in single-terrestrial-source still water deposition, hybrid-source still water deposition, and
single-intrasource deposition, respectively. Vertically, the FQL-DOL combination shows favorable
reservoir characteristics and is the most extensively developed lamina combination in the Fengcheng
Formation that primarily developed in the period of the late Feng 1 Member (P1f1), the early Feng
2 Member (P1f2), the late Feng 2 Member (P1f2), and the early Feng 3 Member (P1f3). The FQL-RL/SL
combination primarily developed in the period of the middle P1f2, and the DOL-CL combination is
the counterpart in the period of the early P1f2 and the late P1f2 stages. Considering this in conjunction
with the longitudinal distribution of lamina combinations, a model is proposed for the distribution of
fine-grained sediments in alkaline lacustrine strata.

Keywords: unconventional petroleum accumulation; nanopores; sedimentary evolution; fine-grained
sediments; Mahu Sag; Junggar Basin; China

1. Introduction

Shale oil in China is predominantly found in continental facies, characterized by source–
reservoir integration and low porosity and permeability. The quality of shale reservoirs is
the key to shale oil exploration and development [1–4]. The development of laminae and
lamina combinations controls the material composition, geochemical characteristics, pore
characteristics, and microfracture distribution of shale reservoirs, which in turn directly
affects the reservoir characteristics and oil-bearing properties as well as the mobility of shale
oil [5,6]. The study of the different types of shale laminae and their various combinations is
therefore of great significance for the evaluation of shale reservoirs and the identification of
exploration sweet spots.
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The Fengcheng Formation in the Mahu Sag, Junggar Basin, is the oldest alkaline
lacustrine sedimentary deposit so far discovered in China. Its discovery drew widespread
attention and, in the past decade, its high-quality source rocks have supported the devel-
opment of the billion-ton Mahu oil field. The Fengcheng Formation is a rare hybrid of
sedimentary deposits with alkaline minerals, deposited in an evaporative volcanic–alkaline
lacustrine environment [7,8]. Several studies have been carried out on its lithofacies,
sedimentary environment, and alkaline lacustrine background, and a model has been pro-
posed for hydrothermal exhalative salt-bearing volcanic–sedimentary deposits in deep lake
basins [7,9–13]. Previous research on lamina definitions, types, and combinations [14–20];
their characteristics and formation environment [14,21–26]; and their effect on shale qual-
ity [4,27–29] focused on marine and freshwater/brackish-water continental shales. There
has been no published work on the role of laminae in alkaline environments. Hence, a study
of the mineral compositions, geochemical characteristics, pore types, porosity, diagenetic
sequences, and origins of various millimeter-scale laminae will provide insights into lamina
development in alkaline lacustrine environments and provide a theoretical reference for
lacustrine shale oil exploration and production.

In this study, we quantitatively analyzed the characteristics and distributions of
millimeter-scale laminae in the Fengcheng Formation, Mahu Sag, Junggar Basin, and the
correlations between them. To fully understand the influence of burial depth on reservoir
properties, the samples were taken at specific depth intervals. Equally, in order to avoid the
influence of strong heterogeneity and achieve cross-scale characterization of the laminae,
a synthetic approach was adopted. The types and combinations of laminae in alkaline
lacustrine sediments were qualitatively classified by core scanning at a decimeter level
using XRF and by thin-section observation at the centimeter level. Mineral compositions,
pores systems, and geochemical indicators were characterized at the millimeter level using
rock pyrolysis analysis, Qemscan, nitrogen adsorption, and NMR porosity measurement; at
the micron level using scanning electron microscopy and a Modular Automated Processing
System; and at the nanolevel using FIB SEM and nano-CT technology.

2. Geological Background

The Mahu Sag is a secondary negative structural unit in the Central Depression in
the northwest of the Junggar Basin (Figure 1). The Fengcheng Formation is in the Mahu
Sag and is a hybrid sedimentary structure formed by dolomitization, volcanism, and
terrigenous clastic sedimentation during a pseudocontemporaneous period in a saline
lacustrine environment. It is a significant shale oil layer, rich in laminae [30–32].

The Junggar Basin first evolved as a foreland basin, formed by tectonic activity during
the Late Carboniferous–Early Permian [33–35]. The northwestern edge of the basin was
extruded by uplifting of the upper mantle, and magma erupted, forming a series of thrust-
nappe structures. Due to frequent tectonic movement, there are many fracture zones in
the study area, characterized by early formation, long extension, and large break distances.
They run through the entire Permian system, accompanied by a series of small secondary
faults which are rich in salt minerals. Subduction of the deeper part of the oceanic crust con-
tinued until the Middle and Late Permian, when magmatic activity gradually ceased [36].
The Fengcheng Formation in the Mahu Sag has a thickness of 800–1800 m, with a thick west
side and thin east side. The main body of the Fengcheng Formation in the Mahu Sag is in
the semideep and deep lacustrine facies. There is a large depositional area, and fan-delta de-
posits are developed in the northern and western margins of the lacustrine basin. From the
bottom up, the Fengcheng Formation can be divided into three members (P1f1, P1f2, P1f3),
with the P1f2 consisting of hybrid sedimentary deposits such as dolomite and argillaceous
dolomite with interbedded alkaline minerals [37,38]. The sources of sedimentary material
for the P1f2 were complex and diverse. Volcanic activity, terrigenous clastic materials, and
precipitation of authigenic salt minerals during the salinization process jointly controlled
the composition and formation of complex hybrid sediments with low clay contents.



Energies 2024, 17, 962 3 of 22

Energies 2024, 17, x FOR PEER REVIEW 3 of 23 
 

 

terrigenous clastic materials, and precipitation of authigenic salt minerals during the sal-
inization process jointly controlled the composition and formation of complex hybrid sed-
iments with low clay contents. 

 
Figure 1. Tectonic background and strata of Mahu Sag in Junggar Basin. 

The Mahu Sag is part of the occluded lacustrine formed during the Fengcheng For-
mation depositional period, which took place in warm, arid, and shallow-water condi-
tions. In the Fengcheng Formation, a type of haloalkaliphilic green algae developed. The 
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and II organic matter and a TOC of 0.4~4%, and they are considered to have great shale 
oil exploration potential [39]. 
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To analyze the characteristics of laminae in the P1f2, twenty-two samples were col-
lected from Well Maye 1 and thirty-four samples from Well Mahu 281. Six of the samples 
were handpicked for further fine study. All the samples were analyzed using X-ray fluo-
rescence spectrometry and slice observation to obtain the element compositions and lam-
inae characteristics of the whole cores. Wire-electrode cutting was used to cut the six sam-
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analyzed for geochemical characteristics, mineralogical composition, and pore structures 
using TOC content measurement, rock pyrolysis analysis, X-ray diffraction analysis, Qem-

Figure 1. Tectonic background and strata of Mahu Sag in Junggar Basin.

The Mahu Sag is part of the occluded lacustrine formed during the Fengcheng Forma-
tion depositional period, which took place in warm, arid, and shallow-water conditions. In
the Fengcheng Formation, a type of haloalkaliphilic green algae developed. The algae had
the ability to lay a hydrocarbon base that supported the formation of the Mahu Oil Area.
The overall strata comprise medium to good source rocks, with mainly type I and II organic
matter and a TOC of 0.4~4%, and they are considered to have great shale oil exploration
potential [39].

3. Samples and Methods
3.1. Samples

To analyze the characteristics of laminae in the P1f2, twenty-two samples were col-
lected from Well Maye 1 and thirty-four samples from Well Mahu 281. Six of the samples
were handpicked for further fine study. All the samples were analyzed using X-ray fluores-
cence spectrometry and slice observation to obtain the element compositions and laminae
characteristics of the whole cores. Wire-electrode cutting was used to cut the six samples
for fine study into laminae, which produced seventy-one subsamples. These were analyzed
for geochemical characteristics, mineralogical composition, and pore structures using TOC
content measurement, rock pyrolysis analysis, X-ray diffraction analysis, Qemscan, nitro-
gen adsorption, NMR porosity measurement, a Modular Automated Processing System,
FIB-SEM, and nano-CT technology (Figure 2). The specific experimental procedures were
as follows:
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Figure 2. A synthetic analysis method of the P1f2 in Mahu Sag that combines decimeter-scale (XRF
scanning of overall cores), centimeter-scale (polarized light microscopy observation), millimeter-scale
(XRD, rock pyrolysis analysis, Qemscan, nitrogen adsorption, NMR porosity testing), microscale
(scanning electron microscopy), and nanoscale (FIB-SEM and Nano-CT) measurements for lami-
nae evaluation.

3.2. Laminae Division

The laminae and their combinations were identified using core description, slice obser-
vation, X-ray fluorescence spectrometry, and mineral composition. Element compositions
were determined using tablet–X-ray fluorescence spectrometry (XRF) at the National Energy
Tight Oil and Gas Research and Development Center. An M4 TORNADO high-performance
microarea X-ray fluorescence spectrometer (detection limit 5 × 10−6) was used to obtain
the qualitative and quantitative characteristics of various elements, which were scanned in
20 µm increments. Elements such as K, Na, Ca, Mg, Al, Si, Fe, and S were extracted for fine
identification and characterization of the types and combinations of laminae.

3.3. Geochemical Analyses

Powdered shale samples were analyzed to determine total organic carbon (TOC)
percentages by weight using a CS-i carbon and sulfur analyzer (repeatability less than
6%) following China National Standard GB/T19145-2003 (Determination of total organic
carbon in sedimentary rock) [40] at the National Energy Tight Oil and Gas Research and
Development Center. Other geochemical indicators were obtained using an induction
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furnace or Rock-Eval (repeatability less than 5%) following standard GB/T18602-2001
(Rock pyrolysis analysis) [41].

3.4. Mineralogical Composition

Mineral compositions were obtained using XRD and Qemscan for whole-rock minerals
and clay minerals at the National Energy Tight Oil and Gas Research and Development
Center. A Bruker instrument was used to identify bulk mineralogical compositions and
clay minerals, which were scanned at a rate of 0.02◦/s between 2.6◦ and 45◦ in 2θ at room
temperature (20 ◦C). Petrographic composition can also be determined using QEMSCAN,
which performs point-by-point energy spectrum analysis of samples to allow comparison
with a standard mineral information database.

3.5. Optical Characteristic Analyses

Slice observation was conducted in the laboratory of the National Energy Tight Oil
and Gas Research and Development Center. A LEICA polarizing microscope was used
with both plane-polarized and orthogonal light at various magnifications, from 20× to
400×. The samples were prepared into multipurpose slices, polished on both sides, for
observation of the compositions, continuity, shapes, and geometric features of the pores
and laminae.

3.6. Pore Structure Measurements

Comprehensive analysis included extracting key attributes and identifying pore types,
shapes, sizes, and distributions. Correlations between pore characteristics and geochemical
parameters were identified.

Powdered samples, which had been degassed at 110 ◦C for 12 h to remove water,
were analyzed at Peking University using a Micromeritecs ASAP2020 specific surface area
analyzer to determine specific surface areas (Brunauer-Emmett-Teller (BET)), pore volumes,
and equivalent pore distributions (Barret-Joyner-Halenda (BJH)).

Nuclear magnetic resonance, field emission scanning electron microscopy (SEM) exam-
ination, Modular Automated Processing System (MAPS) examination, focused-ion-beam
scanning electron microscopy (FIB-SEM) examination, and nano-CT three-dimensional
reconstruction were conducted at the National Energy Tight Oil and Gas Research and
Development Center.

Square samples, which were manually ground to a fine finish and then ion-polished
and carbon-plated, were analyzed for pore characteristics with an Apreo FEI high-resolution
field emission scanning electron microscope. Using the watershed method, AVIZO image-
processing software (Avizo-20201-Windows64-VC12) was used to identify pores, and the
“equivalent circle” model was applied to calculate parameters such as pore diameters and
thin-section porosity.

Nano-CT was conducted using an Xraida UltraXRM-L200 (Carl Zeiss, Oberkochen,
Germany) following oil and gas industry standard SY/T7410.1-2018 (Determination of
three-dimensional pore structure of rocks Part 1: CT scanning method) [42].

FIB-SEM examinations were performed using an FEI Helios NanoLab 650 (FEI Com-
pany, Hillsboro, OR, USA) with an accelerating voltage of 1 kV to achieve nanoscale
denudation of tight reservoir rocks at a resolution of 0.9 nm and to carry out scanning of
individual layers. Three-dimensional images at nanometer resolutions were reconstructed
to accurately characterize three-dimensional pore–throat systems in shale reservoirs.
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4. Results
4.1. Types and Combinations of Laminae

Five types of laminae were distinguished: felsic laminae (FQL), dolomite laminae (DOL),
chert laminae (CL), reedmergnerite laminae (RL), and shortite laminae (SL), as follows:

(1) Felsic laminae: These are primarily composed of quartz and feldspar, followed by
dolomite and pyrite, and appear brown under plane-polarized light. The laminae are
0.2~3 cm thick and contain small numbers of organic matter fragments (Figure 3a).
The laminae are straight or curved, and their thickness varies slightly. The particle size
is generally less than 100 µm, but wide variations in particle sizes give the laminae a
mottled light and dark appearance under plane-polarized light.

(2) Dolomite laminae: These are primarily composed of subangular and subcircular
dolomite crystals and are colorless under plane-polarized light. The matrix is a mix-
ture of feldspar, quartz, pyrite, and clay minerals. The particle sizes of the dolomite are
50~150 µm and of the matrix minerals less than 10 µm (Figure 3b). In the penecontem-
poraneous stage, the formation of micritic–microcrystalline dolomite was induced by
alkaline-lake microorganisms. The micritic–microcrystalline dolomites were formed
by primary precipitation, the replacement of aragonite and high-Mg calcite, and
other processes. In the shallow burial stage, the continuous growth of micritic–
microcrystalline dolomite and replacement of calcite, tuffs, and other substances
formed the silt-sized dolomite. And in the middle burial stage, the dolomite, mostly
silt- and fine-sized, was created by the replacement of volcanic materials with dolomi-
tization fluid [43]. The dolomites of DOL are predominantly silt- and fine-sized.
The laminae are more than 0.15 cm thick, with bed-parallel fluctuations, and their
boundaries are clear.

(3) Reedmergnerite laminae: The primary visible component under plane-polarized
light is reedmergnerite, and the laminae are thick. The reedmergnerite particles are
colorless, wedge- or rhombus-shaped, and distributed in starlike configurations. The
lengths of individual crystals are less than 2 mm, and the aspect ratios are about 2:1
(Figure 3c). They appear gray-white to yellow under orthogonal light, showing biaxial
crystals with extinction characteristics and some symmetrical sections. XRF analysis
shows that Na and Si are comparatively enriched in the reedmergnerite, and Na, K,
Al, and Si are enriched in the matrix.

(4) Shortite laminae: The principal visible component under plane-polarized light is
shortite, and the laminae are thick. Shortite particles are colorless and occur in long
strips or agglomerate shapes that are mostly distributed along the laminae in two size
ranges (width either >2 cm or <5 mm) (Figure 3d). They are biaxial negative crystals
with extinction characteristics and second-order light emissions are red in color under
orthogonal light. XRF analysis shows that Na and Ca are enriched alongside the
shortite and Na, K, Al, and Si are enriched in the matrix.

(5) Chert laminae: These are primarily composed of chert and are colorless. The laminae
are 0.1~1 cm thick (Figure 3e). Qemscan reveals that the laminae also contain small
amounts of feldspar and pyrite but seldom organic matter. The laminae are smoothly
curved with varying thicknesses and clear boundaries.

Four types of laminae combinations are found in the P1f2: FQL-DOL, FQL-SL, FQL-RL,
and DOL-CL.
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Figure 3. Lamina types and characteristics of the P1f2 in the Mahu Sag. (a1–a4) Felsic laminae,
Well Mahu 281, 4943.1 m; (b1–b4) dolomite laminae, Well Maye 1, 4743 m; (c1–c4) alkaline mineral
laminae, Well Mahu 281, 4865.2 m; (d1–d4) reedmergnerite lamination, Well Mahu 281, 4664.98 m;
(e1–e4) shortite lamination, Well Mahu 281, 4737.4 m. The images reflect the microscopic characteris-
tics, mineral compositions, and element enrichment of the laminae. The mineral compositions were
obtained using XRD.

4.2. Differences between Laminae

The results show that there are distinct differences in depositional environment, min-
eral compositions, geochemistry, and pore characteristics between different laminae.

4.2.1. Mineral Composition

The fine-grained sediments consist of clastic minerals, alkaline minerals, and organic
matter, which form visible boundaries between individual laminae (Figure 4). Clastic
minerals include quartz, feldspar, dolomite, pyrite, hornblende, and clay minerals, while
the alkaline minerals are predominantly reedmergnerite and shortite. FQL have high
contents of felsic minerals and dolomite, including quartz (24.3%), K-feldspar (4.8%), albite
(17.5%), and dolomite (26.6%). DOL have dolomite contents of around 43.8%, followed
by quartz, and the contents of alkaline minerals are markedly enhanced in RL and SL. CL
have dramatically increased chert content (60.9%) but low K-feldspar.
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4.2.2. Geochemical Characteristics

The TOC contents of samples from different laminae range from 0.2% to 1.7%, concen-
trated around 0.8% to 1.5% (Figure 5). The average TOC contents of the six lamina types
are as follows: FQL, 1.30%; DOL, 0.91%; RL, 1.27%; SL, 1.24%; and CL, 1.00%. The FQL
and RL samples have higher TOC values than the others. The RL samples also show high
values for production index (PI). However, there is a negative correlation between TOC
and oil saturation index (OSI). DOL and CL have higher OSI values than the other types,
with average values of 187.9 and 177.21 mg/g TOC, respectively. On the whole, FQL and
RL have the best oil-bearing properties.

4.2.3. Pore Characteristics

Organic pores, inorganic pores, and microfractures all occur in the P1f2. The inorganic
pores are mainly intragranular, intercrystalline, and dissolution pores. The dissolution
pores mainly occur in carbonate, quartz, and feldspar. Organic pores are less developed and
are mostly found in the organic matter associated with clay minerals and pyrite. They are
generally elliptical or stomatic in shape with no specific orientation and are predominantly
small in size. Inorganic pores are dispersed among debris particles in nondirectional
arrangements with poor pore connectivity. They are triangular, angular, or rectangular in
shape. Microfractures mostly occur between mineral grains or between mineral grains and
clumps of organic matter and are strip-shaped.
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(1) Pore types and characteristics

The adsorption curves of the different laminae are all “S”-shaped and belong to type
H3 in the International Union of Theoretical and Applied Chemistry (IUPAC) classification.
When relative pressure (P/Po) is greater than 0.9, adsorption capacity increases rapidly.
The desorption curves almost coincide with the adsorption curves, indicating open wedge-
shaped or slit-type parallel-plate pores.

The pores in FQL are mostly scattered intergranular pores of large size, densely packed
dissolution pores of uniformly small size, and organic pores (Figure 6a–d). DOL contain
mostly dissolution and intercrystalline pores (Figure 6e–h). The dissolution pores are
primarily found in dolomite and in feldspar, which is on the edges of dolomite crystals.
Feldspar dissolution pores are much more common than dolomite dissolution pores. The
imporous particles are mostly alkaline minerals. RL contain intercrystalline pores, dissolu-
tion pores, and highly developed organic pores, as well as small numbers of intragranular
pores (<2%) (Figure 6i–l). SL are mainly composed of intercrystalline pores, dissolution
pores, and microfractures. The microfractures mostly occur in shortite in proportions
less than 5% and with aspect ratios greater than 10 (Figure 6m–p). CL contain mostly
dissolution pores in chert (Figure 6q–t).

(2) Pore size distribution

Nanopores predominate in the fine-grained sediments of the P1f2. In this study,
various methods were used to measure pore size distributions. NMR analysis shows
that the pore size distributions of all lamina types are bimodal (Figure 7a–c). The BJH
desorption cumulative pore volumes are highest when the average pore width is less than
2 nm, followed by those of pores in the range 7~15 nm. MAPS data show that the pore
sizes of all laminae vary in the range of 20~100 nm. Generally, pore sizes in the P1f2 are
mainly less than 100 nm. The proportions of large pores are higher in FQL, DOL, and RL
than in SL and CL.

(3) Porosity

Various methods were used to measure the porosities of individual laminae. Using
NMR, the average porosities were as follows: FQL, 2.06%; DOL, 1.21%; RL, 2.63%; SL,
1.28%; and CL, 1.08% (Figure 7d). According to the nitrogen adsorption results, the average
porosities were as follows: FQL, 3.00%; DOL, 1.88%; RL, 2.51%; SL, 2.64%; and CL, 2.02%
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(Figure 7e). Overall, FQL have the best porosity, followed by RL. SL have medium porosity,
and DOL and CL show the poorest porosity.

(4) Plane porosity

A total area of 625 µm × 625 µm (625 small areas of 25 µm × 25 µm) in the SEM
image was used to count the pores in individual laminae. The average plane porosities
are as follows: FQL, 52.9%; DOL, 58.7%; RL, 60.6%; SL, 53.4%; and CL, 26.6% (Figure 7f).
Although intragranular pores rarely occur in the reedmergnerite crystals in RL, pores in
matrix minerals—composed of felsic, dolomite, and clay minerals—are extremely common
and contribute significantly to plane porosity (Figure 8).
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Figure 6. Pore characteristics of individual laminae under SEM, showing pore types, shapes, size, and
distribution. (a) Feldspar dissolution pores in FQL; (b) pyrite intercrystalline pores in FQL; (c) clay
intercrystalline pores and organic matter dissolution pores in FQL; (d) organic matter dissolution
pores in FQL; (e,f) dolomite dissolved pores and feldspar dissolved pores in DOL; (g,h) intercrystalline
pores in DOL; (i) sodalite crystals in RL; (j) intercrystalline pores and organic matter dissolution pores
in RL; (k) organic matter dissolution pores in RL; (l) crude oil exudation in RL; (m) solite crystals in
SL; (n–p) microfractures in SL; (q–t) dissolution pores in CL.
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4.2.4. Lamina Density

The figures show an obvious positive correlation between porosity and TOC content
(Figure 9a). The acids that dissolve minerals mostly come from organic matter, and the
intensity of dissolution is controlled by the content of organic matter, the concentration of
organic acid, the mode of occurrence of the soluble minerals and organic matter, etc. There
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is, however, a negative correlation between lamina density and TOC content (Figure 9b).
The development of laminae reflects periodic fluctuations in sedimentation rates and
hydrodynamic conditions, indicating an unstable water environment. Strong laminae
indicate frequent variations in hydrodynamic conditions during deposition, which is not
conducive to the preservation of organic matter and therefore affects organic carbon content
and pore characteristics.
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4.2.5. Correlation Analysis

The average values of the parameters that characterize reservoir properties (pore
volume—V, specific surface area—S) and oil content (free hydrocarbon—S1, oil saturation
index—OSI, TOC) were used to investigate the relationship between reservoir characteris-
tics and the oil-bearing properties of individual laminae (Figure 10). Overall, FQL and RL
show distinctly superior properties. DOL and CL have good oil-bearing properties but the
worst pore characteristics. SL do not have any particular advantage over the other types.
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4.3. Stratigraphic Organization

Analysis of element abundance and ratios shows a good correlation between pale-
oclimate and paleowater depth [44] (Figure 11). Generally, the higher the Mg/Ca and
Mg/Sr values, the drier and hotter the climate [45]. Mg/Ca values may be low or even
extremely low in alkaline layers. During the early stage of the P1f2, the Mg/Ca and Mg/Sr
values followed a variation pattern of low → high → low [38,44,46]. Combining this with
lithology changes suggests that the alkaline minerals present in the middle and late stages
of the P1f2 could have caused low Mg/Ca and Mg/Sr values even in arid environments.
And the climate index C (C = ∑(Fe + Mn + Ni + Cr + Co + V)/∑(Ca + Mg + K + Sr + Ba))
can be used to calculate the paleoclimate; it suggests a semiarid to semihumid condition
when C varies from 0.4 to 0.6, and it indicates a semiarid condition when C is 0.2~0.4,
and if C is less than 0.2, that indicates an arid condition [38]. The corresponding pa-
leoclimate pattern is therefore humid → semiarid → arid→semiarid. Higher ratios of
Mn/Fe and Rb/K indicate shallower water [38]. These ratios show a variation trend of
high → medium-low → low → high, and the corresponding pattern for paleowater depths
is deep → shallow → shallow → deep [44]. V/(V + Ni) is 0.6~0.84 in a reducing condition
and less than 0.6 in an oxygen-enriched environment [38]. The changes in paleowater depth
and redox conditions are almost identical to those of the paleoclimate.
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Figure 11. The evolution roughly includes five main stages, which show different sediments under
sedimentary condition. It shows a paleowater depth variation trend of deep → shallow → deep
and the corresponding paleoclimate variation trend of humid → arid → semiarid, with a salinity
of slightly salty → highly salty → slightly salty. Longitudinal variation of paleoenvironmental
geochemical parameters of the P1f2 in the Mahu Sag is modified from [38,44].
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Seasonal wet and dry environment fluctuation appeared during the deposition of the
alkaline Fengcheng Formation in the Junggar Basin, with a high degree of salinization and
strong evaporation accompanied by frequent volcanic activity and hydrothermal activity
which favored the formation of alkaline minerals. Influenced by the changing salinity and
environments of the ancient lake in the Mahu Sag, the P1f2 can be divided into Mg-Ca
carbonate minerals, Mg-Ca-Na carbonate minerals, and Na carbonate minerals according to
the types of cations [47]. With increasing salinity, the mineral composition shows a change
from Mg-Ca carbonate minerals (dolomite-dominated) to Mg-Ca-Na carbonate minerals
(shortite-dominated) and Na carbonate minerals (reedmergnerite-dominated) (Figure 12).
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Figure 12. The diagenetic evolution sequence of the P1f2 in the Mahu Sag.

Influenced by material sources, the Fengcheng Formation developed a large amount
of terrestrial-source clastic sedimentary with a high degree of felsic laminae. As a result
of the event deposition, a large number of gravity deformation structures (load structures
and sand ball–sand pillow structures), hydroplastic deformation structures (water escape
structures and salt dike structures), and brittle deformation structures (intralayer faulting,
step faults, and microfractures) are visible in the Fengcheng Formation (Figure 13).

The shale in the continental lacustrine basin has a wealth of material sources, and the
materials created in the shale laminae comprise endogenous, volcanic–hydrothermal, and
terrestrial components. Among these, endogenous materials are nonexotic materials like
carbonate minerals and calcareous microbial crusts formed by evaporation and microbial
activities in the basin [48,49]. Special alkaline minerals fall into this genetic mechanism.
Volcanic–hydrothermal materials are sediments formed by volcanic tuff and volcanic glass,
brought into the basin through precipitation through volcanism and deep hydrothermal
action, which is the cause of chert. Terrestrial-source materials are those formed by the
transportation of quartz, feldspar, and clay minerals, etc., along the direction of the source
supply [50].
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5. Discussion
5.1. Laminae Sedimentary Mechanism

Single and mixed sources make up the material sources of the alkaline lacustrine
shale series in the Junggar Basin, and this study reveals that the shale was generated by
three different depositional methods: terrestrial-source still water deposition (TSSWD),
intrasource deposition (ISD), and hybrid-source still water deposition (HSSWD).

FQL are dominated by terrestrial input of felsic minerals and clay, with a low content
of organic matter and endogenous sedimentary minerals, and are from single-terrestrial-
source still water deposition (Figure 3a). DOL are mainly composed of terrestrial inputs
(felsic minerals, clay) and endogenous dolomite and are from hybrid-source still water
deposition, with no dolomite of a single endogenous sedimentary origin (Figure 3b). RL
and SL are mainly composed of a combination of terrestrial inputs (feldspathic minerals,
clay minerals) and endogenous alkaline minerals (reedmergnerite and shortite), which
are from hybrid-source still water deposition (Figure 3c,d). CL are mainly endogenous
chert, which is from single intrasource deposition (Figure 3e). Vertically, there are several
interstratified deposits of terrestrial FQL and mixed DOL, mixed DOL and endogenous CL,
and terrestrial FQL and mixed RL/SL.

The FQL-DOL combination, which developed in terrestrial-source still water deposi-
tion and hybrid-source still water deposition, features high feldspar, quartz, and carbonate
mineral composition. The excellent reservoir space, moderate fracture development, and
oil traces visible in the core all point to favorable reservoir characteristics in the FQL-DOL
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combination. High levels of gray-white spots or long stripes of alkaline mineral develop-
ment can be detected in the FQL-RL combination and FQL-SL combination core sample,
which is light gray. It shows well the fracture development and medium pore development.
And it developed in terrestrial-source still water deposition and hybrid-source still water
deposition. The DOL-CL combination shows limited pore space. And the core is light gray
with gray-black siliceous strips which are high in chert mineral. The DOL-CL combination
developed in intrasource deposition and hybrid-source still water deposition.

5.2. Sedimentary Evolution

Deposition of the P1f2 took place in a high-salinity reducing environment and was
accompanied by at least two invasions of hydrothermal fluids (Figure 11). The paleoclimate
was relatively humid → semiarid → arid → semiarid, with the paleowater depth and
paleosalinity changing accordingly [44]. We distinguished the sedimentary evolution of
the P1f2 into five stages in accordance with Zhang’s five stages of paleoenvironmental
evolution [44] (Figure 14). And combined with thin sections, laminae distribution was
systematically studied (Figure 15). Affected by volcanic activity, hydrothermal injections,
and paleoclimate, the distribution of alkaline minerals is limited.
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Figure 14. Laminae combinations and origin of the Well MY1 in the Mahu Sag. Comprehensive
diagram showing laminae combinations, diagenetic sequence, and sedimentary condition evolution.
Laminae combination variation roughly includes three main stages, which are mainly caused by
pH, chemical weathering of granitic and rhyolite rock, biological metabolism, volcanic activity, and
hydrothermal fluid.
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Figure 15. Laminae development of Well MH281and Well MY1.

The early and middle stages of the P1f2 correspond to the statistical stratigraphy
of the Well MH281, while the middle and late stages of the P1f2 correspond to the sta-
tistical stratigraphy of the Well MY1 (Figure 15). According to the statistics, FQL-DOL
combinations and sandstone deposits predominated in the early stages of the Well MH281.
Afterwards, FQL-RL/SL combinations gradually took over the leading position, with addi-
tional contributions from FQL-DOL combinations and sandstone deposits. The FQL-RL/SL
combinations then displayed a declining trend and progressively moved into the late stage.
In the Well MY1, DOL-CL combinations, FQL-DOL combinations, and sandstone deposits
were mostly deposited between 4721.4 m and 4726.8 m. Subsequently, a substantial amount
of FQL-RL/SL combinations was formed, considerably reducing the amount of DOL-CL
combinations and FQL-DOL combinations. At 4664.0 m~4670.0 m, the fraction of DOL-CL
combinations and FQL-DOL combinations grew dramatically, with DOL-CL combinations
dominating, while the proportion of DOL-CL combinations showed a declining trend.

The evolution occurred as follows:

1. The initial stage of salinization occurred during the late P1f1 and the early P1f2 under
semideep lacustrine conditions. The climate was humid and the lake level high,
with strong injection of water and weak evaporation [44]. Volcanic activity provided
rich nutrients for aquatic organisms, resulting in high organic matter abundance.
These reducing conditions were conducive to the accumulation and preservation of
organic-rich mudstone. Salinity at this stage was still low and had not yet reached
saturation. When the primary stage of salt mineral precipitation began, Ca2+ and
Mg2+ combined with CO3

2− [47] before Na+ and precipitated to form Mg and Ca
carbonate minerals that interbedded extensively with the mudstones. In this period,
the FQL-DOL combination was well developed, with little development of alkaline
minerals (Figure 16).
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Figure 16. Laminae distribution of the P1f2 in the Mahu Sag. TSSWD: terrestrial-source still water
deposition; ISD: intrasource deposition; HSSWD: hybrid-source still water deposition.

2. The transitional stage of salinization occurred during the early–middle P1f2 deposition
under shallow and relatively dry semideep lacustrine conditions. The intensity of
water injection was less than evaporation, resulting in falling lake levels. The supply
of terrigenous debris was inadequate. With the increasing salinity, the sediments grad-
ually alkalized, accompanied by water stratification. Volcanic activity and microbial
consumption also gradually alkalized the water, encouraging Na+ to participate in
crystallization to form shortite [12,47]. At the edges of the basin, the most common
alkaline mineral was shortite, in low–medium concentrations and with large crystal
sizes, indicating the rapid deposition. In this period, the FQL-DOL combination,
FQL-SL combination, and DOL-CL combination were well developed. FQL-DOL and
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FQL-SL combinations formed at the edges of the basin. Towards the center of the
basin, the chert bands developed, forming the DOL-CL combination (Figure 16).

3. The high-level stage of salinization occurred during the middle P1f2 under arid condi-
tions in a shallow lacustrine environment. In this stage, the pH > 9, and hydrothermal
fluids and strong microbial activity contributed significantly to salinization and alka-
lization [12]. As salinity increased, water stratification became more pronounced [51].
With the influx of hydrothermal fluids, evaporative salt minerals developed in large
quantities, ushering in a period of great richness of alkaline-bearing sedimentary
layers. In an arid climate, the water was further concentrated and salinized, and large
amounts of boron combined with hydrothermal fluids to form reedmergnerite [12,47].
When pH values exceed 9, the solubility of silica increases exponentially, so silicate
contents dropped dramatically. The FQL-SL/RL combination principally developed
during this stage. And the FQL-DOL combination continued to develop during this
period in a relatively small percentage.

4. The recession stage of salinization occurred during the middle–late P1f2 deposition,
under semiarid to arid conditions with slightly rising lake levels and decreasing
salinity in a shallow lacustrine environment, and the pH < 9 [12,44]. The influx of
hydrothermal fluids caused alkaline minerals [12,47], mostly small deposits of shortite
and reedmergnerite, to form at the basin edges. The sequence of lamina combinations
in this stage was similar to the transitional stage of salinization, with FQL-SL and
FQL-DOL forming at the edges of the basin and silicates precipitating to form the
DOL-CL combination towards the center of the basin as a result of the decreasing pH.

5. The late stage of salinization corresponded to the late P1f2 deposition and the early
P1f3 deposition and occurred in a shallow–semideep lacustrine environment. The
climate was semiarid to semihumid, with rising lake levels and desalinated water.
Alkaline minerals gradually disappeared in the weakly oxidizing–weakly reducing
environment. In this period, the FQL-DOL combination was well developed, with
little development of alkaline minerals.

6. Conclusions

Using slice identification, X-ray diffraction, XRF, scanning electron microscopy, ni-
trogen adsorption, and nano-CT, etc., the characteristics and origins of millimeter-scale
laminae in the alkaline lacustrine strata of the P1f2 were investigated. The following
conclusion are drawn:

There are five types of laminae in the P1f2, which form in four distinct combinations.
The pore systems are predominantly composed of intercrystalline pores, intragranular
pores, and dissolution pores of feldspar and dolomite, accompanied by imporous alkaline
mineral particles. FQL and RL show distinct superiority in reservoir characteristics and
oil-bearing properties. There is a marked positive correlation between porosity and TOC
content but a negative correlation between lamina density and TOC content.

Single and mixed sources make up the material sources of the alkaline lacustrine shale
series in the Junggar Basin. The FQL-DOL combination developed in single-terrestrial-
source still water deposition and hybrid-source still water deposition. The FQL-RL combi-
nation and FQL-SL combination developed in single-terrestrial-source still water deposition
and hybrid-source still water deposition. The DOL-CL combination developed in hybrid-
source still water deposition and single-intrasource deposition.

The P1f2 has experienced five sedimentary evolution stages, with various combina-
tions of salinization/desalinization, hydrothermal fluid influx, and environment changes.
The initial and transitional stages of salinization were dominated by evaporative saliniza-
tion, which formed Mg and Ca carbonates, shortite, and chert deposits; the FQL-DOL and
FQL-SL combinations developed at the edges of the basin; and FQL-DOL-CL developed
towards the basin center. In the high-level salinization stage, salinity reached its peak and
alkaline mineral deposits developed under the action of hydrothermal fluids, primarily
developing FQL-SL-RL. In the late recession stage, desalination occurred, and the sedi-
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mentary characteristics reverted, becoming similar to the initial and transitional stages of
salinization. In this period, FQL-SL and FQL-DOL developed at the edges of the basin and
FQL-DOL-CL formed towards the center of the basin.
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