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Abstract: Commutation failures in high-voltage direct current (HVDC) transmission systems often
occur within inverter stations, posing challenges to the safe and consistent operation of HVDC
transmission projects. This paper examines data gathered from a wide-spectrum transient electromag-
netic voltage monitoring apparatus. The findings uncover a notable correlation between transient
AC bus voltage disturbances, stemming from faults, and the occurrence of commutation failures
in HVDC transmission systems. Leveraging this correlation, we propose a commutation failure
mitigation strategy for HVDC systems centered around AC bus voltage disturbances within inverter
stations. Through fault validation simulations conducted across three HVDC transmission systems,
our strategy demonstrates effective suppression of commutation failure incidents within HVDC
transmission projects.

Keywords: HVDC; commutation failure; transient voltage disturbance; broadband voltage measure-
ment; suppression strategy

1. Introduction

High-voltage direct current (HVDC) transmission offers significant advantages, in-
cluding extended transmission distances, enhanced transmission capacity, and reduced line
losses, making it an effective solution for addressing energy distribution imbalances [1–3].
Notably, in the Yangtze River Delta, an ultra-high-voltage multi-drop AC/DC hybrid
power grid has been established. The proliferation of DC lines results in the formation
of a multi-infeed HVDC system, enhancing grid operational flexibility but, concurrently,
imposing heightened stability requirements [4–7]. Commutation failure (CF) stands as a
prevalent fault encountered on the inverter side of HVDC transmission systems. It can
trigger voltage fluctuations and power drops and even lead to DC block in cases of con-
tinuous multiple failures [8–10]. This interconnected AC/DC power grid is particularly
sensitive to the status of the DC system, directly impacting the overall safety and stability
of the grid. Key contributors to CF encompass reductions in the AC bus voltage, distortions
arising from grounding faults within the AC system at the inverter side, and the switching
of high-capacity equipment [11,12].

Several studies have delved into the mechanism of CF and suggested suppression
measures [13,14]. For instance, a novel approach employing a thyristor-based controllable
capacitor was introduced in reference [15], targeting CF elimination, especially in higher-
power/current LCC HVDC systems. The efficacy of CF mitigation often faces constraints
due to the delay in extinction angle (EA) measurement or inaccuracies in existing prediction
methods for EA or firing angle (FA). To address this, ref. [16] proposed a CF mitigation
technique founded on the conceptualization of the imaginary commutation process. The
author of [17] introduced a CF prevention control module capable of swiftly recognizing
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faults. This method enhances the lead trigger angle by detecting zero-sequence voltage
and AC voltage amplitude variations. This method effectively suppresses CF occurrences.
Similarly, in [18], a control strategy was proposed to curtail continuous CF by reducing
the lead trigger angle’s fluctuation range. By establishing compensation components
through hysteresis comparisons based on the disparity between the actual and commanded
trigger angles, control over the lead trigger angle’s fluctuation range is achieved. Some
scholars introduced a CF suppression method centered on diminishing control angle errors
using phase-locked loop transient error measurements. Moreover, in [19], a conventional
predictive control approach involving constant extinguish angle control was enhanced
using a DC current prediction module. This method optimizes the controller by establishing
the minimum trigger angle of each valve as the definitive output command, consequently
decreasing the likelihood of CF occurrences [20].

The research achievement described above have enabled a certain degree of CF sup-
pression. Although the commutation failure suppression method mentioned in the above
literature has achieved a certain effect of inhibiting commutation failure, it is difficult to
meet the actual engineering requirements due to the feedback signal delay. Therefore, to
optimize a CF suppression strategy, it is crucial to understand the relationship between
the transient electromagnetic characteristics of AC bus fault voltage and CF generation
mechanisms. We assess the correlation between CF and AC bus voltage attributes using
data captured by a broadband transient electromagnetic voltage online monitoring device.
Additionally, we introduce a mitigation strategy aimed at averting commutation failures in
HVDC systems, focusing on disturbances within inverter station AC bus voltages.

2. Correlation Analysis of Electromagnetic Disturbance and Commutation Failure
2.1. Commutation Failure Mechanism

The converter valve of a traditional HVDC transmission system utilizes a semi-
controlled thyristor. Following conduction, the thyristor requires a specific duration to
complete carrier recombination. This duration, termed the recovery time of the thyristor
valve, is denoted in electrical terms as γmin. Commutation between two bridge arms may
lead to commutation failure (CF) if the valve does not regain its blocking ability within
the timeframe before the reverse voltage acts. Essentially, CF occurs if the inverter turn-off
angle γ is shorter than the recovery time of the thyristor valve γmin in this scenario. The
turn-off angle can be calculated using (1):

γ = arccos (
2IdXr

UL
+ cosβ) (1)

where Id is the DC current flowing through the converter valve; UL is the commutation
voltage; Xr is the commutation reactance; and β is the leading trigger angle of the converter
valve. According to (1), reducing the AC bus voltage and trigger lead angle or increasing
the DC current and commutation reactance will decrease the turn-off angle and risk of CF.

2.2. Wideband Measurement System for Transient Electromagnetic Voltage

The capacitive voltage divider (CVD) used in these tests has been designed for mea-
suring high-frequency fault transients across various apparatuses like power transformers,
instrument transformers, switchgear, breakers, and HV cables. It adheres to all the re-
quirements outlined in IEC 60060-2, particularly in terms of measuring accuracy and step
response. This ensures high reliability and robust voltage sensing, minimizing interference.
The inductive-free broadband sensing unit connects the medium-voltage capacitor and
the ground to create a high-voltage capacitive voltage divider [21]. Figure 1 illustrates
the structure of this equipment. The monitoring device’s 3 dB cutoff frequency is higher
than 200 kHz, which can respond to lightning voltage impulse responses and transient
overvoltage with a microsecond-order rising time.
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Figure 1. The schematic circuit diagram of CVD.

2.3. Measurement of AC Transient Voltage Disturbance

To the best of our knowledge, there are no comprehensive studies of the AC voltage
disturbance characteristics of converter stations. The measured disturbances only include
transient voltages that have caused CF. This makes it difficult to determine the frequency
and nature of AC voltage disturbances that cause CF. Herein, we propose a trigger mode for
the transient voltage disturbance of periodic signals. Specifically, by recording the transient
voltage disturbances whose amplitude and duration meet the designated conditions, it
is possible to detect small signal voltage disturbances near the zero-crossing point. The
trigger source y is defined as

y = Σ |uk − uk−T| (2)

where uk and uk−T are the disturbance of transient voltage in a period T, k presents the
different phase voltage identification of AB, BC, or CA. When y is greater than the trigger
threshold, the system is triggered to record the wave data.

We investigate the characteristic of electromagnetic disturbance which pass through
one side of the transformer to the other side. A short-circuit fault on the 220 kV power
system causes a voltage disturbance on the 500 kV power system due to the interaction of
the voltages on both sides of the transformer. The sensor is not only sensitive to voltage
disturbances caused by faults in the 500 kV power system, but also has some applicability
to crossing voltage disturbances caused by faults in the 220 kV power system or the 1000 kV
power system on the 500 kV power system. The top picture in Figure 2 displays the three-
phase voltage waveforms as measured by the sensor, while the bottom graph illustrates
the voltage disturbance waveform in the time domain, representing the occurrence of the
disturbance phase. In this example, the system voltage disturbance time is t0 = 9878.06 µs,
the trigger signal jump time is t1 = 9992.75 µs, and the actual trigger time is t2 = 10, 000 µs.
Various voltage disturbances were measured by the monitoring device, such as a single-
phase fault, a two-phase grounding fault, a closing no-load line, a switching filter, etc. The
typical voltage waveform of a 500 kV system with a single-phase grounding fault is shown
in Figure 3.
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2.4. Time Integral of Disturbance Voltage

The commutation area is a parameter representing the commutation voltage. If the
voltage time area is too small during commutation, this will result in CF. However, during
AC voltage wave recording, the state of the DC operation cannot be considered. Therefore,
we propose to use the time integral of the disturbance voltage to characterize the severity
of AC voltage disturbance [22]. The time integral of the disturbance voltage is equal to
the change in AC voltage relative to the previous cycle. The relationship between the time
integral of the disturbance voltage and the commutation area is significant in terms of
analyzing the disturbance characteristics of the AC power grid in an AC/DC hybrid power
grid. The time integral of the disturbance voltage is defined in (3):

S =
∫ t0+T

t0

∣∣uk − uk−nT

∣∣ dt (3)

where t0 is the disturbance occurrence time; T is the power frequency cycle; and nT is the
sampling point corresponding to a period in the power frequency.

2.5. Correlation Analysis of AC Voltage Disturbance and DC Commutation Failure

The device recorded 280 transient voltage disturbance events with identifiable sources,
predominantly involving filter switching, faults, main transformer switching, no-load
line switching, main transformer low-voltage capacitor switching, and disruptions from
the DC system. Among these events, a total of 89 commutation failures occurred in the
converter station.
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Figure 4 displays the box diagram of the time integral of voltage disturbance concern-
ing the occurrence of CFs. The maximum value for a voltage disturbance time integral
without CFs is 0.27, whereas the minimum value associated with CFs is 0.45. This indicates
that, in the exemplary Fengjing converter station, there are specific thresholds for the time
integral of AC voltage disturbances that could potentially cause CFs, distinguishing them
from transient voltage disturbances which cannot. Notably, there are 15 outliers, accounting
for approximately 6.4% of the cases without CFs, necessitating further investigation. How-
ever, these outliers have a minimal impact on the overall results. The outcome distinguishes
the effect of AC voltage disturbance on the occurrence of a CF in the DC system, denoted
by the binary state variable [0 1], where 0 represents no CF occurrence and 1 indicates a CF
occurrence. The Spearman correlation coefficient between transient voltage disturbance
and CF registers at 0.65, suggesting a strong correlation between the two factors. The red
lines represent outliers.
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3. Predictive Logic for Commutation Failure

The DC transmission control system serves three purposes. First, it can keep DC
power, voltage, current, and control angle within steady-state values. Second, it can limit
transient overvoltage and overcurrent. Finally, after failure of the AC and DC systems, it
responds quickly and resumes power delivery smoothly. The control system of an HVDC
transmission system contains four levels, which are the system control level, the pole
control level, the converter control level, and the valve control level. The higher the control
level, the slower the response speed. Among them, converter control is the foundation. It
completes the control of a DC current through the control of the converter trigger pulse;
then, it controls the transmission power. During normal operation, the DC control system
should control the DC power, DC voltage, and DC current within the steady-state range.

Given the stringent demands for response time in a DC control system, we propose a
CF prediction method centered on AC bus voltage disturbance (shown in Figure 5). The
fundamental objective of this approach is to detect any fluctuations in AC bus voltage.
Once the disturbance surpasses a predefined threshold, the trigger angle is modulated,
with the degree of adjustment contingent upon the magnitude of the AC voltage shift [23].

The function of commutation failure prevention (CFPREV) control is to instantaneously
increase the commutation margin in the event of an AC system fault. The zero-sequence
voltage component is obtained by summing three-phase AC phase-change voltages. The
instantaneous AC voltage magnitude is obtained by α/β transformation. When the discrim-
inative condition of a single-phase or three-phase AC fault is satisfied, an alpha variation
in CFPREV control is output. CFPREV control can effectively avoid commutation failure
caused by mild AC faults.
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Based on the operational experience and long-term data accumulation of the Chinese
HVDC transmission system from Tuanlin to Fengjing, the paper proposes a predictive
algorithm to prevent commutation failures in LCC-HVDC systems for optimizing existing
control and protection strategies. The algorithm is also validated in the Fulong-to-Fengxian
and Yidu-to-Huaxin HVDC projects. The basic logic of the algorithm involves the online
monitoring of AC bus voltage disturbances. When the voltage disturbance exceeds a
predefined threshold, the algorithm triggers control variables in advance and adjusts the
triggering angle of the converter valves accordingly. The specific algorithm steps are
described as follows:

1. Online monitoring and recording of inter-phase voltages are conducted, with high-
frequency noise interference filtered out by a filter. This algorithm only considers
operational and fault transient voltage disturbances that can cause commutation
failures, while transient disturbances of higher frequencies such as lightning and
very fast transient overvoltage (VFTO) are not within the scope of this optimization
strategy. Therefore, a cutoff frequency of 10 kHz or higher can be set as the high-
frequency cutoff frequency (or adjusted according to the specific conditions of the
converter station).

2. Using data registers to store the waveform data from the previous cycle, perform a
differential operation between the current waveform data and the previous cycle’s
data to calculate the absolute difference of the inter-phase voltages in the current cycle
and the previous cycle, denoted as |∆UAB|, |∆UBC|, and |∆UCA|. Then, determine the
maximum value among these three voltage disturbances, denoted as ∆Um.

3. Based on the specific requirements of the DC transmission project, set the threshold
voltage disturbance value ∆Um_ref. When ∆Um > ∆Um_ref, set the trigger control
variable Y within the control and protection system to 1. Otherwise, set Y to 0 and
output Y.

4. In addition to setting the advance trigger variable Y, another function of the optimiza-
tion logic is to calculate the advance trigger angle. The disturbance amplitude ∆Um
is converted into an angle output as the trigger angle through an angle conversion
function. The role of the amplitude limiting function is to constrain ∆Um within a
reasonable range, with specific values adjusted based on historical data and protection
system requirements. The window function sets the duration of recorded data to
a finite time window, typically one cycle based on our operational experience, not
exceeding two cycles, i.e., 20–40 ms. The window function ensures that our strat-
egy only targets the initial voltage drop stage during fault inception, while ignoring
disturbances caused by voltage rise after the protection system’s operation.

5. The flow diagram of the CF suppression strategy is shown in Figure 5.
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4. Simulation Verification Based on Typical Control and Protection Systems

Fault-scanning simulations were conducted using three distinct control systems: the
standard CIGRE HVDC system, the XJ-SIMENS control system (Linfeng HVDC projects),
and the NARI-ABB control system (Fufeng HVDC projects). These simulations utilized
fault impedance, representing grounding impedance, and considered the distance from the
fault point to the converter station. The fault inductance (Lg) range varied across different
projects. The simulations accounted for an average fault time interval of 10 points within
half a cycle, set at an interval time of 0.001 s, corresponding to an angle of 18◦.

4.1. Validation of CIGRE Simulation Models

A standard CIGRE HVDC test system is depicted in Figure 6. The AC system in the
inverter station has a short-circuit ratio of 2.5. In the event of a single-phase grounding
fault in the AC system, the converter station’s bus voltage undergoes significant distortion,
distinguishing it from the measured fault voltage waveform. Typically, China’s HVDC
transmission systems feature a robust AC power grid on the inverter side, with a substantial
short-circuit ratio. To enhance the generalizability of our research findings, we made a
slight adjustment to the AC system model on the inverter side of the standard CIGRE
HVDC test system: specifically, the removal of the 36.5 mH series inductance in front of
the inverter-side power supply. The Short Circuit Ratio (SCR) of the inverter is the ratio of
the short circuit current of the output voltage of the inverter to the rated output current.
Following this modification, the SCR of the AC system on the inverter side became 5. Under
the same ground fault scenario, the key characteristics of the inverter station’s AC bus
voltage, illustrated in Figure 7, closely resemble the features of the measured fault voltage
waveform (Figure 3).
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Within the standard CIGRE HVDC test system, the prediction step has an upper
amplitude threshold of 0.4 and a lower limit of 0. The DC current remains at its rated level,
and the fault inductance range, Lg, spans from 0 to 0.60 H.
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The simulation outcomes (Figure 8) demonstrate that, prior to initiating the predic-
tion step, CFs occurred in 76 instances. After implementing the prediction step, this
count reduced to 33, marking a substantial 56.6% decrease and confirming its efficacy in
CF prevention.
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Furthermore, in scenarios where a metallic short-circuit fault arises near the AC bus
within the standard CIGRE HVDC test system, multiple CFs occurred (up to four occur-
rences). However, upon integrating the prediction step, there was notable improvement,
with a reduction in the frequency of repeated CFs and a decrease in the instances of
continuous CFs (now up to three occurrences).

When the fault reactance was 0.24 H and the fault time was set to 2.002 s, the start
time of the prediction step was 2.00375 s, and the maximum output was 0.32 rad. Figure 9
illustrates a comparison of the arc extinction angle behavior of the CIGRE HVDC standard
test system before and after the introduction of this prediction step. Before implementing
this prediction step, the arc extinction angle started to decline at 2.00475 s, dropped to zero
at 2.009 s (where the DC system experienced commutation failure), and began to recover
after 395 ms. After introducing this prediction step, the arc extinction angle also started
to decline at 2.00475 s but reached a minimum value of 11.26◦ at 2.006 s and began to
recover after 165 ms. Figure 10 shows a comparison of the trigger angle behavior of the
CIGRE HVDC standard test system before and after the introduction of this prediction step.
Before the action of the system’s proportional-integral controller, this prediction step had
already issued an advance trigger command, successfully preventing the occurrence of this
commutation failure event.
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4.2. Simulation Verification for the Linfeng HVDC Project

In the Linfeng HVDC transmission project, commutation failure incidents are more
frequent, and faults in the 220 kV, 500 kV, and 1000 kV systems can potentially lead
to commutation failures in the DC system. This study considered these three voltage
levels separately during simulations. In the Linfeng HVDC transmission project, the start
threshold of the prediction step is ∆Um_ref = 0.13, with an upper limit of 0.25 and a lower
limit of 0 for the amplitude. The DC current is at the rated current level. If the fault
originates in the 220 kV system, the fault inductance ranges from 0.3 to 50.3 mH. For faults
in the 500 kV system, the fault inductance ranges from 0.3 to 100.3 mH. For faults in the
1000 kV system, the fault inductance ranges from 0.3 to 800.3 mH. The overall simulation
results are depicted in Figure 11. Figure 12 illustrates the simulation results specifically
when the fault source is in Phase A of the 500 kV system.
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According to the simulation results, in cases where faults originate in the 220 kV
system, overall, the prediction step can reduce 73% of commutation failure incidents, ex-
hibiting a good preventive effect. Particularly for faults occurring before the peak, the
preventive effect is exceptional, reducing 90% of commutation failure incidents. For faults
originating in the 500 kV system, the prediction step can generally reduce 45% of commu-
tation failure incidents, displaying a good preventive effect. However, its effectiveness is
primarily concentrated on faults occurring before the peak; for faults occurring after the
peak, the preventive effect is less prominent. The situation with faults originating in the
1000 kV system is similar to that in the 500 kV system.

4.3. Simulation Verification for the Fufeng HVDC Project

In the Fufeng HVDC Transmission Engineering project, the starting threshold of the
prediction step is ∆Um_ref = 0.1. The upper limit for the amplitude is 0.6, and the lower
limit is 0. The fault source is set in the 500 kV system, and the range for fault inductance is
0 to 130.0 mH. The simulation results are shown in Figure 13.

Energies 2024, 17, x FOR PEER REVIEW 10 of 13 
 

 

According to the simulation results, in cases where faults originate in the 220 kV sys-
tem, overall, the prediction step can reduce 73% of commutation failure incidents, exhib-
iting a good preventive effect. Particularly for faults occurring before the peak, the pre-
ventive effect is exceptional, reducing 90% of commutation failure incidents. For faults 
originating in the 500 kV system, the prediction step can generally reduce 45% of commu-
tation failure incidents, displaying a good preventive effect. However, its effectiveness is 
primarily concentrated on faults occurring before the peak; for faults occurring after the 
peak, the preventive effect is less prominent. The situation with faults originating in the 
1000 kV system is similar to that in the 500 kV system. 

4.3. Simulation Verification for the Fufeng HVDC Project 
In the Fufeng HVDC Transmission Engineering project, the starting threshold of the 

prediction step is ∆Um_ref = 0.1. The upper limit for the amplitude is 0.6, and the lower 
limit is 0. The fault source is set in the 500 kV system, and the range for fault inductance 
is 0 to 130.0 mH. The simulation results are shown in Figure 13. 

 
Figure 13. Results of the developed strategy in the Fufeng HVDC system. 

In the current Fufeng HVDC station, there is already a prediction step for commuta-
tion failure. Therefore, this paper considered multiple combinations. According to the 
simulation results, if the commutation failure prediction step is not activated, there are a 
total of 102 scenarios resulting in commutation failures. With only the original prediction 
step activated, there are 77 scenarios leading to commutation failures, including 6 addi-
tional scenarios. When both the original and the proposed prediction steps are activated, 
the scenarios causing commutation failures decrease to 58, with an additional 6 scenarios. 
Solely activating the proposed prediction step reduces the scenarios causing commutation 
failures to 64, with 4 additional scenarios. The simulation results for this scenario are 
shown in Figure 13. Through a comparative analysis, it is observed that solely activating 
the proposed prediction step reduces the occurrences of commutation failures in the 
Fufeng HVDC system by 37.3%. Hence, the commutation failure prediction step proposed 
in this paper exhibits a favorable effectiveness in the Fufeng HVDC project. 

5. Influence Analysis for Commutation Failure Suppression Effectiveness 
Based on the analysis above, the commutation failure prediction strategy proposed 

in this paper, utilizing the disturbance level of AC bus voltage, has shown a notable effect 
in suppressing commutation failures. Table 1 illustrates the optimal startup threshold and 
upper limit for various control and protection systems. It is evident that different control 

Figure 13. Results of the developed strategy in the Fufeng HVDC system.

In the current Fufeng HVDC station, there is already a prediction step for commutation
failure. Therefore, this paper considered multiple combinations. According to the simu-
lation results, if the commutation failure prediction step is not activated, there are a total
of 102 scenarios resulting in commutation failures. With only the original prediction step
activated, there are 77 scenarios leading to commutation failures, including 6 additional
scenarios. When both the original and the proposed prediction steps are activated, the
scenarios causing commutation failures decrease to 58, with an additional 6 scenarios.
Solely activating the proposed prediction step reduces the scenarios causing commutation
failures to 64, with 4 additional scenarios. The simulation results for this scenario are
shown in Figure 13. Through a comparative analysis, it is observed that solely activating
the proposed prediction step reduces the occurrences of commutation failures in the Fufeng
HVDC system by 37.3%. Hence, the commutation failure prediction step proposed in this
paper exhibits a favorable effectiveness in the Fufeng HVDC project.

5. Influence Analysis for Commutation Failure Suppression Effectiveness

Based on the analysis above, the commutation failure prediction strategy proposed in
this paper, utilizing the disturbance level of AC bus voltage, has shown a notable effect in
suppressing commutation failures. Table 1 illustrates the optimal startup threshold and
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upper limit for various control and protection systems. It is evident that different control
and protection systems significantly influence the startup threshold and upper limit values.

Table 1. Influence of control system on the optimal starting threshold and upper limit of the amplitude.

Project CIGRE Standard
Project

Linfeng HVDC
Project

Fufeng HVDC
Project

Optimal starting threshold 0.06 0.13 0.1
Optimal upper limit of amplitude 0.4 0.25 0.6

Effective rate 56.6% 45.0% 37.3%

Taking the CIGRE standard DC system as an example, the optimal startup thresholds
and suppression effects for single-phase ground faults under different SCRs are presented
in Table 2. The optimal startup thresholds vary for different AC grids, indicating that the
characteristics of the AC grid in question impact the key parameters of this suppression
strategy. However, overall, the variations are not substantial. Additionally, there are some
efficiency differences in the effectiveness of this strategy for different AC grids under
optimal configurations.

Table 2. Influence of the AC system on the optimal starting threshold.

Capacity Ratio Optimal Starting
Threshold

Original Failure
Condition

New Failure
Condition Effective Rate

2.5 0.06 117 54 53.8%
5 0.06 76 33 56.6%
8 0.02 53 17 67.9%
10 0.04 43 16 62.8%

From the aforementioned research outcomes, it is apparent that the application effec-
tiveness of this suppression strategy is constrained by the startup threshold and upper limit.
These two parameters, in turn, are significantly influenced by the control and protection
systems as well as the characteristics of the AC power grid.

6. Conclusions and Discussion

Based on measured transient voltage disturbance data caused by AC system faults,
this paper analyzed the correlation between transient AC voltage disturbances and com-
mutation failures in DC engineering. It was found that there exists a strong correlation
between transient AC voltage disturbances caused by AC system faults and the occurrence
of commutation failures in DC engineering.

Building upon this analysis, this paper proposed a real-time commutation failure
suppression measure in DC transmission engineering based on transient AC bus voltage
disturbances. Through fault-scanning simulations conducted on three typical control and
protection systems—the CIGRE standard DC control and protection system, the XJ-SIMENS
control and protection system, and the NARI-ABB control and protection system—it was
observed that this measure effectively mitigated the commutation failure phenomenon
induced by AC disturbances in DC systems. Notably, it showcased the best suppression
effect in the Linfeng DC system.

Furthermore, the effectiveness of this suppression measure was verified through simu-
lation using recent commutation failure fault recording data from the Linfeng and Fufeng
DC transmission projects. The results demonstrated the measure’s efficiency in effectively
suppressing commutation failure incidents in DC projects caused by AC disturbances.

The application effectiveness of this suppression strategy is determined by startup
thresholds and upper limits, parameters significantly influenced by the control and pro-
tection systems as well as the characteristics of the AC power grid. Hence, in practical
applications, establishing simulation models based on different DC engineering and AC
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power grid scenarios is recommended. Real-time simulations conducted under different
combinations of startup thresholds and upper limits can determine the optimal parameter
values for this strategy.
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