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Abstract: A sintered wick was formed in a heat pipe through the process of sintering a mixture
of copper powder with particle sizes of 100 µm and 200 µm, mixed with a pore-forming agent.
The heat pipe’s thermal resistance, which affects its heat transfer efficiency, is determined during
manufacturing according to the powder type, thickness of the sintered wick, and filling rate of the
working fluid. Heat transfer efficiency was then tested at various inclination angles (0◦, 45◦, and 90◦)
to evaluate the performance of heat pipes. Regardless of the filling amount and test angle, the 200 µm
copper powder type exhibited superior heat transfer efficiency compared to the 100 µm type. After
analyzing heat transfer performance at various filling rates between 20% and 50%, it was determined
that the heat pipe’s optimal heat transfer capability occurred at a working fluid filling rate of 30%.
The width of the wick was directly related to the heat transfer performance.

Keywords: heat pipe; heat transfer performance; effective pore radius; capillary force; sintered wick;
working fluid filling ratio

1. Introduction

The rapid development of the IT and electronics industries has recently complicated
the functional requirements for the performance of electronic equipment, and the high-
power consumption of this equipment has resulted in a shorter lifetime [1]. Due to the
limited space available, the heat dissipation system of aviation components experiences
high acceleration. Hence, the designer must take into account safety and operational
performance in dynamic conditions and various external environments, covering a wide
range of frigid temperatures (−30 ◦C to 45 ◦C). Therefore, it is important to ensure the
preservation of a specific standard of performance. Cylindrical copper heat pipes are
ideal for heat dissipation in aircraft electrical components due to their exceptional thermal
conductivity and efficient use of space. The heat pipes effectively maintain a consistent
temperature for the heating element. Originally designed to control satellite temperatures,
they are now widely used in different industries and applications in the electronics sector.
These applications provide phase-change heat transfer with high thermal conductivity,
and a number of automatic temperature characteristics for lifetime and cost-effectiveness,
among other benefits [2]. The heat pipe utilizes copper wicks mounted on the inner wall
of the copper pipes to circulate the working fluid from the condensing portion to the
evaporation section and back again [3]. Heat is transferred to the working fluid in the
evaporator through conduction, causing vaporization at the wick surface. This increases the
local pressure inside the evaporator and enables the vapor to move towards the condenser.
Heat is extracted at the condenser, causing the vapor to condense on the wick surface and
release latent heat. Heat pipes have a significant advantage over traditional devices due to
their high thermal conductance in a steady state [4].

The main factors affecting heat pipe performance include the maximum heat transfer
capacity, heat conduction coefficient, heat transfer limit, and thermal resistance. Specifically,
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the capillary limit of copper wick is the most important variable that determines the
temperature range and heat transfer limits of ground-based heat pipes, out of all the
different factors that affect heat transfer.

The capillary limit in metal sintered wick heat pipes is influenced by several factors,
including the diameter and shape of pores, as well as the porosity, permeability, and thick-
ness of the sintered body. Of these requirements, achieving high porosity and permeability
through sintering technology is especially important for the production of heat pipe wicks.
Hence, this study applies the wick production parameters—porosity, permeability, and
capillary force—which have a notable influence on the heat pipes’ performance, using the
data obtained from previous research [5]. The heat transfer efficiency of heat pipes was
evaluated under various conditions, including different tilting angles, copper powder sizes,
wick thicknesses, and working fluid filling ratios.

Figure 1 shows the operational boundaries of a sintered wick heat pipe [6]. It defines
the limits of heat pipe performance. Each of these limitations is distinct, independent, and
not interconnected. By applying individual analysis techniques for each limitation, it is
possible to calculate the heat transport capacity based on the mean operating temperature
(adiabatic vapor temperature). The distinct performance limits define an operational range,
which is represented by the region enclosed by the combination of these individual limits.
The operational range of the heat pipe is essentially the specific region or combination
of temperatures and maximum transfer capacity within which it is designed to operate.
Therefore, it is possible to either improve the design or ensure that the heat pipe can
effectively transfer the necessary thermal load. Also, it is important to keep in mind that
the determination of the average operating temperature is essential for the calculation of
the heat transport capacity. The operating temperature of a standard heat pipe is generally
determined by the heat input. Therefore, the heat transfer and operating temperature are
interrelated. The transfer capacity of a heat pipe is influenced by several factors, including
the working fluid, the wick structure, the dimensions of the heat pipe, and the operating
temperature [7].
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Capillary Limitation

Each operating limit of a sintered wick heat pipe can be considered independently.
The heat pipe requires the maximum capillary pumping pressure (△Pc,max) to exceed the
overall pressure drop within the pipe for it to operate effectively. This pressure drop
consists of three components, namely the pressure drop (△Pl) necessary for the liquid to
be transferred from the condenser back to the evaporator, the pressure differential (△Pv)
required for the vapor to move from the evaporator to the condenser, and the gravitational
head, which varies based on the heat pipe’s inclination, determines the pressure (△Pg),
and can be zero, positive, or negative. In order for the heat pipe to operate correctly, it
is essential that this condition is fulfilled; otherwise, the wick in the evaporator section
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will become depleted of moisture (dried out). The capillary limit refers to the maximum
allowable heat flux at which Equation (1) [8] maintains valid. The Laplace–Young equation,
represented by Equation (2), determines the highest capillary pressure (△Pc) generated
within the wick structure of a heat pipe [8].

△Pc,max ≥ △Pl +△Pv +△Pg (1)

△Pc =
2σl
re f f

·cos(θ) (2)

where σl is the free surface energy of the working fluid and re f f corresponds the effective
pores radius of the wick, which can be determined for different wick structures, while θ

is the contact angle between the fluid and the wick. The contact angle refers to the extent
to which a liquid can spread or wet the surface of a wick structure. When a liquid wets a
surface, the contact angle θ will be between 0 and π/2 radians. However, for liquids that
do not wet the surface, the contact angle θ will be greater than π/2. The capillary limitation
in heat pipes occurs when the combined capillary forces produced by the vapor–liquid
interfaces in the evaporator and condenser are insufficient to compensate for the pressure
losses caused by fluid movement. Consequently, the heat pipe evaporator becomes dried
out, causing a stoppage of thermal energy transfer from the evaporator to the condenser.

2. Materials and Methods
2.1. Experimental Set Up

The experimental parameter is shown in Table 1. A copper tube sized 160 mm in
length was used in the manufacturing of sintered heat pipes. All heat pipes had an outer
diameter of 4 mm and an inner diameter of 3.6 mm. For the manufacturing of sintered heat
pipes, two distinct copper powders were used. The first type had an average particle size of
100 µm and showed a relatively consistent size distribution. On the other hand, the second
type of powder had an average particle size of 200 µm and showed a varied particle size
distribution. The experiment used potassium carbonate (K2CO3) as the pore-forming agent,
which exhibited a spherical morphology with an average diameter of 35 µm. A mixture
was prepared by combining copper powder with a pore-forming agent, which was present
at a concentration of 40%.

Table 1. Experimental parameters of heat pipes with wick.

Parameters Value

Pipe material Copper
Outer diameter of pipe, Dwall/mm 4
Inner diameter of pipe, Di/mm 3.6
Total length, L/mm 160
Evaporator length, Le/mm 23
Adiabatic length, La/mm 87
Condenser length, Lc/mm 50
Wick material Copper powder
Spherical copper power size, d/µm 100 (uniformity), 200 (diversity)
Wick thickness [µm] 902, 534, 179
Working fluid Distilled water
Filling ratio [% vol.] 20 (0.2 g), 30 (0.3 g), 40 (0.4 g), 50 (0.5 g)

The heat pipe’s sintered wick was manufactured using a solid-state sintering method.
Figure 2 represents a schematic of the heat pipe with wick before the process of sintering.
A ceramic bar, with diameters of 1.5 mm, 2 mm, and 2.5 mm, was inserted into the pipe
as the inner mandrel after the swaging process, which had caused one end of the pipe to
shrink [9]. According to the study conducted by Jang et al. [5], the vertically positioned pipes
containing powdered substances were subjected to the predetermined temperature schedule
for sintering within the furnace. The sintering process was carried out under a hydrogen
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reducing atmosphere, with the temperature raised to 850 ◦C and maintained for four hours.
Subsequently, the temperature was increased to 950 ◦C and then held for two and a half hours.
Following thorough ultrasonic cleaning with distilled water and ethanol, one of the pipe
ends was completely sealed using specialized equipment. The opposite end was linked to a
vacuum pump in order to eliminate air and non-condensable gas from the tube.

Energies 2024, 17, x FOR PEER REVIEW 4 of 12 
 

 

as the inner mandrel after the swaging process, which had caused one end of the pipe to 
shrink [9]. According to the study conducted by Jang et al. [5], the vertically positioned 
pipes containing powdered substances were subjected to the predetermined temperature 
schedule for sintering within the furnace. The sintering process was carried out under a 
hydrogen reducing atmosphere, with the temperature raised to 850 °C and maintained for 
four hours. Subsequently, the temperature was increased to 950 °C and then held for two 
and a half hours. Following thorough ultrasonic cleaning with distilled water and ethanol, 
one of the pipe ends was completely sealed using specialized equipment. The opposite 
end was linked to a vacuum pump in order to eliminate air and non-condensable gas from 
the tube. 

The working fluid, made up of distilled water, was filled after the vacuum pump was 
set up. The manufacturing process of a sintered heat pipe was completed by using a cold 
weld pinch-off device to seal the opposite end in a similar manner. Each heat pipe was 
manufactured with the same dimensions for each filling ratio of the working fluid: 20 (0.2 
g), 30 (0.3 g), 40 (0.4 g), and 50 (0.5 g) % volume. After the heat pipes were processed, a 
basic test was conducted to prevent any leakage or improper sealing, which could result 
in a decline in the heat pipe’s efficiency. 

 
Figure 2. Schematic illustration of the internal layout of a pipe before the sintering. 

2.2. Experimental Apparatus and Procedure 
In order to measure the thermal efficiency of a heat pipe, a standardized testing ap-

paratus was set up. This apparatus included an experimental sector, a heating section, a 
cooling section, a movable apparatus with adjustable angle, a data logger (YOKOGAWA, 
DA100), and a computer unit, as shown in Figure 3. Typically, a water-cooler circulating 
system is usually used to evaluate the efficiency of heat pipes. This method is similar to 
natural convection evaluation techniques, except for the use of water cooling. The temper-
ature of each component was measured using K-type thermocouples. The DC power sup-
ply provided heat to the evaporator, while the chiller was used to cool the condenser with 
water. 

 
Figure 3. Schematic illustration of the experimental test apparatus. 

Figure 2. Schematic illustration of the internal layout of a pipe before the sintering.

The working fluid, made up of distilled water, was filled after the vacuum pump was
set up. The manufacturing process of a sintered heat pipe was completed by using a cold
weld pinch-off device to seal the opposite end in a similar manner. Each heat pipe was
manufactured with the same dimensions for each filling ratio of the working fluid: 20 (0.2 g),
30 (0.3 g), 40 (0.4 g), and 50 (0.5 g) % volume. After the heat pipes were processed, a basic test
was conducted to prevent any leakage or improper sealing, which could result in a decline in
the heat pipe’s efficiency.

2.2. Experimental Apparatus and Procedure

In order to measure the thermal efficiency of a heat pipe, a standardized testing
apparatus was set up. This apparatus included an experimental sector, a heating section, a
cooling section, a movable apparatus with adjustable angle, a data logger (YOKOGAWA,
DA100), and a computer unit, as shown in Figure 3. Typically, a water-cooler circulating
system is usually used to evaluate the efficiency of heat pipes. This method is similar
to natural convection evaluation techniques, except for the use of water cooling. The
temperature of each component was measured using K-type thermocouples. The DC
power supply provided heat to the evaporator, while the chiller was used to cool the
condenser with water.
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The experimental procedure for conducting the temperature rise test at each tilting
angle was as follows: At first, the samples were fastened onto the test bench. Secondly,
as shown in Figure 4, six thermocouples were positioned on the wall surfaces of the heat
tubes, cartridge heater, cooling plate, and ambient temperature. The thermocouples have
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been divided into two groups for the evaporator, with one group for the adiabatic section
and the other group for the condenser section. The thermocouples were placed at distances
of Le = 23 mm, La = 87 mm, and Lc = 50 mm from the starting point of the evaporator
section. Each thermocouple was affixed to its respective center within each division using
heat-resistant polyimide tape (Kapton). Thermal grease was sprayed to the heat block and
cooling plate in order to enhance thermal conductivity where they were in contact with
the heat pipe. Each test sector was covered with an insulation block to reduce the heat loss
from the evaporator, adiabatic, and condenser sections, all of which were fastened with
jointers. The heat pipe inclination angle was adjusted from 0◦ to 90◦ for the tilting angle
test, using a variable angle holding table. The DC power supply is employed for setting the
heat power input for the evaporator section. Furthermore, the temperature data in a stable
state were recorded using a data logger, with an interval of approximately 60 min between
each input heating load. The computer also stored steady-state temperature data for the
purpose of data reduction and analysis [10].
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The overall thermal resistance of a heat pipe defined by the following Equation (3) [11]:

R =
Teva. − Tcon.

.
Q

(3)

where Teva. and Tcon. are the temperature of the evaporator and condenser sections, respec-
tively. The heat input power, denoted as

.
Q, is controlled by the voltage (V) and amperage

(I). The occurrence of heat pipe dry-out has been attributed to a rapid increase in thermal
resistance. If an abrupt change occurs, the test is stopped, and the sample is extracted from
the device. Conversely, the input power gradually increases once more.

3. Results
3.1. The Comparison of Heat Transfer Performance According to Cu Powder Type

Figure 5 shows the thermal resistance results for samples 100 U and 200 D. The test
angles of 0◦, 45◦, and 90◦ are included, as well as the working fluid filling ratio, which ranges
from 20% to 50%. The sintering process used a mandrel of 2 mm in diameter, resulting in the
formation of a wick with a thickness of 534.7 µm. For heat inputs of 12 W or less, the overall
thermal resistance of the 200 D sample was lower than that of the 100 U sample.
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Figure 5a shows the thermal resistance values of the 100 U and 200 D samples when
the working fluid filling level is at 20%. When the test is conducted at angles of 45◦ and
90◦, the 100 U sample exhibits dry-out at a heat input of 3.5 W. However, the 200 D sample
has a higher Qmax value of 10 W or more. At a 30% filling ratio of the working fluid,
the thermal resistance of 100 U is higher than that of 200 D, as shown in Figure 5b. The
specimens showed comparable drying out points at both 45◦and 90◦, with few differences.
Nevertheless, the thermal resistance of the 200 D specimen was determined to be lower
than 100 U. Figure 5c,d shows that the heat pipe encountered operational challenges and
showed a notable initial thermal resistance when the filling ratios were set at 40% and 50%.
Therefore, even after subjecting the heat block to a rise in temperature of 120 ◦C, it was not
possible to determine the dry-out point.

Based on the previous capillary force test results, it is evident that the capillary force
(△Pc) is influenced by a complex correlation with both the porosity and the effective radius
of the wick’s pores (re f f ). The 100 U sample had the largest re f f value of 241.31 µm, and
the 200 D sample had the lowest one of 155.73 µm. Furthermore, the porosity value of
100 U was found to be 59.07%, which was higher than the porosity value of 200 D, which
was estimated to be 56.47% [5]. Nevertheless, the 200 D sample exhibited stronger capillary
forces. This could be attributed to the smaller effective radius (re f f ) value, which indicates
that the capillary force is mainly affected by the re f f value. Moreover, empirical evidence
suggests that the powder filling density of 200 D is higher than that of 100 U, primarily
because it covers a wider range of particle sizes. Therefore, applying a 200 D powder-based
wick has significant advantages in creating small, efficient pore sizes. This corresponds to
the observation that 200 D has superior thermal conductivity compared to 100 U.

3.2. Comparison of Heat Transfer Performance According to Sintered Wick Thickness and Test Angle

The heat pipe wicks were fabricated by sintering copper powders, with the inclusion
of ceramic inner mandrels sized 1.5, 2, and 2.5 mm in diameter. Figure 6 exhibits cross-
sectional SEM images of a heat pipe with a wick that has been installed subsequent to the
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sintering process. The average thickness of the wick structure was measured to be 902 µm,
534.7 µm, and 179.1 µm for mandrel diameters of 1.5, 2, and 2.5 mm, respectively.
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Figure 6. SEM images of the cross-section of a sintered heat pipe according to the thickness of the
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2.5 mmϕ).

Figure 7 shows the thermal resistance measured in the 100 U sample while varying
the mandrel diameters and tilt angles. The thermal resistance primarily depends on
the surface area of the interface between the liquid and vapor phases, as indicated by
theoretical analysis [12]. The sample with the smallest wick thickness (tw) of 179.1 µm
(mandrel diameter: 1.5 mm) showed the highest thermal resistance, indicating the lowest
thermal transfer capability in comparison to all other tested samples. Furthermore, the
initial thermal resistance of this sample exhibited a notable difference compared to the
thermal resistance of the other samples. In addition, the temperature at the evaporator
section increased quickly in response to the heat input, ultimately reaching a maximum
of 70 ◦C at a heat input of 5 W. The substantial rise in temperature caused difficulties
for accurately determining the final Qmax value. The present problems come from the
inadequate thickness of the sintered wick, hindering the effective transfer of the condensed
working fluid from the condenser section to the evaporator section via capillary force.
Therefore, the pipe with the thinnest wick exhibited a comparatively lower heat transfer
efficiency than the pipe with a thicker wick.
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Figure 7. Thermal performance of heat pipe in relation to heat input for various mandrel diameters
and tilt angles: (a) 0◦, (b) 45◦, and (c) 90◦. The wick was made with 100 U powder and filling ratio
was 30%.

The heat resistance remained consistently low for both the 902 µm and 534.7 µm wick
thicknesses, regardless of the test angle. Furthermore, it can be observed that the heat
pipe with a wick thickness of 534.7 µm has a higher dry-out temperature compared to the
heat pipe with a thickness of 902 µm at all tilting angles. Therefore, it can be concluded
that the heat pipe with a medium-sized wick thickness of 534.7 µm has the superior heat
transfer capability. This phenomenon can be explained by the decrease in the width of the
vapor passage as the wick thickness increases, along with the corresponding increase in the
surface area that comes into contact with the working fluid.

As the thickness of the wick increases, the surface area of liquid that can be absorbed
by the wick also increases. This leads to a reduction in the pressure drop because the fluid
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can flow more easily through the wick. However, Li, Y et al. [13] observed that the pressure
loss increased in direct proportion to the increase in the thickness of the heat pipe wick.
They explained that the movement of the working fluid towards the evaporation section is
controlled by the capillary force, causing the wick to become wet in multiple directions. As
a result, there is a decrease in the amount of working fluid that has to be transported to the
evaporation section when the wick is excessively thick. Moreover, excessive thickness of
the wick leads to a decrease in the cross-sectional area available for the passage of vapor
through the pipe. Consequently, the friction coefficient of vapor in the vapor flow passage
rises, thus serving as a constraint on the maximum heat transfer capacity. Conversely, if the
wick is not thick enough, the passage becomes too small for the condensed working fluid
in the condensation sector to be transported to the vapor sector by capillary force.

The experimental results in this study coincide with the theory mentioned above,
indicating that the optimal thermal transfer performance was attained by employing a
medium-sized wick thickness of 534.7 µm, which was produced using a mandrel with a
diameter of 2 mm.

When the angle is 0◦, it is observed that the thermal resistance of the wick with a thick-
ness of 902 µm is relatively lower than that of the wick with a thickness of
534.7 µm. This difference can be attributed to the preferential movement of the work-
ing fluid within the heat pipe towards one side, caused by the force of gravity. This bias
results from the basic assumption that the wick on one side initiates its operation at rela-
tively lower temperatures. Reducing the thickness of the wick causes the absorbed working
fluid to accumulate mostly on the lower side of the heat pipe. The formation of a bubble
barrier occurs as a result of the large amount of working fluid, even at lower temperatures,
which hinders the vapor’s movement. Consequently, it has been determined that the initial
thermal resistance exhibited a significant value [14].

Therefore, it is important to take into account two factors when determining the
thickness of the wick. Firstly, the wick should be thick enough to enable the transfer of
the condensed internal working fluid from the condenser section to the vapor section
using capillary force. Furthermore, it is also necessary that the internal space of the pipe is
sufficiently large to ensure a proper pathway for the flow of vapor.

3.3. Comparison of Heat Transfer Performance According to the Working Fluid Filling Ratio

Figure 8 shows the heat transfer performance of the heat pipe in relation to the filling
ratio (Rf) of the working fluid at various tilting angles. The heat pipes in the experimental
setup used a wick with the same wick thickness of 534.7 µm (mandrel diameter: 2 mm),
which was made by employing 200 D copper powder. Samples were prepared by injecting
0.2 g (Rf = 20%), 0.3 g (Rf = 30%), 0.4 g (Rf = 40%), and 0.5 g (Rf = 50%) of the working fluid
into the heat pipe, giving a total filling amount of 1 g.
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At a filling ratio (Rf) of 50%, the thermal resistance exhibited the highest value at all
test angles. In addition, the thermal resistance showed a tendency to decrease as the heat
input increased. The initial thermal resistance is very high due to the excessive amount of
working fluid, which requires more heat input to produce the latent heat of evaporation.
The maximum permissible temperature for general electronic products employing semicon-
ductors is 125 ◦C [15]. The dry-out temperature could not be determined, even when the
heat block temperature was raised to 130 ◦C or higher. Thus, when the heat pipe’s wick has
a thickness of 534.7 µm, it is evident that the heat transfer capacity significantly decreases
when it is filled to a rate of 50% due to excessive filling. On the other hand, at a filling ratio
(Rf) of 20%, the thermal resistance values consistently show the lowest levels, indicating
superior thermal transfer capability regardless of the tested angles. However, the dry-out
point is relatively low, meaning that the pipe cannot effectively perform heat transfer at
high temperatures. The samples with Rf = 30% and 40% exhibit the same heat resistance
values at angles of 45◦ and 90◦, as shown in Figure 8b,c. Nevertheless, when subjected to a
power exceeding 13 W, the sample with the Rf of 40% exhibits a slightly higher thermal
resistance compared to the sample with the Rf of 30%. Two key requirements for an effi-
cient heat pipe are low thermal resistance and a moderately high dry-out point. According
to these criteria, it can be concluded that this heat pipe exhibits optimum heat transfer
properties when the filling ratio (Rf) of the working fluid is 30%.

As the filling ratio (Rf) of the working fluid rises, there is a proportional increase in
the amount of fluid that undergoes a phase transition into vapor, as well as an increase
in the quantity of fluid that returns back to a liquid state in the condenser section. The
higher initial thermal resistance observed in the condenser section may be attributed to the
presence of residual working fluid, which acts as a liquid barrier. Furthermore, when there
is an extensive amount of fluid, the heat input required to convert the working fluid into
vapor also increases. In this case, the thermal resistance remains high at lower temperatures.
As the temperature rises, the liquid block reduces gradually, resulting in an increase in heat
transfer capacity. As it improves, the corresponding value of Qmax increases.

Figure 9 shows a schematic diagram illustrating the progressive change in a liquid-
vapor state in a heat pipe. The heat pipe contains a wick with a thickness of 534.7 µm,
which is made of 200 D powder. This transition proceeds as the temperature rises. During
the initial stage, when the evaporation sector is being heated, the heat pipe exhibits a
significant level of thermal resistance until the vapor is generated. Subsequently, despite
a rise in temperature and the resulting generation of vapor in the evaporation sector, the
presence of bubble blocks hinders the movement of vapor [16]. As the temperature rises,
these bubble blocks disappear, thereby enabling the possibility of heat transfer.
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Afterwards, at a higher temperature, there is an increase in the amount of vapor
accumulated in the condensation sector, while the amount of working fluid that need to
be transported back to the evaporation sector through capillary force gradually decreases.
In the case of a sustained rise in temperature, the working fluid in the evaporation sector
becomes exhausted and the generation of evaporation-latent heat becomes impossible,
leading to a dry-out state.

With an increase in the amount of working fluid, it is expected that the dry-out
temperature will eventually increase. On the contrary, in order to achieve a low thermal
resistance, it is essential to minimize the occurrence of initial bubble blockage caused by
an excessive amount of working fluid. Therefore, it is necessary to maintain the working
fluid at an appropriate level. The study observed that the optimal heat transfer capability
was achieved when the level of working fluid was between 30–40%, which corresponds to
results from previous studies [17–20].

3.4. Effect of the Tilling Angle on Heat Transfer Performance

The comprehensive test results showed that there was an enhancement in heat transfer
capability as the test angle (θ) increased from 0◦ to 90◦, regardless of variations in powder
type and wick thickness. This phenomenon can be attributed to the enhanced thermal
distribution enabled by the gravity force, as well as the increased surface area of heat
transfer, leading to higher cooling and heating capabilities. Figure 10 shows a schematic
illustration of the phenomenon of capillary rise in a cylindrical tube, wherein the tilling
angles are denoted by θ. The mathematical representation of the tilting angle requires
the calculation of the cosine of the angle(θ) produced between two vectors. Hence, when
the test angle reaches 90◦, the alignment of capillary force and gravity occurs, leading to
the enhanced movement of the liquid working fluid due to the resultant force. As the
test angle approaches 0◦, the relative alignment of capillary force and gravity undergoes
a transition leading to a decrease in the value of cosθ and a reduction in the rate of the
working fluid’s returning to the evaporator. In the situation of a horizontal orientation, the
force of gravity is negated, thus enabling the controlled flow of the working fluid towards
the evaporation unit. The decrease in pumping capacity causes a decrease in the ultimate
operational threshold [21].
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4. Conclusions

(1) The heat pipe, which was equipped with a sintered wick made from 200 D powder,
exhibited a smaller effective pore radius in comparison to 100 U. As a result, the
utilization of 200 D powder resulted in an enhanced capillary force and exhibited
improved efficacy in heat transfer.
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(2) The heat pipes’ wick thicknesses were measured as 902 µm, 534.7 µm, and 179.1 µm,
which correspond to mandrel diameters of 1.5 mm, 2 mm, and 2.5 mm, respectively.
The heat pipe with a wick thickness of 534.7 µm exhibited the most efficient heat
transfer performance. The presence of a sufficient thickness of the wick ensures
that an appropriate amount of working fluid is available to reach the region where
evaporation takes place. Conversely, reducing the thickness of the wick results in a
decrease in the amount of working fluid that can be retained in the wick, which can
lead to dry-out, even when operating at low temperatures.

(3) The initial thermal resistance value showed an increase as the filling ratio of the
working fluid increased from 20 wt.% to 50 wt.%. Additionally, it was observed that
the Qmax value exhibited a positive correlation with increasing temperature.

(4) The heat transfer performance showed an enhancement as the tilting angles increased
within the range of 0◦ to 90◦. This can be attributed to the enhanced thermal distribu-
tion by the gravity force, as well as the expansion of the surface area for heat transfer
due to the enlarged cooling and heating surfaces. Consequently, the heat resistance
exhibits a low value, whereas the Qmax exhibits a high value.
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