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Abstract: Pump-rate regulation is frequently used during hydraulic fracturing operations in order to
maintain the pressure within a safe range. An emergency pump-rate reduction or pump shutdown
is usually applied under the condition of sand screen-out when advancing hydraulic fractures are
blocked by injected proppant and develop wellhead overpressure. The drastic regulation of the
pump rate induces water-hammer effects—hydraulic shocks—on the wellbore due to the impulsive
pressure. This wellbore shock damages the well integrity and then increases the risk of material
leakage into water resources or the atmosphere, depending on the magnitude of the impulsive
pressure. Therefore, appropriate emergency pump-rate regulation can both secure the fracturing
operation and enhance well-completion integrity for environmental requirements—a rare mutual
benefit to both sides of the argument. Previous studies have revealed the tube vibration, severe stress
concentration, and sand production induced by water-hammer effects in high-pressure wells during
oil/gas production. However, the water-hammer effect, the induced impulsive pressures, and the
mitigation measures are rarely reported for hydraulic fracturing injections. In this study, we present a
data-driven workflow integrating real-time monitoring and regulation strategies, which is applied in
four field cases under the emergency operation condition (screen-out or near screen-out). A stepwise
pump-rate regulation strategy was deployed in the first three cases. The corresponding maximum
impulsive pressure fell in the range of 3.7~7.4 MPa. Furthermore, a sand screen-out case, using a
more radical regulation strategy, induced an impulsive pressure 2 or 3 times higher (~14.7 MPa) than
the other three cases. Compared with the traditional method of sharp pump-rate regulation in fields,
stepwise pump-rate regulation is recommended to constrain the water-hammer effect based on the
evolution of impulsive pressures, which can be an essential operational strategy to secure hydraulic
fracturing and well integrity, especially for fracturing geologically unstable formations (for instance,
formations near faults).

Keywords: hydraulic fracturing; well integrity; pump rate; water hammer effect; case study

1. Introduction

The advent of massive hydraulic fracturing has spurred the shale gas revolution, but
it has ignited controversy over unresolved environmental effects [1–3]. Scientists focused
on the potential for water contamination soon after the adoption of the technique circa
2011 [4–6] and have continued to track the quality of aquifers ever since, especially in
the shale-gas-producing regions across the United States [7–9]. Multiple lines of evidence
(e.g., chemical and isotopic signatures) are reported to demonstrate the effects of stray
gas contamination [10–13], while others present a counter perspective [14–16]. Over the
same period, the rapid development of hydraulic fracturing occurred in the United States,
China, and other energy-intensive economies. Recently, the U.S. DOE (Department of
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Energy) released a presidentially mandated report concerning the economic and national
security effects of any potential hydraulic fracturing ban [17], whilst the California state
government, in the same year, announced a cessation in the issuing of new fracking permits
after 2024 [18]. The disparity between the two sides of the debate seems to have resulted
in an impasse. Based on the reality that massive wells are still fracked every year, the
argument over whether to engage in fracking has overshadowed an urgent issue that has
already caused significant economic losses and potential risks of material leakage as a
result of dangerous screen-out incidents during hydraulic fracturing. Moreover, this joint
mitigation of potential economic losses and of environmental contamination represents a
rare case of an aligned, mutual interest for both parties in the conflict.

Initial efforts focused on detecting the migration of underground materials around frac-
tured wells. Focused studies then noted that the key pathways were potential flaws in the
casing and cement sheathing due to the quality of well completion and their routine failure
during their service lives [5,16]. However, recent observations indicate that largely rou-
tine incidents (mainly sand screen-out) during fracturing also affect well integrity [19–21].
Sand screen-out often causes a sudden pressure jump that may exceed the capacity of the
wellbore or wellhead equipment, which may deform the casing and compromise wellbore
integrity [21]. An emergency pump-rate shut-down is usually performed to relieve the
building pressure, which, in turn, may cause severe vibration and damage to the casing
and cement annulus due to water-hammer effects [19,20]. These mechanical processes are
graphically represented in Figure 1. Material leakages may occur through 1⃝ flaws between
the cement and the casing, 2⃝ 3⃝ flaws and gaps between the cement and the formation,
4⃝ cracked cement, and 5⃝ deformed casing [5,22]. Thus, compromised wells can generate

hyperchannels for the migration of underground materials. A significant breach in the
casing may transmit pressure along the outer cement annulus and up to the above-ground
wellhead. This has been observed as a common phenomenon in 30%~66% of fractured
wells in the Changning–Weiyuan and Weirong areas of the Sichuan Basin, China [21,23],
and in 6.3% (more than 500 wells) of fractured wells between 2005 and 2013 in the Marcellus
shale in the United States [24]. Less perceptible damage may be manifest as late failures
and risks to the environment over the well’s lifetime.
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Figure 1. Mechanical mechanisms of well-integrity failure by sand screen-out. The over-injected
proppant blocks the formation and wellbore, induces overpressures up-well, and then requires instant
pump shut-in, which may cause severe vibrations that damage the cement around casings, as well as
the seals between interfaces.
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The damage caused by the water-hammer effect on pipes has been demonstrated
by sufficient fundamental studies [25,26]. In the oil and gas industry, previous research
regarding water-hammer effects mainly focused on the sand production issue in wellbores.
The emergency shut-in of injection wells may induce large pressure pulses that can cause
wellbore integrity problems, such as sand-face failure and sand production [27,28]. This
issue has drawn more concerns in offshore wells, where a higher safety criterion is required
for platforms and facilities above sea [29,30]. Recent studies have extended research to
the tubing string vibration in high-pressure and high-production gas wells. A numerical
simulation showed that a severe stress concentration (895.29 MPa) may be generated in
a high-pressure gas well (118 MPa) at the rounded corners of each indentation [19]. The
most direct way to control the water-hammer effect is to extend the shut-in time or prevent
the rapid shut-in of the gas well [31]. However, this effect during hydraulic fracturing
operations and well integrity remains unclear, especially in emergency situations in which
an instant pump-rate shutdown may be required to relieve wellhead pressures.

To mitigate this damage in hydraulic fracturing, a data-driven strategy is proposed by
integrating the pre-warning of sand screen-out and pump-rate management in real time in
fracturing operations [32]. In this study, four cases of shale gas fracturing are presented, in
which the wellhead pressure builds up sharply due to the injection of proppant—the typical
sign of sand screen-out. Three of the cases follow the pump-rate-regulation strategy (a
form of stepwise pump-rate regulation that relieves the seriousness of screen-out with the
help of advance warning from the PFI curve) and avoid the accident of sand screen-out [32].
Meanwhile, a sand-screen-out case is also presented to make comparisons between the
induced water-hammer effects of different pump-rate-regulation strategies. The results
indicate that the stepwise pump-rate-regulation strategy can significantly reduce the im-
pulsive pressure. The hydraulic shock and damage to well integrity can then be restrained
to mitigate its environmental risks.

2. Methodology
2.1. Integrated Data-Driven Strategy of Real-Time Monitoring and Regulation

The integrated strategy is proposed based on two hypotheses. (i) Determining ele-
ments hypotheses: the pump rate, fracture volume/capacity, and proppant accumulation
are proposed as the determining elements contributing to screen-out, according to their
significance in hydraulic fracturing [33–36]. The mechanism of screen-out is presumed to re-
sult from parameter mismatch among the determining elements [37]. (ii) Linear-correlation
hypothesis: the development of fracture networks during proppant injection is ignored
when manually labeling the original data, based on which the authors assume that the
probability of screen-out has a linear relationship with the injected volume of proppant
under constant pump rate, and that the PFI (proppant filling index) has a linear correlation
with the ratio of injected proppant volume and the total proppant volume when screen-out
occurs. A data-driven workflow is built, based on the hypotheses, for real-time monitoring
and regulation and the assessment of water-hammer effects, as shown in Figure 2.
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According to these hypotheses, the PFI is defined as the volume proportion of
proppant-filled fracture in the total volume of proppant-accessible fractures [38]. Sub-
sequently, the PFI based on real-time data on hydraulic fracturing is predicted to monitor
the mismatch between proppant supply, by injection, and capacity within the evolving
underground fracture network, and therefore presents a continuous time history of risk
warnings for fracturing operations. An ensemble learning model was established for pre-
dicting the PFI curve for real-time monitoring, as shown in Figure 3a. Meanwhile, the SFPR
is defined as the safest fracturing pump rate [37]. The range of SFPR was generated by
the prior experiences of screen-out cases learned by a deep learning workflow combined
with sensitivity analyses of the U-shaped correlation between pump rate and screen-out
probability, as shown in Figure 3b.
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Field measurements of shale gas fracturing wells were collected from 18 wells located
in the southeast region of the Sichuan Basin, China, which included 29 fracturing stages.
These original field parameters involved the geological measurements (well depth, vertical
depth, minimum horizontal stress, and pore pressure), well-completion data (stage number
and stage length), and hydraulic injection records (pump rate, wellhead pressure, fluid vis-
cosity, proppant diameter, and concentration). These original datasets were pre-processed
to extract input features for algorithm training, which is an essential approach in data
augmentation. This pre-processing procedure integrates the classical numerical models (as
summarized in Section 2.2), and then significantly promotes the performance of algorithms,
as observed in our previous study [37].

The Gated Recurrent Unit (GRU) is applied as the core algorithm in the data-processing
workflow, as presented in Figure 3. This recurrent neural network is specifically designed
to deal with time-series data, such as hydraulic fracturing records during field operations.
Two GRU models with 3 layers (including the output layer) were built for predicting PFI
and generating SFPR, respectively (as shown in Figure 3). The ‘ReLu’ was applied as
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the activation function in each layer. The Adam routine was selected as the optimizer to
compile the model. A callback function was applied to return and automatically update the
learning rate, which improves the training efficiency. The grid search and walk-forward
validation techniques were combined for the optimization of hyperparameters used for
the GRU algorithm. Although the same framework was used, the two GRU models were
optimized and trained separately with different training datasets. The PFI is predicted
based on both the screen-out and near-screen-out datasets. The SFPR is generated based on
the screen-out dataset only. Details of the hyperparameter optimizations and algorithm
training are reported in the appendix of our previous study [32]. In this study, we used
the well-trained algorithm (for PFI prediction) and SFPR strategy in field trials, and then
evaluated the water-hammer effects induced by pump-rate regulations. The SFPR was
suggested to be between 5 and 10 m3/min and to be regulated mildly, based on the collected
field data.

2.2. Summary of Numerical Models for Feature Extractions

Both the original parameters and the extracted features were used as the inputs for
algorithm training and predictions, as listed in Table 1. The original features included well
and vertical depths, minimum horizontal stress, pore pressure, stage number and length,
and hydraulic records (pump rate, wellhead pressure, fluid viscosity, and proppant param-
eters). The extracted features improved the performance of the algorithm significantly by
reducing the data noise and estimating the underground situations, which included the
volume ratio of injected sand and fluid (Vs/Vf), the wellhead-pressure change in a unit
volume of injected fluid (∆P/∆Vf), the downhole pressure after hole perforation (DPP), the
height of the slurry flowing layer in fractures (H1), and the fluid efficiency in fractures (η),
as presented in Table 1.

Table 1. Summary of original and extracted features for algorithm training.

Original Features Extracted Features

well depth; vertical depth; DPP

minimum horizontal stress; pore pressure H1

stage number; stage length η

pump rate; wellhead pressure ∆P/∆Vf

fluid viscosity; proppant diameter and concentration Vs/Vf

For the data-noise reduction, the frictions along the injecting pipelines and perforation
holes are estimated, and then removed from the wellhead pressure to obtain the downhole
pressure after hole perforation (DPP)—the fracture inlets. The calculation of DPP is given by

DPP = Pwellhead + Pstatics − Ppipeloss − Pper f oration (1)

The hydrostatic pressure (Pstatics) is calculated from the vertical well depth (hv)

Pstatics = ρsghv (2)

The frictions along the wellbore (Ppipeloss) and through the perforations (Pperforation) are
estimated as follows [39]: Ppipeloss = 2 f ρsυs

2L
hv

f = 0.046( ρsυshv
µs

)
−0.2

Pper f oration = 2.233×10−4Q2ρs

n2dh
4Cp

2

(3)

where ρs is the density of the pumped slurry, kg/m3; L is the wellbore length from wellhead
to the fracturing stage, m; υs is the flow rate of slurry within the wellbore, m/s; µs is the
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slurry viscosity, Pa·s; dh is the diameter of the perforation hole, m; Cp is the coefficient
of discharge, and is 0.6–0.95 for slurry; n is the number of the open perforation holes.
According to the mini-fracturing tests in fields, typically, approximately half of the designed
perforation holes are believed to be open based on the post-mini-fracturing analyses. Due
to the lack of direct underground measurements (i.e., the fiber optic distributed acoustic
sensing), the number of open perforation holes is assumed to be half of the designed
number of perforation holes in this study.

The slurry viscosity (µs) is calculated as follows [40]:

µs = µ f [
5
2

Cm A−1 + (0.32 +
0.38

1 + 5 × 10−5 A−2 )A−2] A =
Cm

C
− 1 (4)

where Cm is the maximum proppant concentration and is assigned a value of 0.585.
For the underground condition estimations, the proppant dune accumulation (H1)

and fluid efficiency (η) are applied to represent the hydraulic (proppant transport in
underground fractures) and rock mechanic (fracture propagations by evaluating the fluids
remaining within fractures) features. The bi-power law correlations are proposed to directly
calculate the height of the flowing channel (H1), which is given by [41]

H1

w
= [−0.00023 ln(RG) + 0.00292]R1.2−0.00126λ−0.428[15.2−ln(RG)]

f R[−0.0172 ln(RG)−0.12]
P (5)

where Rf, Rp, RG, and λ are calculated by R f =
ρ f Q f
wµ f

Rp =
ρpQp
wµ f

RG =
ρ f (ρp−ρ f )gd3

µ f
2 λ =

µ f /ρ f
w1.5√g

(6)

where Qf is the pump rate of the fracturing fluid, m3/s; Qp is the pump rate of the proppant,
m3/s; ρp and ρf are densities of proppant and fracturing fluid, respectively, in kg/m3; µf
is the fluid viscosity, Pa·s; d is the averaged diameter of the proppant, m; and w is the
fracture width, m. The fracture width is the only unknown parameter that is presumably
set to a value of 50 × dmax (dmax is the largest diameter of injected proppant), referring to
the result from slant-core drilling through a stimulated shale reservoir [42] and numerical
simulations [43].

When pure fluid is injected (alternative injection of proppant and pure fluid), the
injection of pure fluid may rebalance the proppant dune, which may be calculated from [44]

H′
1 = H1 − Hridge = (1 − 2S − 0.1

7S − 0.05
)H1 (7)

where S is the Shields number, and is calculated as

S =
8µ f Q f

(ρp − ρ f )gdw2H1
(8)

The fluid efficiency is defined as follows [45,46]:

η = η′(1 − fVp) + fVp

η′ =
Vf

(Vf +Vl)

(9)
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where η is the fluid efficiency; Vf and Vl are the fluid volumes both within the fracture and
leaked off, respectively; and fVp is the volume fraction of proppant in the injected slurry
(the ratio of proppant and slurry volumes). Thus, η′ is calculated as{

η′ = −b−
√

b2−4ac
2a

a = gd
l − gd

u b = gd
u − 2gd

l c = gd
l − 1

where
gd = gc/g0

g0 =

[
4/3 upper
π/2 lower

]
gc =

 4
3 [(1 +

tc
t0
)

3/2 − ( tc
t0
)

3/2
] upper

(1 + tc
t0
) sin−1 (1 + tc

t0
)
−1/2

+ ( tc
t0
)

1/2
lower


(10)

where a, b, c, gl
d, and gu

d are procedural parameters; gd is a function of time and obtained by
field-record analysis after pump shut-in; t0 is pumping time; and tc is the fracture-closure
time—the time between pump shut-in and fracture closure. For the ongoing fracturing
operation, the value of tc is referred to as the closure times of the neighboring wells.

2.3. Numerical Model for Estimating Water Hammer Effects

The pressure surge caused by water-hammer effects can be estimated by the Joukowsky
equation [47]:

∆P = ρ f aw∆υ (11)

where ∆P is the pressure rise due to water-hammer effects, Pa; aw is the velocity of the
pressure impulse wavetrain, m/s; and ∆ν is the velocity change in the wellbore, m/s.

The velocity of the impulse is calculated as follows [48]:

aw =

√
1

ρ f (
1
K + D

Ee )
(12)

where K is the bulk module of the liquid, Pa; D is the diameter of the wellbore, m; E is the
elasticity modulus of the pipe material, Pa; e is the thickness of the pipe wall, m.

The period of the impulse wave is obtained by dividing the well depth by the velocity
of the impulse wave. The steady-state friction expending the pressure surge is estimated
from the Darcy–Weisbach equation [49]:

Pf riction = fr
ρ f

2
∆Q2

gDA2 L (13)

where fr is the friction coefficient; g is gravitational acceleration, m/s2; A is the sectional
area of the wellbore, m2; and ∆Q is the pump-rate change, m3/s. The friction coefficient is
estimated by the Blasius-type friction equation [50]:

fr = 0.184(Re)−0.2 Re =
ρ f Daw

µ f
(14)

where Re is the Reynolds number.

3. Results
3.1. Field Trials of Emergency Pump-Rate Regulations

Three field cases are presented to deploy the PFI monitoring and SFPR regulation, as
shown in Figure 4. The deep analyses of the PFI evolutions are explained in our previous
study [32]. Generally, the sign of sand screen-out (encountering rapid or vertical increases
in wellhead pressures and PFI curves) emerged in the three cases. A stepwise strategy
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for pump-rate regulation was applied to reduce the pump rate down to the range of the
SFPR (between 5 and 10 m3/min), as shown in Figure 4. In Case A, the pump rate was
reduced stepwise from 18 m3/min down to 8 m3/min, and then a pump rate of 10 m3/min
was re-established for the following injection (Figure 4a). In Case B, the pump rate was
reduced to 2 m3/min to terminate the fracturing operation (Figure 4b). In Case C, the
pump rate was reduced and then maintained at ~12 m3/min because of the high proppant
concentration and long stage of proppant slug, requiring a relatively high pump rate for
the proppant transport. The pressure also decreased at ~12 m3/min and remained safe
when the pump rate was rebuilt up to ~14 m3/min (Figure 4c).
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3.2. Field Case of Sand Screen-Out

Case D is a failed example of screen-out prevention, in which the pump rate was
sharply reduced and a serious screen-out incident occurred [32], as shown in Figure 5. The
PFI reported three vertical jumps during the first three long-duration slugs of proppant
injection, as labeled by the three gray dotted–dashed lines in Figure 5a. After the second
jump at ~6700 s, the PFI approached 60 in the middle of the fracturing operation, indicating
a high proportion of proppant filling in the subsurface fractures. The wellhead pressure,
however, registered a slight decrease during the first half of the operation, which is decep-
tive. The drop in wellhead pressure and the near-continuous rate of proppant injection
encouraged the operator to ignore the warning of the PFI, even though it exceeded 80
after 9500 s (Figure 5a). However, the pressure increased sharply soon after the proppant
injection. The pump rate was then halved from 16 to 8 m3/min and, shortly afterward, it
was quartered, as shown in Figure 5b. The final slashing of the pump rate to 2 m3/min may
have deteriorated the sand screen-out by promoting the proppant settling. The operators
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attempted to boost the pump rate to 4 m3/min, but encountered a more serious degree
of overpressure, indicating a typical screen-out incident. An emergency pump shutdown
was executed, with a risk posed to the well integrity from the water-hummer effect. The
fracturing operation was suspended in order to open the well, release the pressure, and
clean the proppant that flowed back into the well from the fracture.
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Figure 5. Field records of sand screen-out (a) and emergency pump-rate shutdown (b) [32].

The reason for the screen-out in Case D may have been the rate of proppant injection
(the duration of the injection of the slurry slug, the green curves at the bottom) exceeding
the rate of fracture propagation, as reflected in the PFI evolution in Figure 5a. The incident
might have been avoided if the operators had slowed down the proppant injection and
used shorter slurry slugs after the first PFI jump at ~5000 s in Figure 5a. Therefore, the
operator is alerted if the PFI exceeds 50% in the middle of the proppant injection, indicating
that the proppant-injection rate may surpass the rate of fracture propagation.

3.3. Impulsive Pressures from Water-Hammer Effect

A rapid change in pump rate may generate a pressure surge (water hammer effect),
which can vibrate and damage the casing, thus threatening well integrity. The pressure rise
due to pump-rate regulation in Figures 4 and 5 was estimated using the Joukowsky equation
(Equation (11)) [47]. This pressure transient propagates along the tube, and its severity is
amplified by rapid changes in pump rate, which, in turn, can produce cavitation (bubble
production and collapse due to extreme pressure reduction in the tails of the pressure
wave) [48,51]. The damping period can be obtained from the ratio of the well depth to the
impulse-wave velocity. Wellhead-pressure records intrinsically contain such influences.
The peak water-hammer pressure can be recovered from the Darcy–Weisbach equation
considering only the steady-state friction (Equation (13)) [49]. Representative magnitudes
of the contributing parameters for estimating the impulsive pressure are summarized in
Table 2.

Table 2. Summary of parameters for estimating impulsive pressures from water-hammer effects.

Parameters Values Parameters Values

Fluid Density (ρ) 1000 kg/m3 Diameter of Wellbore (D) 0.127 m

Bulk Module of Liquid (K) 2.2 × 109 Pa Thickness of Pipe Wall (e) 0.0123 m

Elasticity Modulus of Pipe
Material (E) 2.0 × 1011 Pa Fluid Viscosity (µ) 0.001 Pa·s

Well Depth (L) 3793 m (Case 1); 3782 m (Case 2);
5252 m (Case 3); 4482 m (Case 4)
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The rough estimations of impulsive pressure induced by the pump-rate regulations
are presented in Figure 6, in which the pump-rate changes in Figures 4 and 5 (labeled by
dashed circles) are magnified. Generally, a smaller change in the pump rate induces a lower
pressure transient. The maximum impulsive pressure (~7.4 MPa) in Cases A~C is restricted
and only half of the value in the screen-out case, reaching 14.7 MPa in Case D (Figure 6d).
The corresponding frictional resistance to flow in Case D also increases with the increasing
velocity of the impulse, resulting in a more rapid attenuation in pressure. Case D presents
a mild condition of sand screen-out when the pump rate is successfully reestablished. In
more urgent situations, the pressure may continue to increase, even with a reduced pump
rate. Therefore, an emergency pump shut-in must be executed, which may cause a pressure
rise of 32 MPa (pump shut-in from 12 m3/min) and result in a reduction in the safety factor
of breaching the casing compared with the industry standard [52]. The pressure surge may
cause the stress concentrations to exceed the capacity of the casings. Additionally, cyclic
loading due to reflections of the pressure wave from the wellbore base and collar may
further induce fatigue fractures in both the casing and the cement sheath [19,25].
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Figure 6. The estimated impulsive pressures from water-hammer effects in (a) Case A, (b) Case
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4. Discussions
4.1. Performance of the Data-Driven Strategy

The performance of the data-driven strategy (combining PFI monitoring and SFPR
regulations) is demonstrated by comprehensively analyzing the successful cases (Cases A,
B and C) in Figure 4 and the negative case (Case D) in Figure 5. The successful applications
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of the SFPR regulation strategy in Cases A, B, and C mitigate the rapid increase in wellhead
pressure, which reduces the loss that may be induced by the sand screen-out. Moreover,
the PFI curve reports high-value warnings under the condition that the wellhead pressure
shows a decreasing trend. Therefore, the presence of the PFI curve provides essential
monitoring for field operators to secure fracturing injections. In the middle of the fracturing
operation in Case D, the PFI approached a high level of 70 at around 8000 s. This is
considered as a valuable warning, 4000 s ahead of the occurrence of sand screen-out, at
around 12,000 s, which may spare sufficient time for field operators to perform real-time
judgments and adjustments. Moreover, the maximum impulsive pressure (~7.4 MPa) in
the SFPR-applied cases (Cases A~C) was significantly reduced, compared with the value
(~14.7 MPa) in the sand screen-out in Case 4, in which an emergency pump shut-in was
performed. Combined with the pre-warning of the PFI, the pump rate may be regulated
gradually to mitigate the reduction amplitude and avoid instant shut-in. These findings
agree with the previous results in high-production gas wells, based on which extending the
shut-in time was suggested to control the water-hammer effects [31].

4.2. Limitations and Implications

Notably, the stepwise pump-rate-regulation strategy is recommended to be deployed
with the PFI real-time monitoring technique. The evolution of the real-time PFI curve
reveals the mismatch between the proppant injection and the underground fracture prop-
agation, which provides an important reference to the likelihood of encountering sand
screen-out. Moreover, this continuous monitoring allows more reaction time for field
operators to make decisions and perform pump-rate regulations. Above all, an instant
pump shutdown is mandatory if the wellhead pressure approaches the maximum bearing
capacity, in order to secure the humans and equipment around the operation site.

In this study, we used impulsive pressure as the criterion to evaluate the degree of
water-hammer effect induced by emergency pump-rate regulations. The real damage to
the well integrity by water-hammer effects may be caused by various factors, such as
the geological stability of the fracturing formation, the quality of the well cement, and
others. A comprehensive evaluation of well integrity or damage by pump-rate regulation
is beyond the scope of this study. However, the magnitude of the estimated impulsive
pressure can be useful for a comprehensive study. Moreover, the case study in this work
demonstrates stepwise pump-rate regulation, which can offer valuable information for the
field application of hydraulic fracturing.

5. Conclusions

An integrated data-driven strategy and four field cases of hydraulic fracturing opera-
tions were presented to optimize the pump-rate-regulation strategy under the emergency
condition of sand screen-out or near sand screen-out. The impulsive pressure induced by
the water-hammer effect (due to the pump-rate regulation) was applied as the optimization
criterion. By deploying a stepwise pump-rate-regulation strategy, the sand screen-out
was successfully prevented in three positive cases. The generated impulsive pressures
(3.7~7.4 MPa) were only half or one-third of the pressure (~14.7 MPa) induced by the nega-
tive case, in which a more radical regulation strategy was deployed. An instant pump-rate
shut-in (for instance, from 12 m3/min) may further aggravate the impulsive pressure (rise
of 32 MPa) and, consequently, threaten the well’s integrity. Therefore, the success in ap-
plying the integrated data-driven strategy and the stepwise pump-rate-regulation method
provides a significant approach to both securing fracturing operations and enhancing
well-completion integrity for environmental requirements.
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