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Abstract: Inorganic components in coal play a significant role during the supercritical water gasi-
fication (SCWG) process. This study comprehensively investigated the effect of major mineral
components (SiO2, Al2O3, and CaO) on the SCWG of semi-coke with/without K2CO3. The inhibi-
tion/promotion mechanism and conversion of mineral chemical components were explored. The
results showed that, without K2CO3, CaO promoted gasification because CaO’s adsorption of CO2

contributed to the fixed carbon steam reforming reaction and the catalysis of highly dispersed calcite.
When K2CO3 was added, SiO2 and CaO were prone to sintering and agglomeration due to the
formation of low-melting-point minerals, which hindered further gasification of fine carbon particles.
Al2O3 prevented the aggregation of slags, increased the probability of fine carbon particles contacting
SCW and K2CO3, and promoted complete gasification. This study’s results may provide theoretical
guidance for the directional control of minerals in coal during SCWG, and complete gasification of
solid-phase carbon can be achieved by properly adjusting the mineral components.

Keywords: supercritical water gasification; semi-coke; mineral components; gasification effect

1. Introduction

Coal, as an inexpensive and abundant natural resource, is expected to be the primary
energy source long into the future, especially in China [1–3]. Global warming and air
pollution caused by traditional coal utilization are becoming increasingly serious, which
makes the development of clean coal technology urgent [4,5]. When the temperature and
pressure of water exceed the critical point (374 ◦C and 22.1 MPa), the phase interface
between the gas and liquid phases of water disappears, and water becomes supercritical,
known as supercritical water (SCW) [6–8]. SCW has some special physical and chemical
properties, such as gas-like viscosity, liquid-like density, low dielectric constant, and high
diffusion coefficient. This enables SCW to achieve low mass resistance, high solubility of
produced gases, easy separation of salts and impurities, and high reaction rate when used
as a gasification medium [9,10]. In recent years, the supercritical water gasification (SCWG)
of coal, a novel coal gasification technology, has received extensive attention and in-depth
research due to its clean, efficient, and low-cost characteristics [11–17]. In the SCWG of coal,
elements such as C, H, and O will be converted into gas-phase products, mainly existing
in the form of H2 and CO2 [18]. Pollution elements such as N, S, P, and Hg are enriched
in the form of inorganic salts in ash rather than being discharged into the atmospheric
environment. CO2 naturally accumulates at high concentrations, and the cost of separation
and capture is very low [15]. Taking a 1000 MW scale power generation unit as an example,
the SCWG-based coal consumption rate can be reduced to 244.8 g/kW·h, and the power
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generation efficiency can reach 56.7%, which is significantly better than traditional coal-
fired power generation [9]. The SCWG technology of coal is a breakthrough in the clean
utilization of coal, and the research and industrial application of this promising technology
are consistent with global sustainable development initiatives such as the United Nations’
Sustainable Development Goals [16].

Coal contains many organic components and a certain amount of mineral compo-
nents [19], mainly oxides or salts of Si, Al, Ca, Fe, etc. During the coal conversion process,
mineral components generally have important effects on the gasification/combustion of
organic matter in coal [20]. To study the influence of mineral components on coal com-
bustion, Song et al. [21] investigated demineralized brown coal loaded with Na+, Al3+,
K+, Ca2+, Mn2+, and Fe3+ (corresponding to the inherent minerals in lignite) using ther-
mogravimetric research under an air atmosphere. The results showed that Al3+ loading
reduced the stability and reactivity of coal combustion, whereas other metal ions (especially
Fe3+) could promote the combustion reaction. Ma et al. [22] showed that minerals in coal
can promote organic matter gasification below coal ash’s deformation temperature under
a CO2 atmosphere, and that anhydrite (CaSO4), oldhamite (CaS), hematite (Fe2O3), and
magnetite (Fe3O4) are catalytically active mineral components. Bai et al. [23] found that
iron oxides are coal’s only catalytic mineral matter for gasification at high temperatures
(1100–1500 ◦C) with CO2. Wu et al. [24] discovered that CaO reacts with carbon to form
CaC above approximately 1200 ◦C, and that magnetite is quickly reduced to Fe via carbon
at 820–920 ◦C under a N2 atmosphere. Wang et al. [25] found that free CaO has a catalytic
effect on coal char graphitization under an Ar atmosphere above 1600 ◦C, and the presence
of silicate or aluminosilicate weakens CaO’s catalytic effect. Kuznetsov et al. [26] studied
the conversion of calcium-based minerals in Kansk-Achinsk lignite; the results revealed
that highly dispersed calcite-like surface species formed from coal’s aragonite-like species
during the steam gasification process had catalytic activity on sp2-hybridized carbon atoms
(68–71% of coal’s carbon content). CaCO3, Ca(CH3COO)2, and Ca(C6H5COO)2 were chosen
by Ban et al. [27] as coal’s representative calcium structures to identify the calcium catalytic
mechanism of steam gasification. They found that these three calcium species had almost
the same catalytic effect, and that the calcium-catalyzed processes of steam gasification
were accompanied by the decomposition of an in situ-formed CaCO3 analogue.

In view of minerals’ significant influence on the conversion of organic matter in coal, it
is particularly necessary to grasp the laws and mechanisms of mineral components’ action
on the conversion of organic matter. Based on the above reviews, the current study was
primarily conducted under an air [21], CO2 [22,23], steam [26], and inert (N2/Ar) [24,25]
atmospheres; relevant studies under a supercritical water (SCW) atmosphere have not yet
been developed. In the SCWG of coal, the medium pressure (≥22.1 MPa) is much higher
than it is in traditional coal conversion technologies. However, the reaction temperature is
relatively low, and carbon gasification efficiency (CGE) greater than 95% can be achieved
under mild conditions (below 750 ◦C) [11,28,29]. Obviously, SCWG’s operating conditions
differ from those of other conversion technologies. It is well accepted that the conversion
characteristics of organic matter and minerals in different atmospheres are obviously
different [2,30–32].

Semi-coke is a solid product obtained via the low-temperature pyrolysis of bitu-
minous coal. Compared with brown coal and bituminous coal, the volatile content of
semi-coke is relatively low. In SCWG, using semi-coke as raw material can provide a
better analysis of the influence of mineral components on gasification efficiency. Based on
the SCWG of semi-coke (a solid product obtained via the low-temperature pyrolysis of
bituminous coal), this study comprehensively assessed the effects of mineral components
(SiO2, Al2O3, and CaO) on the gasification of organic matter. Mineral components with
obvious inhibitory/promoting effects were screened out, and their action mechanisms were
considered in depth. This study may not only provide theoretical basis for the selection and
regulation of mineral components in coal during SCWG, but also provide technical support
for the selection of designed coal types during the industrialization of SCWG technology.
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2. Materials and Methods
2.1. Materials

The semi-coke used in this study was obtained from Yulin, Shaanxi, China. The ulti-
mate analysis, proximate analysis, and the ash chemical compositions of semi-coke are sum-
marized in Table 1. The ultimate analysis and proximate analysis of semi-coke were carried
out in accordance with Chinese standards GB/T30733-2014 [33] and GB/T30732-2014 [34],
respectively. The ash chemical compositions were determined using X-ray fluorescence
(XRF), which is based on the Chinese standard GB/T37673-2019 [35]. As K2CO3 is the most
effective catalyst for improving carbon gasification efficiency in SCWG for coal [11], this
study also examined mineral components’ effect on organic matter gasification using a
K2CO3 catalyst. K2CO3 and mineral chemical constituent additives (SiO2, Al2O3, and CaO)
used in this study’s experiments were all analytical-grade powder reagents purchased from
Sinopharm Group Chemical Reagent Co., Ltd., Shanghai, China.

Table 1. Ultimate analysis, proximate analysis, and ash compositions of the semi-coke.

Ultimate Analysis [wt%] Proximate Analysis [wt%, Air-Dry Base]

C H N S O a Moisture Ash Volatiles Fixed carbon
65.59 2.25 0.95 2.26 7.75 0.70 21.20 14.58 63.52

Ash composition [wt%]

CaO SiO2 Al2O3 Fe2O3 SO3 Na2O MgO TiO2 Others
32.77 22.12 22.09 11.96 6.57 1.31 0.84 0.50 1.84

a By difference.

2.2. SCWG Experimental Setup

The SCWG experiment was conducted in a batch autoclave system, as shown in
Figure 1. The autoclave was manufactured using Inconel 625 alloy with design parameters
of 750 ◦C and 35 MPa [36]. The inner diameter and volume of the autoclave were 60 mm
and 567 mL, respectively. The autoclave was equipped with a 25 mm high stainless-steel
crucible with a 55 mm outer diameter and a 3 mm wall thickness, which was used to
contain the reactant slurry. The autoclave was sealed using a flange; the flange cover was
equipped with a pressure sensor for monitoring pressure and a K-type thermocouple for
monitoring the medium temperature in the autoclave. Temperature and pressure signals
were transmitted to the computer and displayed in real time. The furnace could be moved
vertically up and down to ensure that the autoclave could be wrapped by it or detached
from it.
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Figure 1. Schematic diagram of the autoclave system (1—high-purity Ar, 2—autoclave, 3—crucible,
4—furnace, 5—inlet valve, 6—outlet valve, 7—wet gas flowmeter, 8—temperature sensor, 9—pressure
sensor, and 10—computer).

During the experiment, 3 g of semi-coke powder (particle size less than 100 µm) and
certain amounts of mineral chemical components were fully mixed in the stainless-steel
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crucible (the desired amount of K2CO3 was also added in cases of catalytic gasification);
next, 30 g of deionized water was added to continue blending. The test conditions in this
study are shown in Table 2. The crucible containing the well-mixed slurry was put into
the autoclave, and the flange cover was assembled and tightened. High-purity Ar gas
was used to purge the autoclave of air. Next, the furnace, which had been preheated to
a certain temperature, was moved up to cover the autoclave. The fluid in the autoclave
was heated to the reaction temperature (750 ◦C) and held for 20 min. During the reaction
time, the pressure in the autoclave was maintained at 23–28 MPa. Lastly, the furnace was
shut off and moved down to be separated from the autoclave; the autoclave was then
immediately cooled using cold water. When the temperature in the autoclave dropped to
room temperature, the outlet valve was opened and the produced gas flowed out of the
autoclave into the wet gas flowmeter to measure its volume; during this process, some gas
was collected to detect its composition. To ensure the accuracy of the experiment, three gas
samples were collected for composition analysis, and the average value of the three samples
is the final value. When the autoclave reached normal pressure, it was disassembled and
the crucible was removed to collect the solid products, which were washed multiple times
using deionized water to achieve a pH of 7, and then placed in the oven at 110 ◦C for 24 h.
The dried solid products were used for subsequent characterization and analysis.

Table 2. The test conditions in this study.

Case K2CO3 [wt%] SiO2 [wt%] Al2O3 [wt%] CaO [wt%]

1 0 0 0 0
2 0 10 0 0
3 0 0 10 0
4 0 0 0 10
5 0 0 0 30
6 0 0 0 50
7 40 0 0 0
8 40 10 0 0
9 40 0 10 0
10 40 0 0 10
11 40 3.33 0 0
12 40 6.67 0 0
13 40 0 3.33 0
14 40 0 6.67 0
15 40 0 0 3.33
16 40 0 0 6.67

2.3. Characterization Analysis

Gas composition analysis was performed using the Agilent 7890 gas chromatograph
equipped with a thermal conductivity detector (TCD) and a Plot C2000 capillary column
(purchased from Lanzhou Institute of Chemical Physics, Lanzhou, China). Briefly, 0.4 mL
of gas sample was injected into the gas chromatograph through a syringe in this study.
High-purity argon (99.999%) with a flow rate of 5 mL/min was used for the carrier gas.
The quantitative calculation is based on the standard gas mixture of H2, CO, CO2, and CH4.
X-ray diffraction (XRD) patterns were obtained using X’pert MPD Pro from PANalytical
using Ni-filtered CuKα radiation (λ = 0.15406 nm, 40 kV, 40 mA) and a scan rate of 2◦ min−1

in the 2θ range from 10 to 70◦. A field-emission scanning electron microscope with energy-
dispersive X-ray (SEM-EDX) (JEOL JSM-6700F, Tokyo, Japan) was used to obtain the
microstructure and elemental mapping images of the solid samples.

2.4. Data Analysis

To analyze the effect of mineral components on the gasification of organic matter,
several technical indicators (carbon gasification efficiency (CGE), gas yield, and gas molar
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fraction) were used to evaluate the organic matter gasification level. These indicators’
specific meanings are as follows [28]:

CGE =
the mass of carbon in gaseous product

the mass of carbon in feedstock
× 100, % (1)

Gas yield =
the mole of gaseous product

the mass of dry matter in feedstock
× 100, mol·kg−1 (2)

Gas molar fraction =
the mole of a certain gas product

the summation of molar number of all the gaseous products
× 100, % (3)

3. Results and Discussion
3.1. Effect of Mineral Components without K2CO3

Figure 2 shows that, compared with the case of no minerals, the gas yield and the
gas mole fraction did not obviously change after adding SiO2 or Al2O3, which indicated
that SiO2 and Al2O3 minerals did not affect organic carbon gasification. However, CaO
significantly promoted gasification; the gas yield improved from 26.79 to 36.29 mol/kg
due to the addition of CaO. The addition of CaO also led to conspicuous changes in the
proportions of H2 and CO2 in the produced gas. The molar fraction of H2 increased from
51.27% to 55.44%, and the molar fraction of CO2 decreased from 37.13% to 33.88%. The
following discussion focuses on the CaO-promoting gasification mechanism.
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Figure 2. Effects of different mineral components (10 wt%) on gas components and gas yields without
K2CO3.

On the one hand, adding CaO could absorb and solidify CO2 in situ. The specific
reaction mechanism can be explained as follows. Based on data from the NIST-JANAF
thermochemical tables [37], the phase transformation of CaO-Ca(OH)2 in a water environ-
ment can be obtained as shown in Figure 3, which demonstrates that added CaO existed
in the form of Ca(OH)2 in this study’s SCW environment. Ca(OH)2 can react with the
gas-phase product CO2 to generate stable CaCO3. XRD patterns of different CaO additions,
displayed in Figure 4, prove that the addition of CaO led to calcite (CaCO3) formation. The
steam-reforming reaction of fixed carbon in SCWG is an important source of CO2 and H2
in gas-phase products [38], as per the following equation:

C + 2H2O → CO2 + 2H2 (4)

The adsorption of CO2 by Ca(OH)2 made the steam-reforming reaction move in
the opposite direction. Therefore, more solid-phase carbon was gasified into gas-phase
products, and more gas was generated. In summary, CaO’s main reactions during the
SCWG process can be expressed as follows:

CaO + H2O → Ca(OH)2 (5)
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Ca(OH)2 + CO2 → CaCO3 + H2O (6)

The overall stoichiometric equation is as follows:

CaO + 2H2O + C → CaCO3+2H2 (7)
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Figure 4. XRD patterns of solid products with/without CaO at 750 ◦C (C0/C1/C2/C3—0/10/30/50
wt% CaO, ♦ calcite (CaCO3)).

As shown in Figure 2, compared with other cases, adding CaO resulted in a larger
share of H2 and a smaller share of CO2, which was caused by the solidification effect of
CaO. Figure 5 shows the gas product components of different CaO additions as the CaO
loading increased, the molar fraction of H2 further increased and the molar fraction of CO2
further decreased. This further proves the CaO adsorption effect. From Figure 5, it can also
be seen that with the increase in CaO addition, the gas yield does not increase significantly,
and even slightly decreases at 30 wt% addition. This is also due to the solidification of CO2
in the gas into calcite.

On the other hand, the highly dispersed calcite obtained after absorbing CO2 had a
catalytic effect on gasification. To explore calcite’s catalytic mechanism, the solid residue
after gasification was characterized using SEM, as shown in Figure 6. Figure 6a shows
that CaCO3 particles with a diameter of approximately 1~4 µm (illustrated as light-colored
spheres) became attached to the surface of a char particle (illustrated as a dark-colored
block) during the gasification process. Many pits the same size as the CaCO3 particles’
diameters formed on the char particles’ surface; some CaCO3 particles migrated into the
carbon matrix in a perforated manner, such as CaCO3 particles in the yellow line area. The
char particle shown in Figure 6b had many tunnel-like pore structures in its carbon matrix
due to the continuous inward migration of CaCO3. The pore structures intersected with
each other and even caused the carbon matrix to be destroyed; this revealed that CaCO3
had a catalytic effect on the gasification of solid-phase carbon, and that the gasification
reaction of solid-phase carbon mainly occurred on the contact surface between CaCO3 and
char particles. Yu et al. found a similar phenomenon when studying calcium catalytic char
gasification in a steam atmosphere [39], and believed that highly dispersed calcium helped
prevent the formation of aromatic ring structures and improved the disorder of carbon.



Energies 2024, 17, 1193 7 of 14

Energies 2024, 17, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. Gas components for different CaO loadings. 

On the other hand, the highly dispersed calcite obtained after absorbing CO2 had a 
catalytic effect on gasification. To explore calcite’s catalytic mechanism, the solid residue 
after gasification was characterized using SEM, as shown in Figure 6. Figure 6a shows that 
CaCO3 particles with a diameter of approximately 1~4 µm (illustrated as light-colored 
spheres) became attached to the surface of a char particle (illustrated as a dark-colored 
block) during the gasification process. Many pits the same size as the CaCO3 particles’ 
diameters formed on the char particles’ surface; some CaCO3 particles migrated into the 
carbon matrix in a perforated manner, such as CaCO3 particles in the yellow line area. The 
char particle shown in Figure 6b had many tunnel-like pore structures in its carbon matrix 
due to the continuous inward migration of CaCO3. The pore structures intersected with 
each other and even caused the carbon matrix to be destroyed; this revealed that CaCO3 
had a catalytic effect on the gasification of solid-phase carbon, and that the gasification 
reaction of solid-phase carbon mainly occurred on the contact surface between CaCO3 and 
char particles. Yu et al. found a similar phenomenon when studying calcium catalytic char 
gasification in a steam atmosphere [39], and believed that highly dispersed calcium helped 
prevent the formation of aromatic ring structures and improved the disorder of carbon.  

 
Figure 6. SEM-EDX images of solid productions with 10 wt% CaO. (a,b) are SEM images of different 
solid particles in the solid productions, respectively; (a1,a2) are EDX spectrums of the a1 and a2 test 
spots in (a), respectively; (b1,b2) are EDX spectrums of the b1 and b2 test spots in (b), respectively. 

3.2. Effect of Mineral Components with K2CO3 
Figure 7 shows that the effect of minerals on gasification under K2CO3 catalysis was 

obviously different from their effect without K2CO3. Compared with the case of no catalyst 

Figure 5. Gas components for different CaO loadings.

Energies 2024, 17, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. Gas components for different CaO loadings. 

On the other hand, the highly dispersed calcite obtained after absorbing CO2 had a 
catalytic effect on gasification. To explore calcite’s catalytic mechanism, the solid residue 
after gasification was characterized using SEM, as shown in Figure 6. Figure 6a shows that 
CaCO3 particles with a diameter of approximately 1~4 µm (illustrated as light-colored 
spheres) became attached to the surface of a char particle (illustrated as a dark-colored 
block) during the gasification process. Many pits the same size as the CaCO3 particles’ 
diameters formed on the char particles’ surface; some CaCO3 particles migrated into the 
carbon matrix in a perforated manner, such as CaCO3 particles in the yellow line area. The 
char particle shown in Figure 6b had many tunnel-like pore structures in its carbon matrix 
due to the continuous inward migration of CaCO3. The pore structures intersected with 
each other and even caused the carbon matrix to be destroyed; this revealed that CaCO3 
had a catalytic effect on the gasification of solid-phase carbon, and that the gasification 
reaction of solid-phase carbon mainly occurred on the contact surface between CaCO3 and 
char particles. Yu et al. found a similar phenomenon when studying calcium catalytic char 
gasification in a steam atmosphere [39], and believed that highly dispersed calcium helped 
prevent the formation of aromatic ring structures and improved the disorder of carbon.  

 
Figure 6. SEM-EDX images of solid productions with 10 wt% CaO. (a,b) are SEM images of different 
solid particles in the solid productions, respectively; (a1,a2) are EDX spectrums of the a1 and a2 test 
spots in (a), respectively; (b1,b2) are EDX spectrums of the b1 and b2 test spots in (b), respectively. 

3.2. Effect of Mineral Components with K2CO3 
Figure 7 shows that the effect of minerals on gasification under K2CO3 catalysis was 

obviously different from their effect without K2CO3. Compared with the case of no catalyst 

Figure 6. SEM-EDX images of solid productions with 10 wt% CaO. (a,b) are SEM images of different
solid particles in the solid productions, respectively; (a1,a2) are EDX spectrums of the a1 and a2 test
spots in (a), respectively; (b1,b2) are EDX spectrums of the b1 and b2 test spots in (b), respectively.

3.2. Effect of Mineral Components with K2CO3

Figure 7 shows that the effect of minerals on gasification under K2CO3 catalysis was
obviously different from their effect without K2CO3. Compared with the case of no catalyst
(as shown in Figure 2), the addition of K2CO3 catalyst significantly improves the gas yield
because K2CO3 can promote the steam-reforming reaction and water–gas shift reaction in
the process of SCWG [28]. Under K2CO3 catalysis, SiO2 and CaO had inhibitory effects
on gasification, whereas Al2O3 had an accelerating effect. CaO addition caused the H2
mole fraction to increase from 55.75% to 57.96%, and the CO2 mole fraction to decrease
from 33.00% to 31.21%. Compared with the case of non-catalytic gasification (as shown in
Figure 2), the effect of CaO on the gas composition in the case of K2CO3 catalytic gasification
was no longer significant. This can be explained as follows: after adding K2CO3, the K2CO3
catalyzing solid-phase carbon steam-reforming reaction became the dominant reaction in
the gasification process. This process produced large amounts of CO2 and H2, which led to
the weakening of Equation (7) on the proportion of gas-phase products. Given that SiO2,
Al2O3, and CaO all had significant effects on gasification, the following discussion focuses
on the analysis of these three minerals’ action mechanisms.
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3.2.1. Mechanism Analysis of SiO2 Inhibiting Gasification

Figure 8a shows gas yields and CGEs at different SiO2 additions; as the SiO2 loading
increased, the gas yield gradually decreased, and the CGE reduced from 89.50% to 77.92%.
The XRD patterns in Figure 8b show that wollastonite (CaSiO3) peaks appeared after adding
SiO2, which might have been due to the reaction between SiO2 and calcite (the mineral
component of semi-coke) during the gasification process. In addition, as the amount of SiO2
added increased, the minerals’ crystal peaks were no longer significant, which indicates
that some minerals might have melted and become amorphous. It can be seen from the
SEM photos in Figure 9 that obvious melting agglomeration occurred in the minerals, and
multiple small mineral particles agglomerated into new large mineral particles. These
molten mineral particles had a dense surface. In the case of only loading the K2CO3 catalyst,
the powerful catalytic capacity of K2CO3 increased the CGE to as much as approximately
90%. In such an environment, the larger carbon skeleton in the semi-coke particles was fully
disintegrated, which made the solid organic matter particles smaller. At such a high CGE,
the number of mineral particles was equivalent to that of small carbon particles, or even
higher. In such a case, the molten mineral particles might encapsulate some small carbon
particles. Carbon particles wrapped in dense minerals have difficulty in contact with SCW
and K2CO3, which hinders the further gasification of solid carbon. The EDX scan showed
that the sintered mineral was potassium silicate, which indicates that SiO2’s presence can
cause partial K2CO3 deactivation and the formation of low-melting-point minerals. In
summary, in the case of K2CO3-catalyzed gasification, the inhibiting mechanism of SiO2
was mainly manifested in two aspects: the formation of low-melting-point minerals and
partial K2CO3 deactivation.
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Figure 9. SEM-EDX images of solid productions with 10 wt% SiO2 and 40 wt% K2CO3. (a–c) are SEM
images of different solid particles in the solid productions, respectively; (a1,a2) are EDX spectrums of
the a1 and a2 test spots in (a), respectively; (b1,b2) are EDX spectrums of the b1 and b2 test spots
in (b), respectively; (c1,c2) are EDX spectrums of the c1 and c2 test spots in (c), respectively.

3.2.2. Mechanism Analysis of CaO Inhibiting Gasification

As CaO displayed a completely different effect with and without K2CO3, the gasi-
fication conditions under different calcium oxide additions were investigated to further
verify the results’ reliability. As shown in Figure 10a, the gas yield and CGE gradually
decreased as the CaO loading increased, indicating that CaO’s presence did indeed inhibit
the catalytic gasification of K2CO3. Figure 10b’s XRD patterns show that as the amount
of CaO added increased, more calcite (CaCO3) crystals were formed in the solid-phase
product. SEM images in Figure 11 show that the calcite morphology significantly changed;
calcite was no longer dispersed on the surface of the carbon matrix but was sintered and
agglomerated between particles. This might have been because when the large carbon
matrix was destroyed by K2CO3 catalytic gasification, the calcite lost its attachment position
and the probability of direct contact between calcite particles increased. Calcite is a low-
melting-point mineral and prone to agglomeration under the current SCWG environment.
The particle size of agglomerated calcite particles was larger than 10 µm (as displayed in
Figure 11b,c), and the large-particle calcite formed after agglomeration also had a dense
surface. This phenomenon is similar to the melting and agglomeration of potassium silicate
under the case of SiO2 addition, which easily wraps some small residual carbon particles
and hinders the gasification reaction progress. In addition, sintered calcite no longer had a
catalytic effect.
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Al2Si10O24·7H2O), ▼ kalsilite (KAlSiO4), ♦ calcite (CaCO3).
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Figure 11. SEM-EDX images of solid productions with 10 wt% CaO and 40 wt% K2CO3. (a–c) are SEM
images of different solid particles in the solid productions, respectively; (a1,a2) are EDX spectrums of
the a1 and a2 test spots in (a), respectively; (b1,b2) are EDX spectrums of the b1 and b2 test spots in
(b), respectively; (c1,c2) are EDX spectrums of the c1 and c2 test spots in (c), respectively.
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When studying the steam gasification of coal char, Jiang et al. [40] believed that
the addition of calcium species (Ca(OH)2, Ca(CH3COO)2, or CaCO3) would produce a
synergistic effect with K2CO3 and improve the CGE due to the inhibiting deactivation of
K2CO3 caused by calcium species. The XRD pattern in Figure 10b shows that as the amount
of CaO added increased, the amount of KAlSiO4 (no catalytic activity, obtained via the
reaction of mineral components in semi-coke with K2CO3 catalyst) gradually decreased.
This indicated that CaO indeed inhibits K2CO3 inactivation. However, the gas yield and
CGE results (as shown in Figure 11a) confirmed that in the current study, gasification
inhibition caused by calcite sintering and agglomeration played a major role, rather than
the promotion of gasification caused by inhibiting K2CO3 inactivation. Arnold et al. [41]
also showed that when the CGE was high, the ash’s fusion state had a significant effect on
solid carbon gasification, and the catalytic gasification of K2CO3 was suppressed due to
CaCO3 sintering.

3.2.3. Analysis of the Mechanism of Al2O3 Promoting Gasification

The results under the case of no K2CO3 indicated that Al2O3 had no catalytic effect.
However, Al2O3 shows a promotion effect during the K2CO3 catalytic gasification process;
appropriately increasing the amount of Al2O3 added was conducive to the complete
gasification of semi-coke (as shown in Figure 12a); the CGE reached 99.38% with 10 wt%
Al2O3. The presence of K2CO3 helped form low-temperature eutectics [42–44], which
caused a part of fine carbon particles to be wrapped by molten minerals and these could not
be completely gasified. The addition of Al2O3 contributed to the formation of high-melting-
point minerals. The XRD patterns in Figure 12b show that the content of high-melting-point
minerals (such as Al2O3 and AlO(OH)) in the solid-phase product increased as the amount
of Al2O3 added increased. The SEM image in Figure 13a shows that Al2O3 took the form of
nano-thickness flakes in the SCWG atmosphere, and that many alumina flakes were messily
stacked together. Even though many alumina flakes were in direct contact with each other
(as shown in Figure 13b), they were not melted and agglomerated, but were stacked loosely,
forming plenty of diffusion channels. The presence of high-melting-point minerals can
make solid-phase products better dispersed, which allows incompletely gasified residual
carbon particles to be fully exposed to SCW rich in the K2CO3 catalyst. This promotes
contact between the reactants (H2O and solid carbon) and the catalyst (K2CO3) during the
gasification process and the timely release of gas-phase products from the solid surface.
This study’s results are evidence that the proper addition of high-melting-point minerals to
prevent the agglomeration of slags is an effective way to promote the complete gasification
of organic matter in coal under high-CGE conditions.
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4. Conclusions

This study comprehensively investigated the effects of mineral components (SiO2,
Al2O3, and CaO) on the SCWG of organic matter in semi-coke. In the case of non-catalytic
gasification, SiO2 and Al2O3 had almost no effect on the gasification reaction progress.
However, CaO promoted gasification due to CaO’s solidification effect and the catalytic
effect of highly dispersed calcite produced by CaO with CO2. In the case of K2CO3
catalysis, both SiO2 and CaO inhibited gasification; these two minerals promoted the
agglomeration of minerals and inhibited the contact of supercritical water with solid-phase
carbon. Additionally, SiO2 could cause some K2CO3 inactivation. Al2O3 maintained fluffy
and porous structures owing to its high melting point; this made it possible to promote
the contact of fine residual carbon with K2CO3 and SCW when the CGE was high, which
contributed to the complete gasification of solid-phase carbon. This study shows that the
complete gasification of solid-phase carbon can be achieved by properly adjusting the
mineral components in coal.

In the future, the influence of mineral components on CGE in supercritical water
fluidized bed reactor (SCWFBR) will be further explored. The SCWFBR has excellent heat
and mass transfer characteristics, which can achieve continuous and efficient gasification
of high-concentration coal slurry, demonstrating good industrial prospects. The coupling
matching of velocity field, temperature field, and reaction field in a SCWFBR is a great
challenge, which is also the focus of subsequent research.
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