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Abstract: Wind turbines are vulnerable to negative sequence current injection, the conventional
automatic reclosing scheme for wind power outgoing lines, since we may inject negative sequence
components into the system and reclose it without distinguishing the nature of the fault through
rectification. Moreover, reclosing in permanent faults could induce a secondary impact on the system.
To solve the above problems, an adaptive reclosing scheme for cross-line faults on double-circuit wind
power outgoing lines with shunt reactors is proposed. Firstly, a new tripping strategy and a single-
side partial-phase reclosing method are proposed for multiple types of outgoing line faults, while,
simultaneously, phase-to-phase coupling loops are established. Secondly, the criteria of fault nature
are established based on the fault phase shunt reactor current and fault phase voltage characteristics,
and transient faults are rapidly and accurately distinguished from permanent ones according to
the criteria. Finally, the theoretical derivation and simulation experiments are conducted on the
PSCAD/EMTDC platform to demonstrate that the proposed adaptive reclosing method is applicable
to avoid the injection of negative sequence currents into wind turbines. Meanwhile, the success rate
of reclosing for wind power outgoing line is significantly improved and the continuity of power
transmission on the wind farm(s) is ensured.

Keywords: transient fault; permanent failure; wind power outgoing line; adaptive reclosing

1. Introduction

A double-circuit transmission line has the advantages of a large transmission capacity
and a small occupied corridor [1–6], etc. Large-scale wind farms are usually connected to
the grid by a high-voltage double-circuit transmission line. At the same time, the wide
variety of faults makes it difficult to formulate the reclosing logic [7–9]. And, according
to the statistics, 80% of high-voltage overhead transmission line faults consist of transient
faults [10–22]. Therefore, most of the actual project involves using automatic reclosing to
improve the reliability of the power supply. But, with automatic reclosing, if reclosing
permanent faults, this will cause a secondary impact on the power grid. Adaptive reclosing
distinguishes the nature of the fault before reclosing and can avoid reclosing permanent
faults. In addition, the injection of negative sequence components into the system increases
the risk of successive phase change failures in the high-voltage DC (direct current) trans-
mission system, as well as exacerbating the heating of the stator–rotor windings of doubly
fed wind turbines, which affects the stability of the system. If the line trips on a single
phase due to a fault, the negative sequence current injected into the wind turbine during
the non-full-phase operation of the line exceeds the set value, and the protection action
will cause the wind turbine and the grid to be unlisted. If the capacity of the wind power
system operating on the grid is large, a large-scale turbine becoming off-grid will affect the
operational stability of the whole system.
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At present, the reclosing strategy adopted for wind power transmission lines directly
follows the conventional transmission line configuration scheme and does not consider
whether the traditional scheme is applicable after wind power access. To address the
above issue, some studies have been conducted, including a series of studies on adaptive
reclosing. One method considering the influence of wind power operation’s external
characteristics on the fault phase electrical quantity was proposed, analyzing the trend
in the active power, the reactive power before and after the fault in the DC component,
and the low-frequency component amplitude ratio, puts forward a fault arc-quenching
criterion based on the power ratio and is not affected by the weather, transition resistance
or other factors [23]. However, this method is not applicable to wind power transmission
lines without parallel resistance. Another method was developed using the high-frequency
component distortion rate of the faulted phase voltage to determine the arc-quenching
moment of the fault [24]. However, the existence of the shunt reactor makes the recovery
voltage lower, and the measurement accuracy of the engineering is not enough to ensure
its reliability. Wang et al. proposed injecting low currents into the wind farm transmission
line through the wind turbine grid-side converter and using the current integral feature to
construct the fault nature criterion [25]. But, this method cannot recognize non-injected
phase ground faults and requires multiple injections. Lin et al. proposed a method based
on the recovery voltage of the fault phase in parallel transmission lines with shunt reactors.
This method is effective in identifying permanent cross-line ungrounded faults [26]. Owing
to the coupled voltage, a high-frequency component occurs between the faulted and sound
phases. The scheme identifies the fault according to the variation in the nature of the fault.
It is difficult to derive the exact difference due to various factors in the transmission line.
Another method was proposed to accurately distinguish transient and permanent ground
faults according to the difference in the amplitudes of the fault point voltage in parallel
lines [27] However, this method is ineffective in determining the nature of cross-wire
ungrounded faults. Furthermore, an algorithm based on the adaptive cumulative sum
method (ACUSUM) was developed to determine the nature of the fault in accordance
with the sequence of the voltage amplitude changes during the fault process, but it uses a
sinusoidal waveform as the reference signal, which could lead to inaccurate identification
results [22]. Recently, a quasi-two-phase tripping strategy was proposed. It is able to
determine the fault nature according to the reactive power characteristics before and after
the arc quenching of the faulted phase, whereas the introduction of negative sequence
components into the system caused by the two-phase operation lowers the operational
stability of the system [28].

To solve the abovementioned problems, an adaptive reclosing scheme is proposed
in this paper for identifying the cross-line faults on double-circuit wind power outgoing
lines with shunt reactors is proposed in this paper. It consists of a novel optimized tripping
strategy based on a quasi-three-phase operation mode and criteria that are capable of
avoiding the impact of negative sequence currents on wind farms (clusters), identifying the
nature of cross-line grounded faults and ungrounded faults.

The following contents of this paper are arranged as follows: Section 2 introduces the
new tripping strategy. In Section 3, detailed analyses of the fault phase shunt reactor current
and fault phase voltage are presented, and the fault nature criteria are proposed. Section 4
describes the proposed adaptive reclosing method. The PSCAD/EMTDC simulation
system and the relevant results are discussed and explained in Section 5. Finally, the main
conclusions of the present study are summarized.

2. New Reclosing Action Method

Below are the problems arising from the method of automatic reclosing for double-
circuit wind power outgoing lines in practice:

(1) Configuring each of the two circuit lines using a single-phase recloser. After
single-phase tripping of the wind power transmission line, due to the asymmetry of the
three-phase system, a large number of negative sequence currents will be injected into the
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wind farm (group) [22,23], causing mechanical damage, aggravating the heating of the
stator and rotor windings, and affecting the stability of its grid-connected operation.

(2) When a three-phase reclosing method [25] or the quasi-three-phase tripping strat-
egy is applied (the quasi-three-phase operation mode is to form a single transmission line
with three sound phases of different names in case of a faulty double-circuit line), when all
of a circuit is tripped (e.g., IAIBICG fault), the three-phase balance of the reserved phases
is unfavorable to identifying the nature of the fault, even though the impact of negative
sequence currents is avoided. In addition, when the quasi-three-phase tripping strategy is
adopted in the case of some cross-line ungrounded faults, such as the IABIIBC fault, all
phases of the double-circuit transmission line will trip.

Figure 1 shows the outgoing lines of wind power with a simplified pattern of wiring.
In this condition, the following measures are proposed for improvement. Firstly, when
a fault occurs, the three heteronymous phases are retained to form a single transmission
line, and when a cross-line ungrounded fault occurs, there is a pair of fault phases with the
same name, one of which is tripped to isolate the fault in the same phase, thus reducing
the types of faults that cause all six phases of the transmission line to trip and improving
the stability of the regional grid. The injection of negative sequence currents into the wind
farm (cluster) is avoided while the fault is isolated. Secondly, full consideration of the fault
for the transient nature of the fault point to go away time, after a certain delay in tripping,
reclosing line system side (N side) part of the phase. The phase-to-phase coupling circuit is
established, even if the closure of the permanent fault but because the faulty circuit is not
formed, no secondary shocks are induced to the system, while sufficient coupled electrical
quantities are provided to accurately identify the nature of the fault.
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Figure 1. Schematic diagram of the wind power outgoing lines. 
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Figure 1. Schematic diagram of the wind power outgoing lines.

The novel tripping strategy is detailed as follows:
(1) When the fault type contains no homonymous faulty phase, three sound heterony-

mous phases are retained.
(2) Regarding cross-line grounded faults, when a pair of fault phases with the same

name exists in the fault type, all phases are tripped. As for cross-line ungrounded faults,
when a pair of fault phases with the same name exists in the fault type, one of them is
retained, and the other one is tripped to isolate the fault. Three phases with different names
are retained.

(3) When the fault type contains two pairs of fault phases with the same name, all
phases are tripped.

Notably, the tripping and reclosing of N side circuit breaker are performed sequentially
according to the priority of circuit line I over circuit line 2. Given the same circuit line,
the phase reclosing is conducted with priority given to phase A over phase B. The circuit
breaker’s way of action is shown in Table 1.

Table 1. The way of each fault type trips and closes.

Fault Type Tripping Phase Retaining Phase Closing Phase

IAG IA, IB, IC IIA, IIB, IIC IB
IAIIBG IA, IIB, IC IIA, IIB, IIC IA

IABIIBCG Six phases Ø Ø
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Table 1. Cont.

Fault Type Tripping Phase Retaining Phase Closing Phase

IAIIB IA, IIB, IC IIA, IB, IIC IA
IAIIBC IA, IIB, IIC IB, IC, IIA IA, IIB
IAIIAB IA, IIB, IC IIA, IB, IIC IA

IAIIABC IA, IIB, IIC IB, IC, IIA IA, IB
IABIIABC Six phases Ø Ø

3. Analysis of the Nature of Cross-Line Faults
3.1. Analysis of the Nature of Cross-Line Grounded Faults
3.1.1. Analysis of Transient Faults

When a ground fault occurs in the line with the shunt reactor, from tripping of the
circuit breaker to arc extinction, arc resistance grounding enables a fast release of the energy
stored in the fault phase to ground capacitance and the inductance to ground. The arc
current is zeroed when the fault arc is extinguished. At this time, it can be considered
that the capacitance to the ground and the inductance to the ground energy are limited or
even close to zero. During the recovery voltage phase, only through the phase-to-phase
capacitance and phase-to-phase inductance is the initial energy stored.

Take the IAIIB cross-line ground fault as an example, at the N side closes, the IA
phase circuit breaker is closed. Figure 2 shows its transient faulty complex frequency
domain equivalent circuit diagram. Both line self-impedance and phase-to-phase mutual
impedance are ignored from the analysis due to their much smaller values compared to the
line capacitive resistance and inductive resistance.
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In Figure 2, Ua(s) and Ub(s) represent the voltages of the closing and fault phases,
respectively; uCm indicates the initial energy storage voltage of phase-to-phase capacitance;
iLm denotes the initial energy storage current of phase-to-phase equivalent inductance;
L0 refers to the neutral small inductance of shunt reactor converted to ground equivalent
inductance; Lm indicates the inductance of shunt reactor converted to phase-to-phase
equivalent inductance; and C0 and Cm refer to the line capacitance to ground and the
phase-to-phase capacitance, respectively. Since the spacing value varies insignificantly
between the 6 phases of the double-circuit transmission line, the capacitance between these
phases is comparable to that between the two lines. Therefore, they are considered equal to
facilitate analysis.

Write the loop equations according to Figure 2, where the Laplace for the terminal
voltage of the faulted phase IIB is expressed as follows:

Ub(s) =
LmL0Cms2 + L0

LmL0(Cm + C0)s2 + Lm + L0
Ua(s) +

−LmL0CmuCm s + LmL0iLm

LmL0(Cm + C0)s2 + Lm + L0
(1)

The fault phase IIB shunt reactor current is as follows:

ILIIB(s) =
(LmCm − L0C0)s ·Ua(s)

LmL0(Cm + C0)s2 + L0 + Lm
+

(L0 + Lm)(iLm − CmuCms)
s[LmL0(Cm + C0)s2 + L0 + Lm]

− iLm

s
(2)
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With the phase angle set to 0◦, it is found that
.

Ua(t) = Um sin(ω1t), where Um
indicates the voltage amplitude of the IA phase, and ω1 denotes the power frequency
angular frequency, which is Laplace transformed. After its Laplace transformed posterior
is substituted into Equation (2), the Laplace inversion of Equation (2) is performed. Thus,
the time domain expression of the fault phase IIB shunt reactor current is expressed as

.
ILIIB(t) = ω1CmUm cos ω1t− A sin(ω2t + α) (3)

According to Equation (2), the faulty phase shunt reactor current has a sinusoidal
periodic component of a different frequency and an industrial frequency component. The
angular frequency ω2 of this component is expressed as

ω2 =

√
L0 + Lm

LmL0(Cm + C0)
(4)

In Equation (3):  A =
√
(ω2CmuCm)2 + (ω1CmUm + iLm)2

α= arctan ω1Um+iLm
ω2uCm

(5)

It can be seen from Equation (3) that the N-side circuit breaker of phase IA is closed in
case of transient IAIIB two-phase cross-line ground fault, and the faulty phase IIB-phase
shunt reactor current is expressed as the superposition of the power frequency quantity
and the periodic component of the angular frequency ω2.

3.1.2. Analysis of Permanent Faults

The IAIIB cross-line ground fault complex frequency domain equivalent circuit that
exists in case of permanent fault is shown in Figure 3, where Rf indicates the ground
transition resistance.
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Writing the loop equations according to Figure 3, the Laplace for the terminal voltage
of the faulted phase IIB is expressed as follows:

Ub(s) =
LmRfiLm − LmCmRfuCms

CmLmRfs2 + Lms + Rf
+

CmLmRfs2 + Rf

CmLmRfs2 + Lms + Rf
Ua(s) (6)

The fault phase IIB shunt reactor current is expressed as follows:

ILIIB(s) = −
Ua(s) + CmRfuCm + LmiLm

CmLmRfs2 + Lms + Rf
+

CmLmRfiLms
CmLmRfs2 + Lms + Rf

(7)

With the phase angle set to 0◦, it is found that
.

Ua(t) = Um sin(ω1t). It is Laplace
transformed. After its Laplace transformed posterior is substituted into Equation (7), the
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Laplace inversion of Equation (7) is performed. Thus, the time domain of the fault phase
IIB shunt reactor current is expressed as

.
ILIIB(t) =

ω1Um
a−b

[
sin(ω1t+ϕb)

ω1
√

ω1
2+b2
− sin(ω1t+ϕa)

ω1
√

ω1
2+a2

]
+

e−at

a−b

(
ω1Um

ω1
2+a2 − a2RfLmCmiLm + c

)
+ e−bt

a−b

(
ω1Um

ω1
2+b2 − bRfLmCmiLm4 + c

) (8)

In Equation (8): 

ϕa = −arctan(ω1
a )

ϕb = −arctan(ω1
b )

a = −Lm+
√

Lm
2−4CmLmR2

2CmLmR

b = −Lm−
√

Lm
2−4CmLmR2

2CmLmR

c = RfCmuCm + LmiLm

(9)

From Equations (8) and (9), it can be seen that the fault phase IIB-phase shunt reactor
current is the superposition of the power frequency component and the attenuation of the
direct current component in the presence of permanent IAIIB two-phase cross-line ground
fault. Additionally, there is a greater impact caused by the attenuation of the direct current
component of the speed of decay by the magnitude of the ground-fault resistance.

3.2. Analysis of the Nature of Cross-Line Ungrounded Faults

When an IAIIB cross-line fault occurs, the faulty phases are tripped under the novel
tripping strategy. Furthermore, its voltage is analyzed by reclosing the IA phase N side
circuit breaker after a certain delay.

The transient IAIIB cross-line fault equivalent circuit is illustrated in Figure 4.
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domain.

In Figure 4, Ua(s) and Ub(s) represent the voltages of the closing and fault phases,
respectively; uCm indicates the instantaneous voltage of IAIIB inter-phase capacitance at
the time of N-side closing; iLm denotes the instantaneous current of IAIIB inter-phase
equivalent inductance at the time of N-side closing; uC0 refers to the instantaneous voltage
of IIB relative ground capacitance at the time of N-side closing; and iL0 stands for the
instantaneous current of IIB relative ground inductance at the time of IA-phase closing.

When writing the loop equations according to Figure 4, the Laplace for the terminal
voltage of the faulted phase IIB is expressed as follows:

Ub(s) =
LmL0Cms2+L0

LmL0(Cm+C0)s2+Lm+L0
Ua(s)

+ LmL0(C0uC0−CmuCm)s+LmL0(iLm−iL0)
LmL0(Cm+C0)s2+Lm+L0

(10)

The arc is usually extinguished when the fault point current approaches the zero axis
most. Due to the impact of the DC component in the reactor, the extinction of the arc
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usually occurs at the phase angle of nearly 0◦. With the phase angle set to 0◦, it is found
that

.
Ua(t) = Um sin(ω1t), where Um represents the voltage amplitude of the IA phase and

ω1 refers to the power frequency angular frequency, which is Laplace transformed. After
its Laplace transformed posterior is substituted into Equation (10), the Laplace inversion
of Equation (10) is performed. Thus, the time domain of the fault phase IIB voltage is
expressed as 

.
Ub(t) =

ω1Cm
ω2(Cm+C0)

Um sin ω2t + M sin(ω2t + ϕm)

M = C0uC0−CmuCm
Cm+C0

· 1
ω2

√
ω22 +

(
iLm−iL0

C0uC0−CmuCm

)2 (11)

where ω2 is the free frequency component

ω2 =

√
Lm + L0

LmL0(Cm + C0)
(12)

The difference in the voltages of the IA and IIB phases can be expressed as

.
Uab(t) = Um sin(ω1t) + Ufb sin(ω2t + ϕfb) (13)

where Ufb and ϕfb represent the free component amplitude and its initial phase angle,
respectively. According to Equation (13), a short-circuit fault does not occur in IA or IIB
phases. Given the closed N-side circuit breaker of phase IA, the voltage difference between
IA and IIB phases is expressed as the superposition of the power frequency quantity and
the periodic component of the angular frequency ω2.

When the nature of the fault is permanent, the IA and IIB phases are continuously
connected by the transition resistance. Therefore, the inter-phase transition resistance is
only tens of ohms. In this case, the voltage of the reclosed phase IA is the same as that
of the fault phase IIB. Additionally, the root mean square (RMS) of the voltage difference
between the two phases is close to zero.

3.3. Fault Nature Criterion
3.3.1. Grounded Fault Nature Criterion

In the presence of cross-line ground faults, the effect of the neutral point of small reac-
tance causes the low fault phase capacitive coupling voltage, which affects the accuracy of
measurement. Therefore, for the cross-line ground faults with parallel resistor transmission
lines, given the high accuracy of shunt reactor current measurement, the nature of the fault
can be identified.

According to the previous analysis, the fault phase shunt reactor current is the super-
position of the two periodic components of the work frequency and the free frequency when
transient cross-line grounding faults occur on the line. Differently, when permanent faults
occur, the current consists of the work frequency quantity and the attenuation direct current.
In this paper, the criterion ignores the effect of the attenuated direct current component of
the shunt reactor current, for which it is removed by a differential filter. Thus, the transient
and permanent fault phase shunt reactor currents are respectively expressed as

.
ILt(t) = I1 sin(ω1t + θ1) + I2 sin(ω2t + θ2) (14)

.
ILp(t) = I3 sin(ω1t + θ3) (15)

where I1 represents the amplitude of the work frequency current after the disappearance of
transient fault; I2 indicates the amplitude of a sinusoidal current with angular frequency ω2
after the transient fault disappears; ω1 denotes the angular frequency of work frequency
current; ω2 refers to the angular frequency of another sinusoidal current; θ1 and θ2 represent
the initial phase angles of the two sinusoidal quantities; I3 indicates the amplitude of
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work frequency sinusoidal quantities when the fault exists; and θ3 stands for its initial
phase angle.

As can be seen clearly from Equations (14) and (15), there are work frequency quantities
in both equations, but Equation (14) contains free frequency sinusoidal quantities. Therefore,
a differential grid method is proposed in this paper to extract the free components.

.
ILdg(t) =

.
I
′′
L(t)
ω1

+ ω1
.
IL(t) (16)

where
.
ILdg(t) represents the faulty-phase shunt reactor current after the differential grid

method, and
.
I
′′
L(t) denotes the second-order differential of the faulty-phase shunt reac-

tor current.
Thus, the fault-phase shunt reactor current generated in the presence of transient and

permanent faults after the differential grid method can be expressed respectively as

.
ILdgt(t) = I2

(
ω1

2 −ω2
2

ω1

)
sin(ω2t + θ2) (17)

.
ILdgp(t) = 0 (18)

As shown in Equations (17) and (18), Equation (16) is applied to differential grid
processing. Then, the fault phase shunt reactor current at the time of transient fault is a sinu-
soidal quantity with angular frequency ω2 and amplitude magnitude is I2

(
ω1

2 −ω4
2)/ω1.

The fault phase shunt reactor current at permanent fault is zero, and for the first-order
and second-order differentiation of the shunt reactor currents, it can be obtained by the
difference method.

With the IAIIBG cross-line ground fault as an example, it is expressed as

.
ILIIB(t) = ω1CmUm cos ω1t− A sin(ω2t + α) (19)

When the fault occurs furthest from the closing side, iLm = 0. Also, the free component
amplitude is minimized. The free component is denoted as

.
I1(t), and expressed as

.
ILIIB(t) = −

√
(ω2CmuCm)2 + (ω1CmUm)2 sin(ω2t + α)

α= arctan ω1Um
ω2uCm

(20)

According to Equation (20),
∣∣∣ .
I2

∣∣∣ > ω1CmUm. Therefore, the amplitude of the free
periodic component of the phase IIB shunt reactor current exceeds the working frequency
quantity, and the minimum modulus of

.
ILdgt(t) is obtained as CmUm

(
ω1

2 −ω2
2).

Further, with the above analysis, the differential grid method is applied to develop
the fault nature criterion of the shunt reactor current mode magnitude. After line tripping,
the N-side selection reclosing part of the phase, taking into account the filtering and fault
phase shunt reactor current rise time, after one working frequency cycle, if the Formula (21)
continues to be established within 0.03 s, then the nature of the cross-wire grounding fault
is determined as transient.

ILdgRMS > Iset (21)

Iset = K1 · ILdgtRMS.min (22)

where ILdgRMS represents the faulty phase shunt reactor current after differential grid; Iset
indicates the rectified value; ILdgtRMS.min denotes the minimum modulus after differential
gridding of the faulty phase shunt reactor current for a transient fault; and K1 refers to the
margin factor, which is set to 0.6 in this paper.
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3.3.2. Ungrounded Fault Nature Criterion

As for cross-line ungrounded faults, the inter-phase impedance is approximately infi-
nite due to the compensation effect of the shunt complement on the inter-phase capacitance.
Therefore, in the absence of a short-circuit fault between the phases, the voltage difference
between the two phases is sufficient to facilitate the measurement. Under this circumstance,
the characteristics of the voltage difference between the two fault phases can be referenced
to identify the nature of the fault when a line-to-line fault occurs to the double-circuit trans-
mission line with a shunt reactor. According to the previous analysis, the RMS value of the
voltage difference between the fault phase and the closed phase is the superposition of the
free component, and the power frequency quantity after the short-circuit fault between the
two phases disappears.

With IAIIB line-to-line fault as an example, the maximum modal value of the voltage
difference between IA and IIB phases is expressed as Um + Ufb, which meets the following
inequality (23): ∣∣∣ .

Uab

∣∣∣
max

> Um (23)

After the arc becomes extinct due to a transient fault, the voltage difference amplitude
between the faulty phase and the closed phase exceeds the voltage amplitude of the closed
phase, while the voltage difference between the two phases approaches zero in case of a
permanent fault. Therefore, the nature of the fault can be determined by taking into account
the time taken by voltage increase. After the N-side circuit breaker is closed for one power
frequency cycle, a transient fault can be determined if inequality (24) holds for 0.03 s.

UεRMS > Uset (24)

Uset = K2 ·UεRMS (25)

where UεRMS represents the RMS value of the voltage difference between the fault phase
and the closing phase in the case of a line-to-line un-grounding fault; UδRMS indicates the
RMS value of the closing phase voltage; Uset refers to the rectified voltage threshold for
line-to-line ungrounded fault; K2 is the margin factor, whose value is set to the range of
0.3~0.5. This avoids misjudgment in case of permanent failure.

4. An Adaptive Reclosing Method

The process of applying the proposed adaptive reclosing method is presented in
Figure 5. In brief, it is described as follows:

(1) The lines are tripped, the timer is reset to zero (t = 0), and the timer starts.
(2) It is determined if line tripping is caused by human operation. If yes, then block

the reclosing.
(3) In case of a cross-line fault on wind power outgoing lines, trip according to the

tripping strategy.
(4) Considering the time taken to extinguish the fault arc and the insulation recovery,

reclose the N-side circuit breaker of the partial phases after a delay of 0.5 s (t = 0.5 s) to
provide the faulty phase with a coupled electrical quantity.

(5) Measure the shunt reactor differential grid current of the fault phase or RMS value
of the fundamental voltage difference between the faulty phases.

(6) Determine the transient nature of the fault if all fault phases continuously meet the
nature of the fault criterion in 0.03 s. System side to reclose all tripped phases after a delay
of 0.1 s, synchronized closure of the wind farm side (simultaneous determination of the
voltage on both sides of the circuit breaker on the wind farm side, if the voltage amplitude
difference and phase angle difference are within the permissible range, and then reclosing
the circuit breaker).

(7) In the presence of faulty phases that do not satisfy the fault nature criterion within
the maximum reclosing time of 1.5 s, the fault is treated as a permanent fault or transient
fault without arc extinction. The transmission lines in quasi-three-phase operation are
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maintained without reclosing them until the lines are served. If the lines do not satisfy
quasi-three-phase operation, the two circuits are disconnected.
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5. Simulation Verification

To verify the proposed intelligent tripping and closing strategy, a 330 kV double-circuit
wind power outgoing lines model was established using the PSCAD/EMTDC simulation
software. The parameters of the unit length line are listed in Table 2.

Table 2. Contrast of quasi-three-phase tripping and improved tripping.

Line Parameters Numerical Value

positive sequence resistance 0.036 (Ω/km)
positive sequence inductive reactance 0.509 (Ω/km)
positive sequence capacitive reactance 0.306 (MΩ·km)

zero sequence resistance 0.382 (Ω/km)
zero sequence inductive resistance 1.259 (Ω/km)
zero sequence capacitive reactance 0.429 (MΩ·km)

The simulation is conducted with the following settings: Moment of fault occurrence
as 2.50 s, trip phase initial time of 2.55 s, transient fault duration of 0.3 s, infinite duration of
permanent fault, close of the N side circuit breaker of the closing phase at 3.05 s, transition
resistances of 0 and 10 Ω (considering the generally low transition resistance between
phases), grounded transition resistance takes the values of 0 Ω and 150 Ω, respectively,
shunt reactor compensation degree of 0.7, and fault locations at the first end, midpoint, and
end of the line (0%, 50%, 100% line length). Simulation verification of single-phase ground
faults, IAIIBG two-phase cross-connect ground faults, and IA and IIB two-phase cross-line
ungrounded faults.
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5.1. Simulation Validation of Grounded Fault Nature Criterion

The simulation results of transient and permanent single-phase ground faults are
shown in Figures 6 and 7, respectively.
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Figure 6. Transition resistance is 0 Ω, the shunt reactor differential grid current of the fault phase at
single-phase grounded fault. (a) Transient fault current; (b) permanent fault current.
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Figure 8. Transition resistance is 0 Ω, the shunt reactor differential grid current of the fault phase 
IIB at two-phase cross-line grounded fault. (a) Transient fault current; (b) permanent fault current. 

Figure 7. Transition resistance is 150 Ω, the shunt reactor differential grid current of the fault phase
at single-phase grounded fault. (a) Transient fault current; (b) permanent fault current.

The simulation results of transient and permanent IAIIBG two-phase cross-line grounded
faults are shown in Figures 8 and 9, respectively.
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Figure 8. Transition resistance is 0 Ω, the shunt reactor differential grid current of the fault phase IIB
at two-phase cross-line grounded fault. (a) Transient fault current; (b) permanent fault current.
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Figure 9. Transition resistance is 150 Ω, the shunt reactor differential grid current of the fault phase
IIB at two-phase cross-line grounded fault. (a) Transient fault current; (b) permanent fault current.

The findings from Figures 6–9 are as follows:
The line in the occurrence of a ground fault, on the N side after closing part of the

phases of the circuit breaker, if the fault has disappeared; the fault phase shunt reactor dif-
ferential grid current is far more than the value of the rectified current and the maintenance
time is greater than 0.03 s; such as the fault still exists, the current is also far less than the
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value of the rectification. The identification of faults is slightly affected by where the faults
are located. However, the final result is unaffected.

The fault nature criterion proposed in this paper can be used to determine whether a
fault occurs. Even though the fault occurs at different locations on the line, this criterion
remains applicable to determine the nature of the fault accurately.

5.2. Simulation Validation of Ungrounded Fault Nature Criterion

The simulation results of IA and IIB two-phase cross-line ungrounded faults are shown
in Figures 10 and 11, respectively.
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The findings from Figures 10 and 11 are as follows:
In case a permanent fault occurs after the N-side circuit breaker of phase IA is reclosed,

the RMS value of the voltage difference between two faulty phases is obviously smaller
than the rectified value. When the transition resistance is 0 or 10 Ω, there is little or no
effect on the identification of fault nature. When a transient fault occurs, the RMS value of
the voltage difference between the two faulty phases exceeds the rectification value after
one power frequency cycle, and the maintenance time exceeds 0.03 s.

Regardless of whether the location of the fault is at the front, middle or back of the
line and the size of the transition resistance between phases, the fault nature criterion
proposed in this paper is always applicable to determine the nature of the fault rapidly
and accurately.
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5.3. Simulation Verification of Closing Strategy

When a transient IAIIBG cross-line grounded fault occurs, the tripped phase is
subjected to synchronized closure at 3.2 s to restore full-phase operation of the line.
Figures 12 and 13 show the voltage and current waveforms after the full-phase operation
resumes, respectively.
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After the full-phase operation is restored, the three-phase voltage returns to the rated
value rapidly, and the closing moment produces an inrush current, whose value is within
the maximum allowable range. By applying the adaptive reclosing method proposed in
this paper, it can be ensured that the wind power outgoing line restores the power supply
as soon as possible after the arc is extinguished due to the fault. Thus, improving the
reliability of the grid-connected operation is improved for the wind farm.

In the event of a line fault, the reserved phases become three-phase symmetric. The
adaptive reclosing scheme proposed in this paper can be applied to avoid the injection of
negative sequence currents into wind turbines. Meanwhile, the success rate of reclosing wind
power outgoing lines is improved and the continuity of power transmission to the wind
farm(s) is ensured. Therefore, the method can be used for all double-circuit wind power
outgoing lines. It imposes no constraints on any of the wind turbines during operation.

6. Conclusions

In this paper, an adaptive reclosing scheme is proposed for cross-line faults on double-
circuit wind power outgoing lines with shunt reactors. Through theoretical analysis and
simulation verification, the following conclusions are drawn:

(1) The novel tripping strategy can be adopted to reduce the number of fault types of
faults that cause the line six-phase tripping, improve the continuity of line power supply
and the stability of regional grid security operation, and ensure the sufficient coupling
electrical quantity required to identify the nature of the fault while avoiding injecting
negative sequence currents into the wind farm (cluster).

(2) The proposed criterion can be applied to identify the fault nature quickly and
accurately without the influence of transition resistance. Although the identification of
faults is slightly affected by the location of the faults, the final result is unaffected. For
transient faults, their identification is unaffected by the location of fault and it is easy to
collect the electrical quantity of the criterion.

(3) The quasi-three-phase operation can be maintained for hours. The proposed
adaptive reclosing scheme can be used to quickly identify the nature of transient faults and
restore the full-phase operation. It also removes the need for manual wire patrol, shortens
the interruption time of wind farms (clusters), lowers the cost of grid-connected operation
of wind farms, and enhances the continuity of power supply. As for permanent faults, the
system is protected from the secondary impacts caused by reclosing in the presence of a
fault, and more time is allowed for repair to ensure the continuity of the power supply.
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