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Abstract: Flooded Lead Acid (FLA) batteries remain a cost-effective choice in various industries.
Accurate State of Charge (SOC) estimation is crucial for effective battery management systems. This
paper thoroughly examines the behavior of Open-Circuit Voltage (OCV) during hysteresis in FLA
batteries, proposing a novel hysteresis modeling approach based on this behavior to enhance the
SOC estimation accuracy. Additionally, we introduce an Adaptive Unscented Kalman Filter (AUKF)
to further refine the SOC estimation precision. Experimental validation confirms the effectiveness of
the proposed hysteresis modeling. A comparative analysis against the traditional Unscented Kalman
Filter (UKF) under random charge/discharge profiles underscores the superior performance of AUKF,
showcasing an improved convergence to the correct SOC value and a significant reduction in the SOC
estimation error to approximately 2%, in contrast to the 5% error observed with the traditional UKF.
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1. Introduction

Energy storage systems are very popular in the industry due to their increased demand
in a number of applications, from smart micro grids to electrified transportation systems [1].
Among these energy storage systems, batteries receive the most attention because of their
wide range of power and energy densities and low cost as compared to other systems
such as flywheels, ultra-capacitors, or hydrogen storage [2]. There are different types of
batteries available in the market like Li Ion, lead acid, and nickel cadmium, etc. Among lead
acid batteries, Flooded Lead Acid (FLA) batteries are a versatile and dependable choice in
numerous applications, including backup power systems, automotives, renewable energy
storage, and aviation [3]. Their enduring appeal lies in their cost-effectiveness, reliability,
and adaptability, making them a reliable energy storage solution across a broad spectrum
of industries.

The State of Charge (SOC) estimation of a battery is one of the fundamental require-
ments of a battery management system. SOC estimation becomes a critical concern in
extending battery lifetime, preventing progressive unalterable damage, and enhancing
battery operation performance; therefore, a proper analysis of the internal behavior of
Sealed Flooded Lead Acid (SFLA) batteries for SOC estimation is required, as this has not
been conducted before. A battery management system (BMS) is an application which uses a
suitable equivalent model for the battery to protect it from over-voltages and over-currents
and estimates the other required states of the battery like the SOC, State of Health (SOH),
and State of Function (SOF), etc. [4–6]. As the Open-Circuit Voltage (OCV) is computed
through the SOC input and SOC–OCV relationship, then combining it with the battery po-
larization voltage can be used to model the battery dynamics. The SOC–OCV relationship
is very important in the modeling of the battery equivalent circuit, since equivalent circuit
models make the complex electrochemical processes occurring within a battery simpler
by representing them with electrical components like resistors, capacitors, and voltage
sources. The SOC–OCV relationship is key in determining the voltage source within this
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model. By obtaining an accurate SOC–OCV relationship, the equivalent circuit model can
effectively mimic how the battery voltage changes during charging and discharging cycles.
The relation of SOC–OCV is not simply a one-to-one mapping, but it exhibits the hysteresis
effect (the OCV is different at the same SOC value depending upon the history of charge
and discharge). Normally, the hysteresis effect is not very effective in most Li-Ion batteries
like lithium manganese oxide and lithium cobalt, etc. [4]. This is because the gap between
the SOC–OCV charge and discharge curves is very small in most of the region. But the
hysteresis effect is very prominent in lead acid batteries, especially in SFLA batteries [7].
The low nominal cell voltage of lead acid batteries, changes in charging rates, and the effects
of aging contribute to the prominence of the hysteresis effect. Understanding and address-
ing this effect is crucial for accurate SOC estimation and applicable battery management
in applications using lead acid batteries. Therefore, accurately modeling the hysteresis
phenomenon in FLA batteries is essential for achieving accurate SOC estimation results.

To model the hysteresis effect of batteries, different approaches have already been
published. For those batteries in which the hysteresis effect is not very dominant, an
average of the charge and discharge curves is used as the SOC–OCV relationship. This type
of approximation will create a large SOC estimation error for those batteries which have a
significant hysteresis phenomenon. Sirinivasan et al. proposed an empirical approach to
model hysteretic curves based on the boundary curves of hysteresis in nickel hydroxide
electrode, and the process worked well in predicting how the battery discharged, but it
was not as accurate when predicting how it charged [8]. Verbrugge et al. formulated
a first-order differential equation to construct voltage behavior for NiMH batteries [9].
Roscher et al. modeled the hysteresis of a battery by using a parallelogram [10]. Thele et al.
formulated second-order polynomial equations to model the shapes of the hysteresis of
NiMH batteries [11]. Similarly, the Takacs model and Preisach model of hysteresis were
used in batteries by Windarko et al. and Tang et al., respectively [12,13]. All these hys-
teresis models are based on the fact that the hysteresis loop always touches the SOC–OCV
charge curve whenever it is applied from the SOC–OCV discharge curve and vice versa.
The hysteresis phenomenon in maintenance-free SFLA batteries has not been investigated
before; therefore, the behavior of the OCV requires both proper investigation and mod-
eling according to its behavior. The proposed research is unique in the sense that it fully
investigates the OCV behavior and proposes a novel hysteresis model for SFLA batteries.

An online estimation of the parameters of an equivalent model of battery is very
important for making the battery model more and more accurate. In this research, an Auto
Regression for external Input (ARX) model for the battery combined with the Recursive
Least Squares (RLS) method is used for the parameters’ estimations. The ARX model is
a type of linear system model used to describe the relationship between the input and
output of a dynamic system. It is often used for modeling and control applications. In
the context of battery modeling, the ARX model represents the behavior of a battery as
a linear combination of past inputs and outputs. The model assumes that the current
output is a linear function of previous inputs and outputs, as well as external input signals.
Various methods can be used for parameter estimation, and one of the common techniques
is the RLS method. RLS is an adaptive filter algorithm used for estimating the parameters
of a linear model. It is particularly useful when dealing with time-varying systems and
noisy data. RLS updates the parameter estimates iteratively as new data become available.
RLS minimizes the sum of squared errors between the observed output and the predicted
output of the model. The algorithm recursively updates the parameter estimation by giving
more weight to recent data and less weight to older data. The OCV information from the
SOC estimation algorithm is sent to the ARX model, which estimates the values of the
parameters by the RLS method and provides the parameters back to the SOC estimation
algorithm. So, both the parameter estimation algorithm and the SOC estimation algorithm
work in parallel and exchange information at every iteration [14].

For the SOC estimation of a battery, different estimation algorithms are proposed,
such as Artificial Neural Networks (ANNs) that control complex neural structures for



Energies 2024, 17, 1275 3 of 15

accurate predictions, ampere-hour counting which integrates the current flow to estimate
the SOC, Kalman filters that balance mathematical models and measurements for real-time
SOC tracking, and fuzzy logics, which provide a robust, rule-based approach to SOC
estimation, etc. Among them, Kalman filters have received the most attention because
of their simplicity and accuracy. Kalman filters are usually used for linear systems. For
non-linear systems, the Extended Kalman Filter (EKF) was developed, which uses Tylor
Series Expansion to linearize any system across a certain point. As batteries are also very
non-linear in their behavior, EKFs are widely adopted by most researchers for their SOC
estimation. Recently, the Unscented Kalman Filter (UKF) was developed to further improve
the estimation accuracy when estimating the state of a non-linear system, surpassing
the capabilities of the EKF. While the EKF relies on linear approximations for non-linear
systems, which can introduce errors, the UKF takes a more robust approach. It employs
a deterministic sampling technique that captures a set of representative points, or sigma
points, from the probability distribution of the state variables of the system [15–21].

In a Kalman filter, process and measurement noise covariances play a vital role in the
calculation of filter gain. Unfortunately, there is not any rule of thumb available for finding
the values of these noises for any given system. Mostly, these noises are selected based on a
trial-and-error method. In practical systems, especially in electric vehicles (EVs), sudden
acceleration and deceleration can cause rapid shifts in the dynamics of the battery system.
Maintaining constant noise values may result in higher estimation errors, highlighting
the need for adaptive approaches that account for these dynamic changes in the system.
Similarly, when constant values are used for the covariance of process and measurement
noises in a Kalman filter, the Kalman gain, which determines the weight given to the
measurement data, becomes constrained to a specific range. This constraint restricts the
filter adaptability to varying noise conditions, limiting its ability to respond effectively
to unexpected changes in the environment or system dynamics. In such cases, the filter
performance may suffer when faced with real-world uncertainties, as it cannot freely adjust
the Kalman gain to optimize the state estimation. Therefore, an adaptive system is required
which can update the values of the process and measurement noise covariances based on
the system error generated in each iteration, giving independence to the Kalman filter to
work freely and more accurately in the SOC estimation process [22,23].

In this research, firstly, the most important hysteresis effect of the FLA battery is dis-
cussed in detail and, depending upon the results and analysis, a novel hysteresis modeling
method is proposed and tested. Secondly, an AUKF method is proposed to optimize the
results for a better SOC estimation for FLA batteries. Experimental results are presented
to validate the proposed hysteresis model. Similarly, a comparison of simple (traditional)
UKF and adaptive UKF is presented, which proves the superiority of adaptive UKF.

2. Hysteresis Effect and Modeling
2.1. Battery Model

The battery electric equivalent circuit consists of an OCV connecting in serial with an
internal resistance Ri and an R-C parallel branch of a charge transfer resistance Rct and
a double-layer capacitance Cdl to perform the voltage response from the battery current,
as shown in Figure 1. This battery model is simple and effective, which means it can be
applied easily in practical application. The OCVf is the final OCV, including both the effects
of hysteresis and diffusion, due to which, the model becomes very simple and easy to
handle for SOC estimation. For parameter estimation, ARX is used, which is essential
for accurately determining the parameters that characterize the behavior of the battery,
enabling more precise modelling and effective battery management. The details of the ARX
method and how to include the hysteresis and diffusion effects in OCV are given in [7,14],
respectively.



Energies 2024, 17, 1275 4 of 15

Energies 2024, 17, x FOR PEER REVIEW 4 of 16 
 

 

method and how to include the hysteresis and diffusion effects in OCV are given in [7,14], 
respectively. 

+

OCVf

+

-

Ri

 Rct 

Cdl 

V

Ib

-
Vcdl 

 
Figure 1. Selected equivalent circuit of lead acid battery. 

2.2. Brief Introduction of Hysteresis Phenomenon 
Hysteresis is a phenomenon in which a change in the direction of the independent 

variable leads to the dependent variable failing to retrace the path it passed in the forward 
direction. Speaking specifically about electrochemical systems, hysteresis refers to the de-
layed and non-linear voltage response observed during the charge and discharge cycles 
of a battery. This phenomenon results from internal chemical and physical processes, such 
as changes in electrode structure and the formation of compounds, causing a voltage gap 
between the charging and discharging curves. An accurate estimation of the SOC is com-
plicated due to the hysteresis effect. Understanding and modeling hysteresis is crucial for 
designing effective battery management systems, predicting battery performance, and op-
timizing usage in applications ranging from electric vehicles to renewable energy storage 
systems. Systematic investigations into the nature of the equilibrium potential hysteresis 
of the nickel electrode by Podolske Ta et al. [24] and Srinivasan et al. [8] led to the follow-
ing characterization of hysteresis, which could be corroborated by our own measure-
ments: 
• The hysteresis is static, i.e., it remains after a charging or discharging current is 

switched off, even for a period of time that significantly exceeds the time constants 
of the mass transport inside the electrodes. 

• The hysteresis is independent of the preceding current rate. 
• The hysteresis is not only characterized by the boundary curves, but also by interme-

diate sub-hysteresis loops. 
These characteristics of hysteresis are in accordance with a domain theory that states 

that the electrode material is composed of clearly separated regions (domains), each of 
which exhibits two or more metastable states [8]. The hysteresis phenomenon in FLA bat-
teries is also similar to the above-mentioned batteries. 

2.3. Behavior of Hysteresis Loops w.r.t. SOC–OCV Curve 
SOC–OCV curves with 3 min (mints) and 3 h (h) of resting are given in Figure 2. 

Similarly, SOC–OCV curves with different hysteresis loops are shown in Figure 3. All the 
hysteresis loops are obtained by using 5% SOC pulses with 3 h of relaxation. 

Figure 1. Selected equivalent circuit of lead acid battery.

2.2. Brief Introduction of Hysteresis Phenomenon

Hysteresis is a phenomenon in which a change in the direction of the independent
variable leads to the dependent variable failing to retrace the path it passed in the forward
direction. Speaking specifically about electrochemical systems, hysteresis refers to the
delayed and non-linear voltage response observed during the charge and discharge cycles
of a battery. This phenomenon results from internal chemical and physical processes,
such as changes in electrode structure and the formation of compounds, causing a voltage
gap between the charging and discharging curves. An accurate estimation of the SOC is
complicated due to the hysteresis effect. Understanding and modeling hysteresis is crucial
for designing effective battery management systems, predicting battery performance, and
optimizing usage in applications ranging from electric vehicles to renewable energy storage
systems. Systematic investigations into the nature of the equilibrium potential hysteresis of
the nickel electrode by Podolske Ta et al. [24] and Srinivasan et al. [8] led to the following
characterization of hysteresis, which could be corroborated by our own measurements:

• The hysteresis is static, i.e., it remains after a charging or discharging current is
switched off, even for a period of time that significantly exceeds the time constants of
the mass transport inside the electrodes.

• The hysteresis is independent of the preceding current rate.
• The hysteresis is not only characterized by the boundary curves, but also by interme-

diate sub-hysteresis loops.

These characteristics of hysteresis are in accordance with a domain theory that states
that the electrode material is composed of clearly separated regions (domains), each of
which exhibits two or more metastable states [8]. The hysteresis phenomenon in FLA
batteries is also similar to the above-mentioned batteries.

2.3. Behavior of Hysteresis Loops w.r.t. SOC–OCV Curve

SOC–OCV curves with 3 min (mints) and 3 h (h) of resting are given in Figure 2.
Similarly, SOC–OCV curves with different hysteresis loops are shown in Figure 3. All the
hysteresis loops are obtained by using 5% SOC pulses with 3 h of relaxation.

As can be clearly observed in Figure 3, the OCV in all the hysteresis loops does not
touch the SOC–OCV charge curve.

Even in 40–80% hysteresis loops, the OCV becomes almost parallel to the SOC–OCV
charge curve and does not touch it. It clearly shows that, even if this curve is extended, it
will not touch the SOC–OCV charge curve.

This phenomenon is quite different from other battery types like Absorbent Glass Mat
(AGM), NiMH, or Li-ion, as in all those batteries, the hysteresis loop always touches the
SOC–OCV charge curve at some stage. So, this unique behavior requires us to create new
hysteresis model for this type of lead acid battery.
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2.4. Behavior of Hysteresis OCV at Different SOC Values

It was analyzed that the hysteresis OCV does not touch the SOC–OCV charge curve,
regardless of the applied hysteresis loop. In fact, the hysteresis loop becomes parallel to the
SOC–OCV charge curve. In Figure 4, hysteresis loops of the 20% SOC range are shifted and
shown together. The graph clearly shows that the rate of increase in the OCV is different
in different SOC regions. This phenomenon is, in fact, natural, but as there is no range
after which the OCV touches the SOC–OCV charge curve, therefore, for the modeling of
hysteresis, this phenomenon should be considered.



Energies 2024, 17, 1275 6 of 15

Energies 2024, 17, x FOR PEER REVIEW 6 of 16 
 

 

the SOC–OCV charge curve. In Figure 4, hysteresis loops of the 20% SOC range are shifted 
and shown together. The graph clearly shows that the rate of increase in the OCV is dif-
ferent in different SOC regions. This phenomenon is, in fact, natural, but as there is no 
range after which the OCV touches the SOC–OCV charge curve, therefore, for the model-
ing of hysteresis, this phenomenon should be considered. 

 
Figure 4. Shifted hysteresis loops. 

2.5. Modeling of Hysteresis Phenomenon 
As it has been already discussed that the hysteresis loops do not touch the SOC–OCV 

charge curve, the SOC–OCV charge curve is, therefore, useless for the modeling of OCV 
behavior during hysteresis. Whenever charging starts at a certain SOC value, the OCV 
follows the hysteresis path and changes accordingly.  

The 3 min hysteresis OCVs at different SOC regions are shown in Figure 5. As the 3 
min hysteresis curves look exactly like a parallelogram, therefore, hysteresis can be mod-
eled by using a parallelogram.  

 

Figure 4. Shifted hysteresis loops.

2.5. Modeling of Hysteresis Phenomenon

As it has been already discussed that the hysteresis loops do not touch the SOC–OCV
charge curve, the SOC–OCV charge curve is, therefore, useless for the modeling of OCV
behavior during hysteresis. Whenever charging starts at a certain SOC value, the OCV
follows the hysteresis path and changes accordingly.

The 3 min hysteresis OCVs at different SOC regions are shown in Figure 5. As the
3 min hysteresis curves look exactly like a parallelogram, therefore, hysteresis can be
modeled by using a parallelogram.
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As shown in Figure 6, the OCV follows the k1 slope for about 5 Ah charge throughput,
and after that, it starts following the k2 slope. The slope is calculated by the following formula:

Slope =
∆OCVvalue
∆Ahvalue

(1)
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As the rate of increase in OCV is different in different hysteresis tests, constant k1 and
k2 slopes cannot be used for all the SOC regions. Whenever the hysteresis OCV starts,
slopes are selected depending upon the SOC at that point, and the variation in the slopes
with respect to the starting SOC is shown in Figure 7. As can be seen in Figure 7, the slopes
have a linear relation with the starting SOC, which clearly means that the rate of increase
in the OCV is higher in higher SOC regions and vice versa.
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Similarly, whenever a battery is discharged, hysteresis slopes are selected based on
the SOC at that point. Based on the linear relationship of the slopes and starting SOC, the
overall hysteresis OCV can be calculated as:

OCVhys = k1 ∗ SOC1 + k2 ∗ SOC2 (2)
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SOC1 = SOC2 =
∫ I

Cn
dt (3)

0 ≤ SOC1 ≤ 0.05 and 0 ≤ SOC2 ≤ 0.95 (4)

3. Unscented Kalman Filter

The Unscented Kalman Filter (UKF) offers a great improvement over all other filters
for addressing the issue in SOC estimation. The UKF takes the approach of a minimal
set of carefully selected sample points instead of using linearization. When these points
are propagated through the actual nonlinear system, they capture the posterior mean and
covariance with a high accuracy and use unscented transformation instead of solving a
Jacobian matrix for non-linear systems, which makes them stabler and better in terms of
performance. The more nonlinear a system is, the better the performance of the UKF. The
UKF also consists of prediction, observation, and measurement stages. The discrete-time
state equations for a non-linear system can be given as:

xk = f (xk−1, uk) + wk
yk = h(xk, uk) + vk

(5)

where xk represents the state parameters, f and h are non-linear system functions, uk is
the input, wk is the process noise vector, vk is the measurement noise vector, and yk is the
observed measurement signal.

The Adaptive UKF algorithm can be summarized as:

1. Initialization:

x0 = E(x0) (6)

P0 = E[(x0 − x0)·(x0 − x0)
T ] (7)

where x0 and P0 are the initial state and its covariance matrix.

2. Generate Sigma Points:

√
Pk|k−1 = chol

(
Pk|k−1

)
(8)

χk−1 =

[
xk−1, xk−1 +

√
(L + λ)·Pk−1, xk−1 −

√
(L + λ)·Pk−1

]
(9)

where λ = α2(L + κ) − L
λ is known as a scaling factor. α determines the spread of sigma points. Its value can

change between 10−4 and 1. κ is usually set to ‘0’. ‘L’ represents the number of state vectors.

3. Prediction Transformation:

Propagate the sigma points through the input function and calculate the predicted state.

χ
(i)
k|k−1 = f

(
χ
(i)
k|k−1, uk

)
, i = 0, 1, . . . , 2L (10)

x̂−k =
2L

∑
i=0

W(i)
m ·χ(i)

k|k−1 (11)

Calculate the propagated covariance as:

P−
k =

2L

∑
i=0

W(i)
c (χ

(i)
k|k−1 − x̂−k )(χ

(i)
k|k−1 − x̂−k )

T + Qw (12)
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where Qw is the covariance value of the process noise and:

W(0)
m = λ/(L + λ) (13)

W(0)
c = λ/(L + λ) + 1 − α2 + β (14)

W(i)
m = W(i)

c = 1/[2(L + λ)] i = 1, . . ., 2L (15)

β is usually equal to ‘2’ for Gaussian distributions. W(i)
m and W(i)

c are the mean and
covariance weights, respectively.

4. Observation Transformation:

Propagate the sigma points though the output function and calculate the predicted
measurement.

ψ
(i)
k|k−1 = h(χ(i)

k|k−1, uk) (16)

ŷ−k =
2L

∑
i=0

W(i)
m ·ψ(i)

k|k−1 (17)

Calculate the estimated covariance as:

Pyy
k =

2L

∑
i=0

W(i)
c (ψ

(i)
k|k−1 − ŷ−k )(ψ

(i)
k|k−1 − ŷ−k )

T + Rv (18)

where Rv is the covariance value of the measurement noise.
Cross covariance is calculated as:

Pxy
k =

2L

∑
i=0

W(i)
c (χ

(i)
k|k−1 − x̂−k )(ψ

(i)
k|k−1 − ŷ−k )

T (19)

5. Measurement Update:

Calculate the Kalman gain as:

Gk = Pxy
k

(
Pyy

k )−1 (20)

Update the state and covariance values as:

x̂k = x̂−k + Gk
(
yk − ŷ−k

)
(21)

Pk = P−
k − GkPyy

k GT
k (22)

6. Adjustment of Qw and Rv in AUKF:

In AUKF, the process noise covariance Qw and measurement noise covariance Rv do
not have a constant value like in traditional UKF; instead, they are adaptively calculated in
each iteration based on the covariance matching technique [24]. The basic idea of covariance
matching is to make the residuals consistent with their theoretical covariances. Fk represents
the covariance approximation of the residual voltage, which can be calculated as:

Fk =
∑k

j=k−Lq+1 ejej
T

Lq
(23)

where e is the residual voltage of the battery at time step j and Lq represents the window
size for the covariance matching. The small window size of the covariance matching could
lead the filter to diverge, whereas an adaptive filter can lose the ability of adaptation by
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using a large window size. Therefore, an optimal window size should be used. Based on
the covariance matching technique, Qw and Rv can be updated as:

Qk = GkFkGk
T (24)

Rv = Fk +
2L

∑
i=0

W(i)
c (ψ

(i)
k|k−1 − yk)(ψ

(i)
k|k−1 − yk)

T (25)

So, the adaptive UKF changes the values of Qw and Rv depending upon the residual
voltage error in such a way to obtain covariance matching, which can further lead to
minimizing the estimation error.

The state equations for a battery model can be shown as:(
SOCk+1
VCdl k+1

)
=

(
1 0
0 1 − ∆t

RctCdl

)(
SOCk
VCdl k

)
+
(
−∆t
Cn

∆t
Cdl

)T
Ik + wk (26)

Vk = OCV f − VCdl k − Ri Ik + vk (27)

While,
OCV f = OCVd + OCVh (28)

Cn represents the nominal capacity of the battery. Ik and Vk are the current and voltage
of the battery. OCVf represents the final Open-Circuit Voltage after considering the diffusion
and hysteresis effect. The charge current is negative in the above equations. wk and vk are
the process and measurement noise vectors, respectively. The overall working procedure
of AUKF is shown in Figure 8.
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4. Experimental Verification

For experimentation, a 90 Ah, 12 V SFLA battery from the Sebang Company, Seoul,
Republic of Korea is tested for its SOC–OCV results, where it is placed in a temperature-
controlled chamber at 25 degrees Celsius [25–27]. The OCV values were recorded during
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both charging and discharging phases after periods of 3 min and 3 h of rest, as illustrated
in Figure 2.

4.1. Validation of Hysteresis Modeling

To verify the hysteresis modeling at different SOC regions, a special profile was created
in which SOC went to a certain value, then charged up to a certain value, and then went
back again. The coulomb counting method is used as a reference for the comparison of
SOC estimation.

Figure 9 shows the SOC estimation results of the proposed hysteresis modeling and
fixed slopes method. The simple UKF is used for estimating the SOCs of both hysteresis
models, and the values of the different parameters required in UKF are given in Table 1.
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Table 1. Values of different parameters of UKF.

Parameter Value

Qw

(
1 × 10−9 0

0 1 × 10−9

)
Rv 0.05

Po

(
1 × 10−5 0

0 1 × 10−5

)

In the proposed method, the slopes always change depending on the SOC value
when the battery changes its state from discharging to charging. Normally, in previous
hysteresis modeling, only one hysteresis model is used for all the regions of SOC. Therefore,
a comparison of the fixed slope method and the proposed method is given.

The SOC estimation results clearly show that the proposed method of hysteresis
modeling is very accurate, as the error is just about 3%. When fixed slopes are used, as the
hysteresis voltage increases, the SOC estimation error also starts increasing, which clearly
shows that the fixed hysteresis model is not suitable for an SFLA battery. The SOC error
with the fixed slope method is about 6%.

4.2. Validation of Adaptive Unscented Kalman Filter

Generally, ampere-hour counting is a simple and intuitive method that integrates
the current over time, but it suffers from cumulative errors due to current sensor drift
and initial SOC uncertainty. Traditional UKF is a more advanced method that uses a
non-linear battery model and exploits the statistical relationships between SOC, voltage,
and current. However, the UKF assumes constant values for the process and measurement
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noises, which may not be valid in dynamic conditions. AUKF is an improved version of
UKF that adapts the noise covariances dynamically based on the voltage error in each
iteration, thus enhancing the accuracy and robustness of SOC estimation.

To validate the estimation accuracy of AUKF, a random charge/discharge profile is
applied on the battery with a 100% nominal capacity, as shown in Figure 10.
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Figure 10. Random charge/discharge profile applied on the battery.

The applied profile is designed in such a way that the SOC of the battery moves in
between 100% and 50% and has both charging and discharging currents, which is more
practical for finding out the estimation accuracy of the proposed algorithm.

A variable resting time is also introduced in the profile to make it more dynamic and
practical. The measured terminal voltage and SOC calculated by the ampere-counting
method are also shown in Figure 10.

The basic differences in both simple UKF and adaptive UKF are the values of the
measurement and process noises. In simple UKF, their values are always taken as constant,
while in adaptive UKF, those values are estimated based on the voltage error in each
iteration, which makes AUKF more dynamic and practical in nature.

The estimation window Lq in AUKF was taken as 20 time intervals. Figure 11 shows
a comparison of the simple and adaptive UKF algorithms. For simple UKF, the same
parameters shown in Table 1 are used.
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As can be observed in Figures 11 and 12, adaptive UKF is fast in terms of its conver-
gence time. It converges in about 0.07 h to the right value, while the simple UKF takes
about 0.2 h.

In traditional UKF, the Kalman gain is, in fact, limited because of the constant values
of Rv and Qw, while in AUKF, Kalman gain can freely change depending upon the residual
voltage error in the battery system, which makes AUKF fast in terms of convergence time.
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Similarly, after converging to the right value SOC error, AUKF does not fluctuate very
fast compared to simple UKF, whose SOC error has a high fluctuation. The AUKF takes an
Lq number of previous samples of residual voltage error into account for updating Rv and
Qw, which makes AUKF immune to abrupt current changes happening in a battery, which
can cause voltage errors for a while as well.

Traditional UKF only takes current voltage error into account and it changes the
state depending upon that error, which makes the state estimated by traditional UKF more
subject to fluctuation. The overall error by simple UKF is about 5%, while by using adaptive
UKF, the error is reduced to about 2%. In Figure 13, the variations in the Qw and Rv are
shown. Both values of these noises are updated adaptively in each iteration based on the
residual voltage error.
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5. Conclusions

The Open-Circuit Voltage (OCV) behavior of an SFLA battery is investigated for the
first time. Notably, our observations reveal unique hysteresis behavior distinct from other
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batteries, prompting the development of a novel hysteresis modeling approach. This new
model is proposed and validated based on a thorough analysis of the observed hysteresis
behavior. Additionally, we introduce the Adaptive Unscented Kalman Filter (AUKF)
for online State of Charge (SOC) estimation in an FLA battery. AUKF stands out for its
adaptive adjustment of process and measurement noise covariances. Comparisons with
the traditional UKF highlight AUKF’s superior performance, demonstrated through its
convergence to the correct SOC value and enhanced estimation accuracy. This emphasizes
the novelty of hysteresis modeling and the advantageous performance of AUKF in SOC
estimation, providing a comprehensive summary of our research findings.
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