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Abstract: On-road real-driving emissions (RDE) tests with portable emissions measurement systems
(PEMS) are part of the vehicle emissions regulations in the European Union (EU). For a given vehicle,
the final emission results depend on the influence of the ambient conditions and the trip characteristics
(including the driver’s behaviour) on the vehicle performance and the instrument measurement
uncertainty. However, there are not many studies that have examined the emissions variability of a
single vehicle following different routes. In this study, a 1.2 L gasoline direct injection (GDI) Euro 5b
passenger car without a particulate filter and a PEMS was circulated in seven European laboratories.
At their premises, the laboratories performed two to five repetitions of on-road trips compliant with
the EU RDE regulation. The ambient temperature ranged between 7 ◦C and 23 ◦C. The average
emission levels of the vehicle were 135 g/km for CO2, 77 mg/km for CO, 55 mg/km for NOx, and
9.2 × 1011 #/km for particle number. The coefficient of variance in the emissions following the same
route was 2.9% for CO2, 23.8% for CO, 23.0% for NOx, and 5.8% for particle number. The coefficient
of variance in the emissions following different routes in Europe was 6.9% for CO2, 9.1% for CO, 0.0%
for NOx, and 9.1% for particle number. The previous values include the specific vehicle emissions
variability under the narrow test conditions of this study, but only partly the PEMS measurement
uncertainty because the same instrument was used in all the trips. The results of this study can
be used by laboratories conducting RDE tests to assess their uncertainty budget when testing or
comparing vehicles of similar technology.

Keywords: vehicle emissions; on-road emissions; real-driving emissions (RDE); portable emissions
measurement systems (PEMS); CO2; NOx; particle number

1. Introduction

Measuring vehicle emissions on the road is becoming more and more common [1–10].
On the one hand, a lot of research is conducted to determine the realistic behaviour or
emission factors of light-duty and heavy-duty vehicles [11–17]. On the other hand, most
regulations worldwide require emissions compliance to the limits not only in the laboratory
but also on the road under normal conditions of use [18]. The on-road testing for regulatory
purposes started in the United States of America (USA) in 2007 for heavy-duty vehicles.
Europe introduced Portable Emissions Measurement Systems (PEMS) testing a few years
later (in 2013) for heavy-duty vehicles with Regulation (EU) 582/2011 [19] and for light-
duty vehicles (in 2017) with Real-Driving Emissions (RDE) Regulation (EU) 2016/427 [20].
Since then, various regulations have improved the procedures [21–24] and were included in
the Euro 6 regulation [25]. Table 1 summarises some of the key additions in the light-duty
RDE regulation, sometimes called first to fifth RDE packages. The first two packages were
consolidated in the worldwide harmonised light-vehicle test procedure (WLTP) Regulation
(EU) 2017/1151 [25], which was further developed by the third and fourth packages.
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Euro 6d-t entered into force in September 2017, Euro 6d in September 2020, and Euro
6e in September 2023 (January 2025 for Euro 6ebis). In Asia, China introduced on-road
provisions with China 6b in 2023 and India with Bharat Stage 6 Phase II in 2023 [18,26].

Table 1. Overview of key RDE EU regulations additions.

Regulation Euro MNOx MPN Drift Driving
Dynamics Other Changes

2016/427
[20] 6c - - NO ≤ 5 ppm

NO2 ≤ 5 ppm - RDE for type approval

2016/646
[21]

6d-t
6d

1.10
0.50

-
- Same RPA, v × a

CPEG
2017/1154

[22] 6d-t same 0.50 NOx ≤ 5 ppm same Cold start inclusion; order urban, rural,
motorway; hybrids; regeneration

2018/1832
[23] 6d 0.43 same Same same RDE also for ISC and surveillance; simplified

evaluation method; EFM should cover 75% FS

2023/443
[24] 6e 0.10 0.34 NOx ≤ 3 ppm same

Tmax,extended 38 ◦C (Euro 6ebis) (from 35 ◦C);
stricter vehicle conditioning test for cold start

test; soaking up to 72 h (from 56), drift
correction

CPEG = cumulative positive elevation gain; EFM = exhaust flow meter; EU = European Union; M = margin;
FS = full scale; RDE = real driving emissions; RPA = relative positive acceleration.

Although on-road testing is more representative of the reality than laboratory testing,
the results might exhibit higher scatter due to the variable vehicle response and usage
and the wider ranges of possible ambient and driving conditions, even when keeping all
possible influencing parameters constant (e.g., fuel, pre-conditioning, weight (payload), use
of air-conditioning, and other auxiliaries, etc.) [27]. The variability of emissions measured
over different routes is caused by a composite of (i) the stability of the engine and the
aftertreatment devices under identical conditions, (ii) the influence of the ambient condi-
tions on the vehicle emissions performance (including parameters such as temperature,
wind, road quality), (iii) the influence of the trip characteristics (e.g., driving style, route
composition, traffic conditions, etc.) on the vehicle emissions performance, and (iv) the
instrument accuracy and stability. The European regulation requires that light-duty vehicles
respect the NOx and particle number (PN) Euro 6 emission limits under the normal driving
conditions defined by the RDE regulation; i.e., the potential variability of the emissions
caused by points (i) to (iii) are included. The intention of the regulators is to avoid poor
performance of the emissions control technology (e.g., efficient only under certain con-
ditions) and to capture the exceedance of the regulated limits if and when this happens.
Within the regulated conditions, voluntary strategies (Auxiliary Emissions Strategies) are
permitted. Outside the regulated conditions, auxiliary strategies may be permitted under
certain conditions aiming to protect the engine and the aftertreatment against damage or
accident and for the safe operation of the vehicle [28]. These conditions are assessed by the
responsible type approval authority, in particular, if their effect on the emissions can be
justified and quantified [29,30].

It is important to avoid cases in which a vehicle would be falsely considered to exceed
the emission limits due to the instrument measurement inaccuracy; i.e., point (iv) should be
taken into account in the emission compliance assessment. For this reason, the maximum
PEMS measurement uncertainty that can occur during all potential RDE testing conditions
is taken into account in the EU regulation as a “margin” on top of the regulated emission
limits (NOx and PN), applicable to all vehicles (with direct injection engines for PN) and
regulated testing conditions [31,32]. A novelty of the Euro 6e is that the “margin” is now
included in the final RDE results and not on the limit (Appendix 11, Annex III of Regulation
(EU) 2023/443 [24]). Consequently, the same limit applies to testing in the laboratory and on
the road. The term “conformity factor” (1+margin) referring to permissible exceedance of
the laboratory limits on the road is not used anymore, but only “margin”. The approach of
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Euro 6e will also be followed in Euro 7 [33]. In the USA, both the measurement uncertainty
and the differences between laboratory engine and on-road vehicle testing are taken into
account in the not-to-exceed limit [34].

On the one hand, a wide range of conditions (driving style, ambient temperature,
altitude, vehicle payload, i.e., “boundary conditions” according to the regulation) is desir-
able to assess the compliance of a car. On the other hand, similar conditions are desirable
when the aim is to compare the emissions of different vehicles or have an indication of
the laboratory’s repeatability for certification purposes. Repeatability is the precision (i.e.,
closeness) of measurements of the same or similar objects at the same location with the same
measurement procedure, system, operator, and operating conditions over a short period of
time. Reproducibility, on the other hand, is the precision of measurements of the same or
similar objects but at different locations, with different measuring systems and operators
and over a longer period of time. While the definitions are straightforward for laboratory
testing, for on-road RDE testing, the terms cannot be strictly used because it is almost
impossible to have identical conditions on two trips at the same or at different locations
(local traffic and weather conditions cannot be controlled, for instance) [35]. Furthermore,
the inherent variability of the vehicle response is included and cannot be avoided. Under
strict laboratory conditions, this variability can be small, but during the on-road testing,
the environmental conditions and the trip characteristics are not well-controlled and might
result in high vehicle emissions variability. Only a few studies have examined the variabil-
ity of results following the same route and trying to keep all parameters similar [36,37]. A
few researchers examined different routes with different trip characteristics [38–40]. To our
knowledge, there are no studies that have compared the emissions and the characteristics
of different RDE trips for the same vehicle and the same PEMS at different locations. As
the studies regarding the influence of the trip on the results are limited, there is a need to
better understand the variability of the emissions due to different trip characteristics, in
particular, those compliant with the EU RDE regulation, which, in principle, is the same
with China’s, India’s, and United Nations’ Regulation 168 [41].

This study addresses the trip-to-trip variability over different RDE trips compliant
with the EU requirements. In particular, the variability of the RDE testing procedure
is assessed under similar (i.e., narrow range of) environmental and driving conditions
using the same vehicle and the same measurement equipment at different locations in
Europe. According to our knowledge, no other similar studies have been conducted before.
The results of this study can be a first input of expected differences due to different trip
characteristics for both regulators and researchers. It has to be highlighted that this study
does not assess the possible variation in the PEMS response (measurement uncertainty),
which has been thoroughly assessed in other studies [32,42,43]. As many changes took
place in the RDE regulation over the years, the text also gives some historical information
regarding the evolution of the RDE technical specifications.

2. Materials and Methods

The objective of the original inter-laboratory comparison exercise was to assess the
measurement performance of particle number (PN) PEMS. This exercise directly involved
the regulators, the industry, and the technical services. For this reason, a PEMS (i.e., gas
analyzers, PN analyzer, exhaust flow meter, GPS, and weather station and batteries) and
two additional PN-PEMS were installed in a reference (“Golden”) vehicle and were tested
in different laboratories and their premises across Europe [44]. The original report assessed
the measurement performance of the two additional PN-PEMS by comparing them to the
laboratory reference systems on chassis dynamometers and to each other.

In this study, we evaluate the PEMS data (gases and particles) that were not analyzed
in the previous report, as they were outside of the scope of the exercise. Furthermore,
the approach is different. Here, we focus on the variability of the on-road tests for gases
and particles, while in the original report, only relative differences in PN-PEMS to the
reference laboratory systems were assessed. Using the results from the same PEMS applied
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in different laboratories allows for expressing the variability of the emissions on the same
or different routes without taking into account the bias and uncertainty related to the use
of different PEMS. The results of the two additional PN-PEMS and their measurement
uncertainty can be found in the original report [44]. The details of the exercise can be found
in the report as well, so here, only the most relevant information for understanding this
study is summarised. The on-road tests took place at the end of 2015 at the premises of the
following European laboratories in this chronological order:

• Lab #1: JRC (Joint Research Centre), Ispra, Italy (mid-September);
• Lab #2: Volkswagen, Wolfsburg, Germany (end of September);
• Lab #3: Bosmal (Automotive R&D institute), Bielsko-Biala, Poland (beginning

of October);
• Lab #4: Honda R&D Europe, Offenbach am Main, Germany (end of October);
• Lab #5: Audi, Neckarsulm, Germany (beginning of November);
• Lab #6: Volvo, Gothenburg, Sweden (end of November);
• Lab #7: TÜV Nord, Essen, Germany (beginning of December);
• Lab #1 repeated at the end of the exercise (end of December) in order to confirm the

stability and the absence of drift of the emissions.

Although the tests were performed 2 years before RDE’s introduction to the regulation
and 8 years before the last package, they still have high interest and value as no such study
has been conducted since then. Furthermore, the next Euro 7 step has kept the same (or
similar) testing methodology (RDE) and technical specifications for the instruments.

The vehicle was a C-segment Volkswagen Golf, with 1.2 L gasoline direct injection
(GDI) with a three-way catalyst (but no particulate filter), with maximum power of 63 kW,
manual gearbox, kerb weight of 1205 kg, maximum laden mass of 1720 kg, and 9800 km on
the odometer. The equipment installed in the car was a PEMS (for gases and PN) and two
additional PN-PEMS. It was type-approved as a Euro 5b vehicle (model year 2015), and
thus, no emission limits were applicable for RDE testing, as the RDE procedure was not in
the regulation at that time.

The PEMS was the Semtech LDV from Sensors (Saline, MI, USA) measuring CO
and CO2 with non-dispersive infrared detectors, NO and NO2 with non-dispersive ul-
traviolet detectors, and (solid) PN with condensation particle counter with thermal pre-
treatment [31]. A 1.5-inch Exhaust Flow Meter (EFM) was used (maximum exhaust flow
around 250 kg/h). It also logged the position coordinates, altitude, as well as ambient tem-
perature, pressure, and relative humidity. The PEMS was installed on the tow bar of the car.
The two additional PN-PEMS (prototype NPET from Horiba (Kyoto, Japan) and Nanomet
3 from Testo (Lenzkirch, Germany)) were installed in the cabin of the vehicle. More details
about the PN-PEMS can be found elsewhere [31], and their results will not be presented
here. At some laboratories, one of the two PN-PEMS was not installed because it was not
functioning, and at some other laboratories, a second person was inside the car, in addition
to the driver. The additional weight associated with the instrumentation and one driver
was typically around 125 kg, 24% of the maximum payload, but it varied between 20%
and 40%, well below the 90% of the maximum payload, which is the maximum applicable
payload limit defined by the RDE regulation.

The testing protocol included 3 days in the laboratory and 2 days on the road (with
morning and afternoon tests). The laboratory tests were the applicable type approval cycle
of the specific vehicle NEDC (new European driving cycle) and the current type approval
cycle WLTC (worldwide harmonised light vehicles test cycle). The vehicles were soaked
in closed garages with temperatures around 20 ◦C; thus, the influence of the external
ambient temperature during cold start was small. The soak duration did not fully respect
the Euro 6d and 6e RDE requirements (minimum 6 h), as tests were run in the morning
and afternoon. The drivers were instructed to drive normally according to their laboratory
procedures for RDE tests. They were allowed to turn on the heater or air-conditioning of
the car. All laboratories used reference E5 fuel from the same batch with 5% ethanol, 31.7%
aromatics, and 3 mg/kg sulphur content.
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Before each trip, the analyzers were zeroed with nitrogen, and their maximum range
was adjusted using span gases with 1% accuracy (2% for NO2 in the first RDE package [20]).
The span concentration range was different at each laboratory but fulfilled the requirement
that the maximum concentration during a test should be lower than two times the span
value, and all exceedances should be <1% of the total trip duration. At the end of the trip,
the span ranges were controlled, and they were within 2%. The zero levels were also within
0.2% for CO2, 10 ppm for NOx, and 100 ppm for CO. Note that Euro 6d RDE specified a
maximum drift of 5 ppm for NOx and 75 ppm for CO. With Euro 6e, the maximum NOx
drift is 3 ppm. Each laboratory used its own personnel to operate the PEMS and drive
the vehicle.

The data were analyzed in accordance with the rules of Regulation (EU) 2017/1151 [25]
using EMROAD 6.04. A short description follows; the details can be found in the regulation.
Instantaneous data were binned in urban (≤60 km/h), rural, or motorway (>90 km/h)
parts, depending on the vehicle speed. The assessment was performed for the total trip and
each sub-part. Initially, it was confirmed that the operation of PEMS was error-free, and
the concentrations were within their calibrated range. The next step was the evaluation of
the trip characteristics, such as urban, rural, motorway shares, altitude, temperature range,
vehicle conditioning at cold start, cold start requirements, sub-part trip requirements (e.g.,
average speed, stop time), and cumulative altitude gain. No correction was needed and/or
applied for extended ambient temperature or altitude conditions, as the conditions were
within the moderate range. Then, the 95th cumulative percentile of speed × acceleration
and the relative positive acceleration for each sub-part were calculated and compared
with the respective limits. Finally, applying the moving average window, the CO2 of
each window was compared with the reference values from the type approval cycle. The
calculation of the emissions (i.e., from ppm to mg/km) for the total trip and each sub-part
was the next step. No drift correction was applied to the PEMS concentrations. The final
emissions were not corrected with the PEMS margin (1 + 0.1 for NOx given in Appendix 11
of Regulation (EU) 2023/443 for Euro 6e [24]). The analysis was performed without
correcting for the RDE evaluation factor (as per Appendix 6 of Regulation (EU) 2017/1151
for Euro 6d [25] or Appendix 11 of Regulation (EU) 2023/443 for Euro 6e [24]). This factor
is calculated as the ratio of the test (trip) CO2 and the type approval cycle CO2 and takes
into account the severity of the trip. For ratios <1.3, no correction is applied, while for
ratios >1.5, the inverse of the ratio is applied to the final emission result. For ratios in
between, a linear function is used to calculate the final correction value. The effect of this
correction will also be presented because it is included in the latest RDE regulation. For
this correction, as the CO2 value was not available at the certificate of conformity of the
vehicle, we used the average cold start WLTC CO2 value determined at the first laboratory.

Finally, the integrated results for the urban or the total trips were assessed following
ISO 5725-2 [45] to determine the variance in the emissions following the same route (equa-
tions for within labs variance) and the variance in the emissions following different routes
(equations for between labs variance) (see also [46] for simplified equations). The first is
a weighted average of the laboratories’ same route’s “repeatability”. The second is the
weighted variability of the laboratories’ averages. The analysis was carried out for each
pollutant and CO2. The analysis was also repeated, removing the first 300 s (cold start)
in order to remove as much as possible the effect of the ambient conditions on the emis-
sions associated with the cold start, such effect being substantial for gasoline vehicles [47].
Variance is a measure of variability, but in this text, we use the terms interchangeably. The
final statistical analysis is not part of the regulation but is typical for the inter-laboratory
correlation exercises.

3. Results

This section will present the three assessment steps: trip validity; emissions calcula-
tions; and statistical analysis. A total of 24 RDE road tests were performed at the premises
of the seven participating laboratories, plus two more repetitions at the end of the campaign
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from the first laboratory. The trips were compliant with the first package RDE, and any
deviations from the subsequent RDEs will be discussed.

3.1. Trip Characteristics

Table 2 gives the average ambient conditions during the various on-road trips. It
should be remembered that the vehicle was soaked in temperature-controlled areas with
an ambient temperature of around 20 ◦C. The ambient temperature during the RDE tests
ranged between 3 ◦C and 25 ◦C (averages between 7 ◦C and 23 ◦C) with an overall average
value of 14.2 ◦C. The ambient pressure of the trips ranged between 99 kPa and 103.9 kPa,
with an overall average value of 102 kPa. The average relative humidity was around 60%.
According to the regulation, all trips were carried out at “moderate” conditions.

Table 2. Average ambient conditions of the various trips.

Parameter Units #1a #2 #3 #4 #5 #6 #7 #1b

Temperature ◦C 23.1 17.3 11.6 15.5 16.9 8.3 13.9 7.0
Pressure kPa 99.0 103.9 101.3 103.0 102.1 102.2 103.6 102.5

Relative humidity - 61% 61% 57% 56% 60% 63% 59% 45%

Table 3 summarises the average trip characteristics and the respective limits set in
the legislation. In general, the trips fulfilled the requirements with the exception of the
cold start provisions. Most of the trips had an initial idling duration of >15 s and a cold
start–stop time of >90 s, thus not fulfilling Euro 6d and Euro 6e RDE regulations. These
requirements were not part of the draft requirements when the tests were conducted in
2015. They were added with the third part of the RDE legislation in 2017 with Regulation
(EU) 2017/1154 [22], and, therefore, not fulfilling them does not explicitly violate the RDE
requirements. In general, the average values were within 10% of each other. All laboratories
followed the urban, rural, and motorway, in this order, except laboratory #7, which followed
the urban, motorway, and then the rural part. It should be remembered that the order
urban–rural–motorway became obligatory with Regulation (EU) 2016/427 [20], applicable
from 2017.

Table 3. Average trip characteristics per laboratory. In italics, values that are outside of the Euro 6d
RDE 4th package (Regulation (EU) 2018/1832) [23] specifications.

Parameter (RDE Thresholds) Units #1a #2 #3 #4 #5 #6 #7 #1b

Number of valid trips - 2 3 3 4 4 3 5 2
Total trip distance km 78 74 82 88 82 97 83 79

Total trip duration (90–120) min 92 88 109 105 107 113 107 93
Urban distance (>16) km 29 27 30 31 34 33 29 31
Rural distance (>16) km 25 24 27 30 27 29 26 23

Motorway distance (>16) km 24 23 26 28 22 35 28 25
Urban distance share (29–44) % 37 36 36 35 41 34 35 39
Rural distance share (23–43) % 32 33 32 34 32 29 32 30

Motorway distance share (23–43) % 31 31 31 31 27 36 34 31
Urban average speed (15–40) 1,2 km/h 29 31 24 28 28 29 25 30

Rural average speed km/h 76 75 76 74 73 72 75 77
Motorway average speed km/h 114 105 114 114 109 106 103 113
Total trip average speed km/h 51 52 46 50 46 52 47 51

Motorway speed >145 km/h (<3) % 0 0 0 0 0 0 0 0
Motorway speed >100 km/h (≥5) min 10 8 12 12 8 18 10 10

Urban stop time (6–30) 1,3 % 24 16 23 21 17 17 27 20
Initial altitude m 210 75 325 134 150 75 104 208

Altitude difference (≤100) m 30 18 8 37 100 49 7 37
Total CPEG (<1200 m/100 km) 1 m 615 452 872 262 413 338 801 645

Urban CPEG (<1200 m/100 km) 1 m 628 455 944 246 410 447 840 767
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Table 3. Cont.

Parameter (RDE Thresholds) Units #1a #2 #3 #4 #5 #6 #7 #1b

Idling events >300 s 4 Y/N N N N N N N Y N
Initial idling duration (≤15) 5 s 19 8 103 47 93 18 19 11

Cold start average speed (15–40) 5 km/h 9 15 18 24 10 18 16 22
Cold start max speed (<60) 5 km/h 47 52 48 56 54 38 74 56
Cold start–stop time (≤90) 5 s 175 74 121 69 117 38 139 47

1 added to second package. This requirement has been softened in Regulation (EU) 2023/443 [24], and the test
is invalid only if the final RDE emissions are above the limits; 2 it was 15–30 at first package; 3 it was >10; 4 at
second package long idling was excluded from analysis. With third package, the trip is void. This requirement
has been softened in Regulation (EU) 2023/443 [24], and the test is invalid only if the final RDE emissions are
above the limits; 5 added with third package. CPEG = cumulative positive elevation gain.

The average trip dynamics are presented in Figure 1. The clouds of points at speeds
29, 72, and 106 km/h represent the urban, rural, and motorway parts, respectively. All trips
respected the lower limits of relative positive acceleration (RPA) and the upper limits of
the product of velocity and acceleration (v × a), with some of the trips close to the limits,
although they were introduced as requirements later [21].
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The average exhaust flow rate of the total trip was 35 kg/h, and for the urban part, it
was 25 kg/h. The peaks at the various trips reached 160–210 kg/h, thus covering 64–84% of
the flow meter range. Amendment of the RDE regulation in Regulation (EU) 2018/1832 [23]
recommends having the maximum expected flow rate during the test covering at least 75%
of the EFM full range.

3.2. On-Road Emission Results

Real-time examples of emissions of the specific vehicle can be found in Figure A1 in
Appendix A. In general, the pollutant concentrations were high at the cold start and at the
motorway part.

Table 4 summarises the maximum concentrations and the 90th percentile of the ana-
lyzers’ signals that were measured during the campaign. The span gas concentrations that
were used for the calibration of the analyzers were in accordance with the regulation. They
covered at least 90% of the concentration values obtained from 99% of the measurement of
the valid parts of the emissions test. The RDE concentrations were not more than double
the span gas ranges. What is impressive is that while the peaks of CO exceeded 12,400 ppm,
the majority of the concentrations during the trips were <255 ppm. To a smaller degree,
this happened also to NO. These results show the wide range that the analyzers must cover
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and the importance of accurate linearization, even at low concentrations. It also indicates
that any drift might have an impact on the final result [32].

Table 4. Maximum and 90th percentile of the analyzers’ RDE (wet) concentration signals and span
gas ranges. Range gives the maximum measured concentrations at all laboratories.

Parameter PN × 106

(#/cm3)
CO2
(%)

CO
(ppm)

NO
(ppm)

NO2
(ppm)

Maximum 3.3–17 13.7–14.1 12,400–26,600 830–2300 5–50
A 90th percentile 1.2–3.1 13.4–13.7 75–255 38–170 0–17
Span gas range - 14.8–18.0 7600–16,000 870–1940 210–510

Figure 2 presents the average results of the trips for each laboratory for CO2, NOx,
and PN for the urban part (left panels) or the total trip (right panels), including the cold
start. The tests of the first laboratory at the start and end of the inter-comparison exercise
were quite close to each other. The PN and NOx were around 15% lower at the end of the
testing, and CO2 was 9% higher. The CO (not shown) was around 30% higher. However,
the tests in the second period were carried out at 7 ◦C, while in the first period, at 23 ◦C of
the ambient temperature, which can explain such differences.

Even though it is not meaningful to perform a statistical analysis with only two
repetitions, the differences between the urban part and the total trip were not statistically
significant, except for NOx for the total trip. Nevertheless, based on the laboratory means,
there was no obvious drift for the combination vehicle and instrumentation.
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Regarding the tests at all laboratories for CO2, two distinct levels could be seen for the
total trip: around 145 g/km (Labs #1, #3, and #5); and around 125 g/km (Labs #2, #4, #6, and
#7). The high CO2 group had an additional passenger (Lab #1), lower ambient temperature,
use of a heater or air conditioning and/or higher v × a. The variability (i.e., error bars) of
the total trip was almost half (1–6 g/km) of the urban part variability (2–13 g/km).

NOx ranged between 45 and 65 mg/km for the total trip without any particular trend.
NOx was ~100 mg/km in the urban part and had a rather high scatter. NO2 was negligible,
with values from 0 up to 9 mg/km. The trips with higher NO2 emissions were those that
had an increasing trend of NO2 over time, which was due to the drift of the analyzer
(see example Figure A1 in Appendix A). The NOx variability (error bars) was around
5–16 mg/km for the total trip and 23–48 mg/km for the urban part.

PN varied in a narrow range of around 9 × 1011 #/km without any particular trend.
The variability (error bars) was 0.1–1 × 1011 #/km for the total trip and 0.1–2 × 1011 #/km
for the urban part.

3.3. Statistical Analysis

The results of the statistical analysis according to ISO 5725-2 for the variance in the
emissions following the same or different routes are given in Table 5. Only the first tests of
Lab #1 were considered in the analysis in order to avoid having two data sets from the same
laboratory and bias the results. No laboratory was removed from the analysis based on the
Grubbs and Cochran tests. The variance in the same route (within routes variability) for the
total trips was 2.9% for CO2, around 24% for CO and NOx, and 6% for PN. The variance
in different routes (between routes variability) was 7% for CO2, 9% for CO, negligible for
NOx, and 9% for PN. The very low value for NOx has to do with the high scatter of the
repeats at the laboratories, making the contribution of the variability of the means at all
laboratories negligible. While the means at each laboratory were within 20% of the mean
value, the variability at the labs was 18–41%. One interesting finding is that the variance
in the emissions following the same route was higher than following different routes for
CO and NOx, while the opposite applied to CO2. This will be discussed in the Discussion
section, but it indicates that CO2 is sensitive to conditions such as weight and driving
dynamics, while CO and NOx depend more on the cold start part of a trip. The last column,
“Combined”, combines within and between variances and practically gives the expected
variance in the vehicle as measured at different locations. It is calculated as the square
root of the sum of the squares of the two values. It is the equivalent of “reproducibility” of
laboratory tests, although this term cannot be used for on-road tests (see Section 1).
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Table 5. Statistical analysis of the results. “CO2 corr.” refers to correction of Appendix 6 of Regulation
(EU) 2017/1151 [25] or Appendix 11 of Regulation (EU) 2023/443 [24]. “Hot” refers to test removing
the initial 300 s.

Pollutant Trip Part Mean Same Route Different Routes Combined

CO2 Urban (cold) 164.7 g/km 4.9% 7.4% 8.8%
Urban (hot) 160.0 g/km 7.1% 12.0% 13.9%
Total (cold) 134.6 g/km 2.9% 6.9% 7.5%
Total (hot) 131.9 g/km 3.3% 7.4% 8.1%

CO Urban (cold) CO2 corr. 81 mg/km 34.1% 0.0% 34.1%
Urban (cold) 113 mg/km 29.0% 4.9% 29.4%
Urban (hot) 18 mg/km 32.4% 18.4% 37.2%

Total (cold) CO2 corr. 70 mg/km 22.6% 0.0% 22.6%
Total (cold) 77 mg/km 23.8% 9.1% 25.5%
Total (hot) 43 mg/km 26.5% 4.3% 26.9%

NOx Urban (cold) CO2 corr. 80 mg/km 29.4% 1.0% 29.4%
Urban (cold) 113 mg/km 30.6% 0.0% 30.6%
Urban (hot) 104 mg/km 26.6% 3.0% 26.8%

Total (cold) CO2 corr. 50 mg/km 22.9% 0.0% 22.9%
Total (cold) 55 mg/km 23.0% 0.0% 23.0%
Total (hot) 51 mg/km 20.0% 9.8% 22.3%

PN × 1011 Urban (cold) CO2 corr. 7.3 #/km 14.2% 1.7% 14.3%
Urban (cold) 10.2 #/km 11.6% 7.2% 13.7%
Urban (hot) 9.3 #/km 11.2% 6.2% 12.8%

Total (cold) CO2 corr. 8.5 #/km 6.0% 4.7% 7.6%
Total (cold) 9.2 #/km 5.8% 9.1% 10.8%
Total (hot) 8.9 #/km 6.0% 9.2% 10.9%

The results did not change significantly, correcting with the CO2 a ratio of a trip to
laboratory certification cycle. Excluding the first 300 s of the trips and repeating the analysis
(i.e., trips with hot start) did not improve the coefficient of variances. However, the absolute
emissions were lower, especially for CO, which is usually mostly associated with the cold
start emission, and thus, the absolute variances were lower (but not the relative variance).

4. Discussion

This is the first study to compare RDE-compliant routes at different locations in
Europe using the same car and PEMS. Even though the original objective was to assess the
measurement uncertainty of PN-PEMS (see [44]), the data were proven to be useful for the
assessment of the trip variance following the RDE procedure, the variance following the
same route and the variance following different routes at different locations. In general, the
results of an RDE test depend on the vehicle and its stability, the influence of the operating
conditions on the vehicle emissions, and the measurement accuracy of the measurement
equipment. In this inter-laboratory exercise, the circulation of a “Golden” (reference) PEMS
made it possible to exclude (or minimize) the uncertainty related to the use of different
equipment. This does not mean that the results were necessarily the “true” emissions,
but any bias of the instrument should be similar at all locations. Testing at the chassis
dynamometers of the laboratories with two cold start NEDCs (new European driving cycle)
and five hot start WLTCs (worldwide harmonised light vehicle test cycle) showed that the
average deviations of PEMS to laboratory (bag) results were +9.4% (with one standard
deviation ±2.9%) and +7.5% (±3.6%) for CO2 for the NEDCs and WLTCs, respectively,
and +17.3% (±25.0%) and +2.0% (±17.5%) for NOx. Nevertheless, the differences were
in most cases within the permissible tolerances prescribed in the RDE regulation for the
CO2 (maximum difference between PEMS and laboratory 10 g/km or 10%, which was
reduced to 7.5% with Regulation (EU) 2023/443 [24]) and NOx (15 mg/km or 15%, which
was reduced to 10 mg/km or 12.5% with Regulation (EU) 2023/443). Similar differences
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for the same PEMS model were found by others [48]. While the PEMS vs. laboratory
differences for NOx were not statistically significant, for CO2, they were. Typically, CO2
analyzers are accurate within 2%; thus, the difference indicates that the specific flow meter
was overestimating the flow. Indeed, the CO2 deviation was similar to the difference in
the PEMS flow to the exhaust flow calculated by the laboratory (total dilution tunnel flow
minus dilution air) [44]. Although the CO2 is not included in the RDE pass/fail criteria,
it can invalidate a test based on the overall trip dynamics requirement with the moving
average window (MAW) (as defined in Appendix 5 of RDE regulation Annex IIIA [25]), and
it can indirectly affect the results by the correction with the CO2 ratio of RDE to laboratory
WLTC (Appendix 6 of the same RDE regulation). Other studies showed that the PEMS
uncertainty can be as high as 43% for NOx and 50% for PN, but in most cases, it should be
less [31,32]. Inter-laboratory PEMS exercises gave differences of <4% for CO2, 10–20% for
NOx, and 35–40% for PN (the assessment was performed in the laboratory) [46,49].

The emissions of the “Golden” circulating vehicle with a gasoline direct injection
engine and a three-way catalyst remained relatively stable over the exercise. The tests of the
first laboratory at the start and end of the exercise had some differences (PN and NOx were
15% lower, CO 30% higher, and CO2 was 9% higher at the end of the testing). The lower
ambient temperature, the use of the heater or air-conditioning, and the slightly higher v × a
of the trips at the end of testing can partly explain this trend for CO2 [50].

With the exception of the cold start, three-way catalysts work efficiently, and emissions
of CO, HCs (that were not measured in this study), and NOx are generally low. Higher
emissions can be seen at deviations of stoichiometric mixture [51,52], e.g., dynamic driving
with hard accelerations [53] or high engine loads, which was not the case of the conducted
trips. The direct injection engine was proven to be a stable and substantial source of
particles as well [54]. The urban and total trip emission levels of NOx (113 mg/km and
55 mg/km) and PN (10.2 × 1011 and 9.2 × 1011 #/km) were close to the limit or slightly
higher than the limits for Euro 6d gasoline vehicles (60 × 1.43 = 86 mg/km for NOx and
1.5 × 6 × 1011 = 9 × 1011 #/km for PN), although not applicable to this car (type approved
as Euro 5). RDE studies with Euro 5 and Euro 6b/c GDI vehicles without gasoline partic-
ulate filter (GPF) found emission levels between 20 and 83 mg/km for NOx and 0.6 and
1.7 × 1012 #/km for PN [55,56].

The environmental and driving conditions (Table 2), in general, varied in a narrow
range, well below the temperature boundaries of the extended conditions (0 ◦C and 30 ◦C).
Regulation (EU) 2023/443 increased the maximum extended ambient temperature from
35 ◦C to 38 ◦C, starting with Euro 6ebis (in force 01/01/2025). It also softened this require-
ment by invalidating a test only in case the emissions were above the limits. Even though
the ambient temperature varied in the range of 3 ◦C to 25 ◦C (mean temperatures between
7 ◦C and 23 ◦C), all laboratories soaked the vehicles in a temperature-controlled area with
ambient temperature around 20 ◦C, minimizing the effect of external temperature on the
cold start emissions and the impact of using auxiliaries (e.g., air conditioning). It is highly
likely that the scatter would be higher if the vehicle was soaked outside. Since the third
package (2017/1154) [22], if the vehicle is conditioned for the last three hours prior to the
test at an average temperature that falls within the extended range, then the 1.6 extended
factor applies to the cold start period, even if the running conditions are not within the
extended temperature range. The rest of the trip characteristics, such as distances, shares,
etc., also varied in a relatively narrow range (typically within ±10%). Bigger variability of
the trip characteristics was noticed at the cold start part. The reason was that the testing
was conducted before the introduction of RDE in the regulation, and in particular, the
third package that introduced the new provisions regarding idling duration and cold start
average speed; so, in some cases, the results were not compliant to the Euro 6d or later RDE
requirements. Note that with Regulation EU 2023/443 [24], the test is invalid only if the
final emissions exceed the limit. Nevertheless, repeating the statistical analysis excluding
the first 300 s (cold start), no improvement in the (relative) variance values was noted
(partly explained by the lower absolute emission factors). The removal of cold start reduced
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the absolute emissions by 3% for CO2, 84% for CO, 7% for NOx, and 8% for PN for the
urban part. The contribution of cold start was higher [56] or similar [4,57] to what has
been reported by others for RDE trips. The relative contribution depends on the absolute
emissions during the cold start period but also on the absolute emissions at the rest of the
test and the trip duration. For pollutants such as CO, where the majority of the emissions
occur at the cold start, the inclusion or not plays an important role.

Repeating the analysis using the pollutant emissions corrected with the RDE eval-
uation factor (see Section 2: CO2 ratio of the trip to the certification cycle; practically
normalizing the emissions to the same CO2 emissions), did not change the variances. This
implies that the dependence of CO, NOx, and PN on the CO2 or power of the vehicle
is small for properly operating after-treatment devices and the small range of CO2 of
this study.

In one laboratory, the order of testing was not urban, rural, and motorway, but urban,
motorway, and rural (Lab #7). No differences were seen compared to the rest of the
laboratory trips for the rural and motorway parts. Later amendment with Regulation (EU)
2018/1832 [23] defined that the order has to be urban, rural, motorway.

A few labs (#1, #5) had higher driving dynamics than some others (#6, #2, #7), but still
well within the RDE boundaries (see Figure 1). This was also evident at the CO2 values
(Figure 2a,b) but not at the other pollutants (Figure 2c–f). This indicates that the vehicle
could control the emissions within the boundaries of the regulation well.

The lack of NO2 zero checks and/or the 10 ppm permitted drift at that time (5 ppm
for NO and 5 ppm for NO2) resulted in high NO2 measurements scatter (0–9 mg/km). This
drift, however, did not impact the NOx variance as NO2 was <15% of NOx. Euro 6e RDE
regulation [24] allows for a maximum (total) NOx drift of 3 ppm and drift correction on the
instantaneous values.

In addition to the differences in routes, the different driving dynamics, the lack of
weight control, and air conditioning use influenced the CO2 variance [50,58]. The big
variability of CO2 under real conditions is well known. A study that monitored the fuel
consumption (almost proportional to CO2 emissions) of a single vehicle throughout one
year with twenty different persons using and driving the vehicle found deviations of
±14% (one standard deviation) [59]. Our results also showed a scatter of 8-14% for urban
or total trips with cold or hot engine start, highlighting the difficulties in assessing CO2
(and fuel consumption) with on-road trips. Nevertheless, the results give an indication
of the variance in the same or different routes under normal RDE conditions; thus, they
could be useful for researchers who declare or interpret RDE results with gasoline-fueled
vehicles. It should be emphasized that the results include the variability of the vehicle.
In our case, it was proven to be relatively constant after >4000 km of driving; thus, they
give a good indication of the RDE testing procedure. However, for other vehicles and
different environmental or trip conditions, the variability of the vehicle emissions could
be much higher. This depends on the calibration and strategy of the engine and/or
aftertreatment devices. For example, NOx emissions of diesel vehicles are more difficult
to control and could depend on the ambient temperature [38,39,48,60], the exhaust gas
temperature [61,62], the use of the exhaust gas recirculation (EGR) [63], or regeneration
events [64]. It is also well known that more dynamic driving (with harder accelerations)
(or expressed as higher v × a or RPA) will increase the emissions and, consequently, the
variance in the results [12,61,65–69]. The traffic, the road grade, the altitude, and the wind
also have an effect on CO2 and pollutants [60,70–74]. In general, vehicle-specific power
(VSP) is correlated with emissions [75], and the use of auxiliaries, e.g., air conditioning, can
also influence the results [38,39,50]. For PN, the existence of a particulate filter and vehicle
hybridization can also increase the variability [76]. Thus, more complex aftertreatment
devices (such as those installed in Euro 6d vehicles and later), wider ambient temperatures,
more dynamic driving and wider changes in altitude will increase the scatter (and variance)
due to their greater influence on the vehicle emissions.
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Due to the wide range of environmental and trip conditions, RDE regulation was
designed as a pass–fail test and not for comparisons of vehicles. Here, we gave the
variability ranges of the same or different routes under moderate RDE conditions, including
cold start. If, however, the objective is the comparability of vehicle emissions, then the
guidelines of the European Committee for Standardization (CEN) Workshop Agreement
(CWA) 17379:2019 should be followed [77]. The standard was built upon the RDE methods
and defined a process to test the emissions during urban driving, with the aim of comparing
the on-road emissions performance of different vehicles. Among others, some requirements
include trips of at least 10 km long, with a hot engine, at ambient temperatures between
10 ◦C and 20 ◦C, and average speed between 20 km/h and 40 km/h. According to this
CEN, to compare emissions between vehicle models, it is necessary to collect at least
five valid trips from at least two different vehicles of the specific model, fulfilling the
above-mentioned requirements.

One final note is that the PEMS measurement uncertainty is different from the “route”
variability values that were discussed here. Two trips at two locations with two dif-
ferent PEMS could have differences that combine the two factors (trip influence and
PEMS influence).

In closing, it should be emphasized that the variance following the same route is
at acceptable levels, comparable to chassis dynamometer laboratory repeatability for the
gaseous pollutants (but not for CO2). For example, reported repeatability for the NEDC
cycle can be <0.5% for CO2 (at 200 g/km), but for NOx (at 20 mg/km), it can be 15% or
higher, especially for PN [78–80].

Similarly, the laboratory reproducibility based on inter-laboratory correlation exercises
compared to RDE is lower for CO2 (2%) and lower-to-similar for the rest of the pollutants
(10–30%) [46,81]. The variance in the CO2, NOx, and PN for the cold start NEDC and hot
WLTC of the laboratories that participated in our study was 2.1–2.3%, 20–37%, and 20–22%,
respectively [44].

5. Conclusions

A Euro 5b gasoline direct injection vehicle with a portable emissions measurement
system (PEMS) was circulated at seven European laboratories. Trips compliant with the
European Union’s (EU) real-driving emissions (RDE) regulation were conducted at the
premises of the laboratories. The variance in different routes around Europe was 7% for
CO2, negligible for NOx and 9% for PN and CO. The variance following the same route
was 3% for CO2, around 24% for CO and NOx, and 6% for PN. The data showed that the
variance in CO and NOx repeating the same route (24%) could be higher than following
different routes (<9%). The opposite was noticed for CO2 (7% vs. 3%). For PN, both
the same and different route variances contributed to the final result. The results of this
study indicate that the NOx and CO emissions at different locations could be comparable
under similar environmental (temperature, altitude) conditions and trip characteristics
(dynamics, shares of urban/motorway parts). For CO2, though, stricter protocols and
control of conditions are necessary if results need to be compared. When trip emissions
are compared, though, in addition to the trip influence that was discussed in this study,
the PEMS uncertainty should be taken into account. Finally, the variance values derived
from the Euro 5b gasoline direct injection vehicle with the three-way catalyst of this study
do not necessarily apply to more advanced or different combustion and aftertreatment
technologies (e.g., hybrids or diesel with selective catalytic reduction for NOx).
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Appendix A

Figure A1 gives an example of real-time signals of the wet concentration of CO, PN,
NO, NO2, and CO2. As the speed profile reveals (bottom of the figure), the first 3100 s
are the urban part; then the rural part continues until 5000 s and then the motorway part.
Gasoline engines work stoichiometrically, so the CO2 is relatively constant, around 13.8%,
with lower values at fuel cut-offs. The NO2 is very low, while NO is emitted during a cold
start (when the catalyst temperature is low) and decelerations (lean conditions and lack of
oxygen reduce the conversion efficiency). The gradual increase in NO2 up to 5 ppm for
this particular example is an indication of the analyzer’s drift. PN is high during the whole
cycle, particularly at cold start and accelerations (note that this vehicle is not equipped with
a particle filter). CO is very high during the cold start but is practically at zero when the
catalyst reaches its light-off temperature; then, there are a few spikes during accelerations
and some emissions at high speeds, probably because the exhaust flow is higher than the
oxidation capacity of the catalyst and/or poor lambda management.
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Appendix A 
Figure A1 gives an example of real-time signals of the wet concentration of CO, PN, 

NO, NO2, and CO2. As the speed profile reveals (bottom of the figure), the first 3100 s are 
the urban part; then the rural part continues until 5000 s and then the motorway part. 
Gasoline engines work stoichiometrically, so the CO2 is relatively constant, around 13.8%, 
with lower values at fuel cut-offs. The NO2 is very low, while NO is emitted during a cold 
start (when the catalyst temperature is low) and decelerations (lean conditions and lack 
of oxygen reduce the conversion efficiency). The gradual increase in NO2 up to 5 ppm for 
this particular example is an indication of the analyzer’s drift. PN is high during the whole 
cycle, particularly at cold start and accelerations (note that this vehicle is not equipped 
with a particle filter). CO is very high during the cold start but is practically at zero when 
the catalyst reaches its light-off temperature; then, there are a few spikes during accelera-
tions and some emissions at high speeds, probably because the exhaust flow is higher than 
the oxidation capacity of the catalyst and/or poor lambda management. 

(a) 

(b) 
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Figure A1. Real-time example of emission profiles during an RDE trip of laboratory #5: (a) CO; (b) 
PN; (c) NO; (d) NO2; (e) CO2; (f) exhaust flow rate; (g) speed. 
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